作物源碳的土壤固定机制:四种土壤培养实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球变化的背景下,土壤有机碳的固定是温室气体减排与农业可持续发展过程中主要发展的方向。农业土壤在人类活动的影响下,对土壤碳库储存、演变的影响以及在碳循环过程中的作用日益受到人们的关注。目前,我们对于农田土壤固碳与温室气体减排的自然潜力和主要途径并不清楚。相关的固碳机理也有待深入研究。水稻土是我国重要的土壤类型之一,也是具有我国特色的代表性土壤。我国南方以种植水稻为主,水稻土在我国南方的土壤中占有重要地位。而且,我国南方的水稻土固碳潜力大。相对于其他类型的土壤而言,我国南方有些水稻土pH偏酸性,有机碳的含量也较高。但是我们对在低pH条件下的水稻土有机碳的固定机制还不清楚。我们提出假设,我国南方水稻土有机碳的固定是在团聚体物理保护下的化学结合与转化和稳定的共同作用机制。因此,我们选取了三种具有代表性的南方水稻土,同时选取了一种来源于长江流域的湿地土壤与水稻土进行比较,进行添加玉米秸秆的培养30、90和180天的室内实验。并且综合13C稳定性同位素示踪技术与热解质谱等分析手段,研究不同发生起源的水稻土和湿地土壤有机碳固定过程中的相关的机理问题。为水稻土固碳机制的研究提供新的资料。主要研究结果如下:
     1.土壤有机碳在水稻土全土和团聚体颗粒组中的固定
     通过室内培养实验对太湖地区黄泥土(TP)、红泥砂田(RP)、紫泥田(PP)和湿地土壤(MS)添加玉米秸秆培养30、90和180天时,土壤有机碳含量的变化研究结果表明,在这四种土壤当中,土壤有机碳的固定在太湖地区黄泥土和红泥砂田中比在紫泥田和湿地土壤中多。土壤的C/N与增加的有机碳呈显著相关,土壤的C/N可能与土壤固碳容量有关。通过对土壤团聚体颗粒组有机碳含量的分析得知,增加的团聚体有机碳含量在大粒级团聚体颗粒组(2000-200μm和200-20μm)中较高。随着培养时间的延长,水稻土和湿地土壤在2000-200μm颗粒组中分布的有机碳逐渐减少,水稻土有机碳有从2000-200μm粒级向20-2μm粒级中分布的趋势。而湿地土壤有机碳的分布以2000-200μm粒级为主。
     结合13C稳定性同位素示踪技术,我们对水稻土添加玉米秸秆培养180天时土壤中水稻土来源的有机碳和玉米秸秆来源有机碳的分布结果进行了研究。研究结果也表明,太湖地区黄泥土和红泥砂田中无论是玉米秸秆来源碳还是水稻土来源的有机碳含量都高于紫泥田和湿地土壤,说明太湖地区黄泥土和红泥砂田的固碳能力更强,在团聚体颗粒组中,玉米秸秆来源有机碳主要集中在大粒级的团聚体(2000-200gm)中。
     2.游离氧化铁在水稻土和湿地土壤固碳过程中的作用
     培养180天时,铁铝键结合态有机碳与游离氧化铁之间的显著正相关关系表明了游离氧化铁与土壤有机碳的固定密切相关。土壤有机质中铁铝键结合态有机碳和胡敏素占土壤有机碳总量的90%左右,是有机质的主要组分。随着培养时间的延长,铁铝键结合态有机碳的比例减少,胡敏素的比例增加。在添加玉米秸秆培养30天时,增加的土壤有机碳与铁铝键结合态有机碳呈显著正相关关系,而到了180天时,增加的土壤有机碳与胡敏素呈显著正相关关系,说明有机碳在土壤中从固定到稳定化,经历了一个转化过程。在团聚体颗粒组中,各个有机质组分的分配不同。在水稻土和湿地土壤中,新碳主要以铁铝键结合态有机碳和胡敏素的形式被固定在大粒级的团聚体(2000-200μm和200-20μm)中。
     3.疏水性有机质在土壤固碳过程中的作用
     培养后四种土壤的热解质谱分析结果表明,虽然土壤有机质中的疏水性有机质(木质素和脂类物质)和亲水性有机质(多糖)的含量都增加了,但是随着培养时间的延长疏水性有机质和亲水性有机质的含量都逐渐降低。疏水性有机质比亲水性有机质降低的慢,表现的更稳定。与添加玉米秸秆培养30天的处理相比,培养180天时其疏水性有机质的百分含量更高,更进一步说明了疏水性有机质是土壤中的稳定性组分。土壤的粘粒含量、pH和游离氧化铁的含量是影响疏水性有机质含量的因子。与紫泥田和湿地土壤相比,太湖地区黄泥土、尤其是在红泥砂田中含有更多的疏水性有机质。这可能是有机碳在红泥砂田中更稳定的一个重要原因。而且,不同类型水稻土的土壤团聚体固定疏水性有机质的含量不同。当新鲜有机物质进入到水稻土和湿地土壤中时,疏水性有机质主要集中在大粒级的团聚体(2000-200μm和200-20μm)中。随着培养时间的延长,水稻土中增加的疏水性有机质含量在2000-200μm的粒级减少了,分别在其它粒级有所增加。而湿地土壤中增加的木质素和脂类物质含量在2000-200μm、200-20μm和20-2μm这三个粒级都降低了。
     4.土壤铁铝键结合态有机碳的红外光谱和13C核磁共振分析
     傅里叶变换红外光谱的研究结果表明,铁铝键结合态有机碳中的疏水性官能团如苯酚基团具有结构上的稳定性,对水稻土有机碳的固定起重要作用。并且疏水性有机质对亲水性有机质的保护作用可能是亲水性有机质(蛋白质)保持稳定的一个原因。13C核磁共振研究结果表明了,培养结束时,与紫泥田相比,太湖地区黄泥土和红泥砂田中含有较多的烷基碳。太湖地区黄泥土和红泥砂田团聚体颗粒组中的铁铝键结合态有机碳在2000-200μm和20-2μm粒级中芳香碳的含量较高,而紫泥土在200-20μm和<2μm的粒级中芳香碳含量较高。联系到团聚体中增加的疏水性有机质的结果,有可能铁铝键结合态有机碳疏水性基团(芳香碳和烷基碳)的含量变化与土壤团聚体颗粒组有机碳的稳定性密切相关。
     以上研究结果表明,作物源碳在土壤中的固定主要集中在大粒级的团聚体(2000-200μm)中。游离氧化铁与水稻土有机碳的固定密切相关。疏水性有机质在分子结构上的稳定性是土壤有机碳保持稳定的一个重要原因。由于在太湖地区黄泥土和红泥砂田中含有较丰富的游离氧化铁和较高含量的疏水性有机质(木质素和脂类物质),有机碳在这两种水稻土中更稳定。水稻土有机碳的固定是在土壤团聚体的物理保护下经化学结合和转化,并最终达到分子结构上稳定的共同作用。
Sequestration of soil organic carbon (SOC) is main developed object in the process of reducing the emission of green house gases (GHGs) and sustainable development under the global change situation. In addition, a lot of people pay attention to the effect of agricultural soils in carbon storage and development including the carbon cycle at the same time. It is not clear to the potential and way of carbon sequestration in agricultural soils and GHGs reducing till now. While, the mechanism of carbon sequestration is also need to be studied. Paddy soil is a typical and main soil type in China soils. The main plant in the south of China is rice. Thus, paddy soils play an important role in the south of China. Moreover, the potential of carbon sequestration in paddy soils is high. Generally speaking, the pH was acidic, and the amount of SOC was high in some paddy soils in the south of China. However, the mechanism of carbon sequestration in these paddy soils is not clear now. We hypothesis that the carbon sequestration in paddy soils is conducted by interacted with iron oxides and convert to a stable status, and stabilize on molecular structure under the physical protection of aggregates. Therefore, three typical paddy soils developed from different pedogenesis in the south of China were used in this study. Moreover, a marsh soil without cultivated and developed from Yangtze River valley was also used in order to compared to paddy soils. Laboratory incubation experiment with maize straw for30,90and180days was conducted in three paddy soils and a marsh soil.13C stable isotope trace technique and off-line in the presence of tetramethylammonium hydroxide (TMAH) and followed by gas chromatography mass spectrometry (Pyr-TMAH-GC-MS) were used in order to study the mechanism of carbon sequestration in paddy soils and a marsh soil. Then, some new material could be provided for studying the mechanism of carbon sequestration. The main conclusions were as follows:
     1. Sequestration of SOC in whole soils and aggregates of paddy soils and marsh soil
     The changes of amounts of SOC incubated with maize straw for30,90and180days was studied in paddy soil TP, developed from clayey lacustrine deposits in the Tai Lake plain, paddy soil RP, derived from red earth in the rolling red soil area, paddy soil PP, formed on Jurassic purple shale and sandstone and marsh soil MS, developed from Yangze River valley. The increase in SOC was higher in soil TP and soil RP than in soil PP and soil MS. While, the C/N ratio significantly correlated to the increased SOC. Maybe the C/N ratio related to the capacity of carbon sequestration in soils. Moreover, increase in SOC of particle size fractions was mainly in coarse fraction (2000-200μmn and200-20μm). The distribution of SOC in particle size fractions transferred from coarse fraction (2000-200μm) to fine fraction (20-2μm) in paddy soils with time, but SOC mainly distributed in coarse fractions (2000-200μm) of soil MS.
     In addition, different sources of SOC, such as SOC derived from paddy soils and maize straw, were also studied by13C isotope trace. It showed that there were more maize straw organic carbon sequestrated in soil TP and soil RP than in soil PP and soil MS, and there were more SOC derived from paddy soil in soil TP and soil RP too. It showed that the capacity of carbon sequestration in soil TP and soil RP is higher than in soil PP and soil MS. The maize straw organic carbon was mainly sequestrated in coarse fraction (2000-200μm) in results of13C isotope trace.
     2. Effect of free iron oxide (Fed) on carbon sequestration in paddy soils and marsh soil
     A positive correlation between Fe/Al-OC and free iron oxide (Fed) showed that the free iron oxide related to carbon sequestration. Both the Fe/Al-OC and humin were the main fractions of soil organic matter (SOM). The sum of them was more than90%in SOM. However, the percentage of Fe/Al-OC was decreased, but it was increased in humin with time. A positive correlation between increased SOC and increased Fe/Al-OC was found in30days of incubation with maize straw, but a positive correlation between increased SOC and increased humin was found in180days of incubation with maize straw. It showed that the convert from Fe/Al-OC to humin existed in carbon sequestration and was the process of carbon sequestration and stability. The distribution of the fractions of SOM was different in particle size fractions. The maize straw organic carbon was mainly sequestrated as Fe/Al-OC and humin in coarse fractions (2000-200μm and200-20μm) of paddy soils and marsh soil.
     3. Effect of hydrophobic organic matter on carbon sequestration
     The results of Pyr-TMAH-GC-MS analysis showed that increase in hydrophobic organic matter (lignin and lipids) and hydrophilic organic matter (polysaccharides) was found in this study. Then, both of them decreased with time, but the decrease in hydrophobic organic matter was slower than in hydrophilic organic matter. While, hydrophobic materials (lignin and lipids) were more stable than hydrophilic material (polysaccharides). Compared to30days of incubation with maize straw, the percentage of hydrophobic organic matter was higher in180days of incubation. It also showed that the hydrophobic organic matter was more stable than hydrophilic organic matter. Clay content, pH and amounts of free iron oxide were the effect factors of the amounts of hydrophobic materials in this study. There were more hydrophobic materials in soil TP and soil RP than in soil PP and soil MS. Maybe it was a reason for the high stability of SOC in soil RP. Moreover, the sequestration of hydrophobic organic matter in particle size fractions of various types of paddy soils was different. Hydrophobic materials mainly accumulated in coarse fractions (2000-200μm和200-20μm) when new organic matters were input in paddy soils and marsh soil. Then the increased amounts of hydrophobic organic matter decreased in the fractions of2000-200μm but, trended towards accumulating in other fractions of paddy soils with time. In contrary, the amounts of hydrophobic organic matter decreased with time in particle size fractions of2000-200μm,200-20μm, and20-2μm.
     4. Analysis of Fe/Al-OC by FTIR spectroscopy and13C CPMAS-NMR
     Hydrophobic functional groups such as phenol groups were stable fractions of Fe/Al-OC analyzed by Fourier transfer infrared (FTIR) spectroscopy. It played a significant role in carbon sequestration of paddy soils and marsh soil. While, it may was an important reason for the stability of hydrophilic materials which was protected by hydrophobic materials. In addition, the Fe/Al-OC extracted from soil TP and soil RP contained more alkyl groups than in soil PP analyzed by13C CPMAS NMR in the end of incubation. The content of aromatic groups of Fe/Al-OC was high in2000-200μm and20-2μm fractions in soil TP and soil RP, but it was high were in200-20μm and<2μm fractions in soil PP. If we consider the increase in hydrophobic organic matter together, the changes of aromatic and alkyl groups of Fe/Al-OC may relate to the stability of SOC in particle size fractions.
     In summary, crop derived organic carbon was mainly sequestrated in coarse aggregates (2000-200μm). The amounts of Fed related to the carbon sequestration in paddy soils. Maybe the SOC were more stable in soil TP and soil RP because of the more Fed and hydrophobic organic matter. Carbon sequestration of SOC in paddy soils was that SOC interacted to Fed and converted to a stable status, and was stabilized on molecular structure under the protection of aggregates at the same time.
引文
Angers, D.A., Recous, S., Aita, C. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C,15N-labelled wheat straw in situ [J]. European Journal of Soil Sciene, 1997,48:295-300.
    Aran, D., Gury, M., Jeanroy, E. Organo-metallic complexes in an Andosol:a comparative study with a Cambisol and Podzol [J]. Geoderma,2001,99 (1-2):65-79.
    Artz, R.R.E., Chapman, S J., Jean Robertson, A.H., et al. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands [J]. Soil Biology & Biochemistry,2008,40 (2):515-527.
    Bahri, H., Rasse, D.P., Rumpel, C., et al. Lignin degradation during a laboratory incubation followed by 13C isotope analysis [J]. Soil Biology & Biochemistry,2008,40 (7):1916-1922.
    Balabane, M., Plate, A.F. Aggregation and carbon storage in silty soils using physical fractionation techniques [J]. European Journal of Soil Science,2004,55:415-427.
    Baldock, J.A., Oades, J.M., Waters, A.G, et al. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy [J]. Biogeochemistry,1992,16:1-42.
    Baldock, J.A., Oades, J.M., Nelson, P.N., et al. Assessing the extent of decomposition of natural organic materials using solid state 13C NMR [J]. Australian Journal of Agricultural Research,1997,35: 1061-1083.
    Baldock, J.A., Skjemstad, J.O. Role of the soil matrix and minerals in protecting natural organic materials gainst biological attack [J]. Organic Geochemistry,2000,31:697-710.
    Balesdent, J. The turnover of soil organic fractions estimated by radiocarbon dating [J]. Science of the Total Environment 1987,62:405-408.
    Balesdent, J., Wagner, GH. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance [J]. Soil Science Society of America Journal,1988,52:118-124.
    Barton, D.H.R., Schnitzer, M. A new experimental approach to the humic acid problem [J]. Nature,1963, 1989:217-218.
    Ben-Hur, M., Letey, J. Effect of polysaccharides, clay dispersion, and impact energy on water infiltration [J]. Soil Science Society of America Journal,1989,53:233-238.
    Bernoux, M., Cerri, C.C., Neill, C., et al. The use of stable carbon isotopes for estimating soil organic matter turnover rates [J]. Geoderma,1998,82:43-58.
    Besnard, E., Chenu, C., Balesdent, J., et al. Fate of particulate organic matter in soil aggregates during cultivation [J]. European Journal of Soil Science,1996,47:495-503.
    Birgitte, N., Leif, P. Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of vertisol [J]. Plant and Soil,2000,218:173-183.
    Boudot, J.P., Bel HadjBrahim, A., Steiman, R., et al. Biodegradation of synthetic organo-metallic complexes of iron and aluminium with selected metal to carbon ratios [J]. Soil Biology & Biochemistry,1989,21 (7):961-966.
    Bull, I.D., van Bergen, P.F., Nott, C.J., et al. Organic geochemical studies of soil from the Rothamsted Classical Experiments. V. The fate of lipids in different long-term experiments [J]. Organic Geochemistry,2000,31:389-408.
    Buurman, P., Nierop, K.G.J., Kaal, J., et al. Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples-A key to their source [J]. Geoderma,2009, 150 (1-2):10-22.
    Cambardella, C.A., Elliot, E.T. Carbon and nitrogen in aggregates from cultivated and native grassland soils [J]. Soil Science Society of America Journal,1993,57:1071-1076.
    Carter, M.R. Analysis of soil organic matter storage in agroecosystems. In:Stewart, B.A. (Ed.), Structure of Organic Matter Storage in Agricultural Soils. CRC Press Inc, Boca Raton, FL, [M].1996: 3-11
    Chenu, C., Plante, A.F. Clay-sized organo-mineral complexes in a cultivation chronosequence:revisiting the concept of the'primary organo-mineral complex'[J]. European Journal of Soil Science, 2006,57:596-607.
    Christensen, B.T. Straw incorporation and soil organic matter in macro-aggregations and particle size separates [J]. Journal of Soil Science,1990,37:125-135.
    Curtin, D. Possible role of aluminum in stabilizing organic matter in particle size fractions of Chemozemic and Solonetzic soils [J]. Canadian Journal of Soil Science,2002,82:265-268.
    Derenne, S., Largeau, C. A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments [J]. Soil Science,2001,166:833-847.
    Desjardins, T., Andreux, F., Volkoff, B., et al. Organic carbon and 13C contents in soils and soil size-fractions, and their changes due to deforestation and pasture installation in eastern Amazonia [J]. Geoderma,1994,61 (1-2):103-118.
    deMontigny, L.E., Preston, C.M., Hatcher, P.G., et al. Comparison of humus horizons from two ecosystem phases on Northern Vancouver Island using 13C CPMAS NMR spectroscopy and CuO oxidation. [J]. Canadian Journal of Soil Science,1993,73:9-25.
    Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. Soil water repellency:its causes, characteristics and hydro-geomorphological significance [J]. Earth Science Reviews,2000,51:33-65.
    Eliott, E.T., Coleman, D.C. Let the soil work for us [J]. Ecological Bulletions,1988,39:23-32.
    Elliott E. T. Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal,1986,50:627-633.
    Emerson, W.W. A classification of soil aggregates based on their coherence in water [J]. Austrlian Journal of Soil Research,1967,5 (1):47-57.
    Eneji, A.E., Honna, T., Yamamoto, S., et al. Changes in Humic Substances and Phosphorus Fractions During Composting [J]. Communications in Soil Science and Plant Analysis,2003,34 (15-16): 2303-2314
    Follett, R.F., Castellanos, J.Z., Buenger, E.D. Carbon dynamics and sequestration in an irrigated Vertisol in Central Mexico [J]. Soil and Tillage Research,2005,83 (1):148-158.
    Francioso, O., Ciavatta, C., Tuganoli, V., et al. Spectroscopic characterization of pyrophosphate incorporation during extraction of peat humic acids [J]. Soil Science Society of America Journal, 1998,62:181-187.
    Fuentes, M., Baigorri, R., Gonzalez-Gaitano, G, et al. The complementary use of 1H NMR,13C NMR, FTIR and size exclusion chromatography to investigate the principal structural changes associated with composting of organic materials with diverse origin [J]. Organic Geochemistry, 2007,38 (12):2012-2023.
    Geffroy-Rodier, C., Grasset, L., Sternberg, R., et al. Thermochemolysis in search for organics in extraterrestrial environments [J]. Journal of Analytical and Applied Pyrolysis,2009,85 (1-2): 454-459.
    Goebel, M.-O., Bachmann, J., Woche, S.K., et al. Water potential and aggregate size effects on contact angle and surface energy [J]. Soil Science Society of America Journal,2004,68:383-393.
    Golchin, A., Baldock, J.A., Oades, J.M. A model linking organic matter decomposition, chemistry and aggregate dynamics. In:Stewart, B.A. (Ed.), Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, [M].1997:245-266.
    Gonzalez-Perez, M., Vidal Torrado, P., Colnago, L.A., et al. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil [J]. Geoderma,2008,146 (3-4):425-433.
    Gonzalez-Vila, F.J., Almendros, G, Madrid, F. Molecular alterations of organic fractions from urban waste in the course of composting and their further transformation in amended soil [J]. The Science of The Total Environment,1999,236 (1-3):215-229.
    Gu, B.H., Schmitt, J., Chen, Z.H., et al. Adsorption and desorption of natural organic matter on iron oxide:mechanisms and models [J]. Environmental Science & Technology,1994,28 (1):38-46.
    Guggenberger, G, Zech, W., Haumaier, L., et al. Land-use effects on the composition of organic matter in particle-size separates of soils, Ⅱ. CPMAS and solution 13C NMR analysis [J]. European Journal of Soil Science,1995,46:147-158.
    Gunasekara, A.S., Xing, B. Sorption and desorption of naphthalene by soil organic matter:importance of aromatic and aliphatic components [J]. Journal of Enviromental Quality,2003,32 (1):240-246.
    He, Z., Ohno, T., Cade-Menun, B.J., et al. Spectral and chemical characterization of phospates associated with humic substances [J]. Soil Science Society of America Journal,2006,70:1741-1751.
    Henriksen, T.M., Breland, T.A. Carbon mineralization, fungal and bacterial growth and wnzyme activities as affected by contact crop residues and soil [J]. Biology and Fertility of Soils,2002, 35:41-48.
    Jandl, G, Leinweber, P., Schulten, H.-R., et al. The concentrations of fatty acids in organo-mineral particle-size fractions of a Chernozem [J]. European Journal of Soil Science,2004,55:459-469.
    Jardine, P.M., Weber, N.L., McCarthy, J.F. Mechanism of dissolved organic carbon adsorption on soil [J]. Soil Science Society of America Journal,1989,53:1378-1385.
    Jastrow, J.D., Boutton, T.W., Miller, R.M. Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance [J]. Soil Science Society of America Journal,1996, 60:801-807.
    Jastrow, J.D., Amonette, J.E., Bailey, V.L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration [J]. Climate Change,2007,80:5-23.
    John, B., Yamashita, T., Ludwig, B., et al. Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use [J]. Geoderma,2005,128:63-79.
    Johnson, D., Hale, B. White birch (Betula papyrifera Marshall) foliar litter decomposition in relation to trace metal atmospheric inputs at metal contaminated and uncontaminated sites near Sudbury, Ontario and Rouyn-Noranda, Quebec, Canada [J]. Environmental Pollution,2004,127:65-72.
    Jones, D.L., Edwards, A.C. Influence of sorption on the biological utilization of two simple carbon substrates [J]. Soil Biology & Biochemistry,1998,30 (14):1895-1902.
    Kogel-Knabner, I., Hatcher, P.G, Zech, W. Chemical structural studies of forest soil humic acids: aromatic carbon fraction [J]. Soil Science Society of America Journal,1991,55:241-247.
    Kogel-Knabner, I., Guggenberger, G, Kleber, M., et al. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry [J]. Journal of Plant Nutrition and Soil Science,2008,171 (1):61-82.
    Kaal, J., Baldock, J.A., Buurman, P., et al. Evaluating pyrolysis-GC/MS and I3C CPMAS NMR in conjunction with a molecular mixing model of the Penido Vello peat deposit, NW Spain [J]. Organic Geochemistry,2007,38 (7):1097-1111.
    Kaiser, K., Guggenberger, G., Zech, W. Sorption of DOM and DOM fractions to forest soils [J]. Geoderma,1996,74:281-303.
    Kaiser, K., Zech, W. Release of natural organic matter sorbed to oxides and a subsoil [J]. Soil Science Society of America Journal,1999,63 (5):1157-1166.
    Kaiser, K., Zech, W. Dissolved organic matter sorption by mineral constituents of subsoil clay fractions [J]. Journal of Plant Nutrition and Soil Science,2000,163:531-531.
    Kaiser, K., Eusterhues, K., Rumpel, C., et al. Stabilization of organic matter by soil minerals-investigations of density and particle-size fractions from two acid forest soils [J]. Journal of Plant Nutrition and Soil Science,2002,165:451-459.
    Kaiser, K., Guggenberger, G Mineral surfaces and soil organic matter [J]. European Journal of Soil Science,2003,54:219-236.
    Kalbitz, K., Schwesig, D., Rethemeyer, J., et al. Stabilization of dissolved organic matter by sorption to the mineral soil [J]. Soil Biology & Biochemistry,2005,37 (7):1319-1331.
    Kassim, G., Stott, D.E., Martin, J.P., et al. Stabilization and incorporation into biomass of phenolic and benzenoid carbons during biodegradation in soil [J]. Soil Science Society of America Journal, 1982,46:305-306.
    Kirk, T.K., Connors, W.J., Zeikus, J.G. Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi [J]. Applied and Environmental Microbiology,1976,32:192-194.
    Kogel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter [J]. Soil Biology & Biochemistry,2002,34:139-162.
    Kumar, K., Goh, K.M. Nitrogen release from crop residues and organic amendments as affected by biochemical composition [J]. Communications in Soil Science and Plant Analysis,2003,34 (17-18):2441-2440.
    Lal, R. World soils greenhouse effct [J]. Global Change New Letter,1999,37:4-5.
    Lamb, A.L., Wilson, GP., Leng, M.J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material [J]. Earth-Science Reviews,2006, 75 (1-4):29-57.
    Lichtfouse, E., Chenu, C., Baudin, F., et al. A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers:chemical and isotope evidence [J]. Organic Geochemistry,1998,28 (6):411-415.
    Lippold, H., Evans, N.D., Warwick, P., et al. Competitive effect of iron(Ⅲ) on metal complexation by humic substances:characterisation of ageing processes [J]. Chemosphere,2007,67 (5):1050-6.
    Liu, D., Liu, X., Liu, Y., et al. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China-Ⅵ. Changes in microbial community structure and respiratory activity [J]. Biogeosciences Discuss,2011,8:1529-1554.
    Lundstrom, U.S., van Breemen, N., Bain, D.C. The podzolization process. A review [J]. Geoderma,2000, 94:91-107.
    Maie, N., Watanabe, A., Kimura, M. Chemical characteristics and potential source of fulvic acids leached from the plow layer of paddy soil [J]. Geoderma,2004,120 (3-4):309-323.
    Martin, J.P., Haider, K., Kassim, G Biodegradation and stabilization after years of specific crop, lignin, and polyssacharide carbons in soils [J]. Soil Science Society of America Journal,1980,44: 1250-1255.
    Mecozzi, M., Pietrantonio, E. Carbohydrates proteins and lipids in fulvic and humic acids of sediments and its relationships with mucilaginous aggregates in the Italian seas [J]. Marine Chemistry, 2006,101 (1-2):27-39.
    Melillo, J.M., Aber, J.D., Linkins, A.E., et al. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter [J]. Plant and Soil,1989,115:189-198.
    Mikutta, R., Kleber, M., Torn, M.S., et al. Stabilization of soil organic matter association with minerals or chemical recalcitrance? [J]. Biogeochemistry,2006,77:25-56.
    Miltner, A., Zech, W. Beech leaf litter lignin degradation and transformation as influenced by mineral phases [J]. Organic Geochemistry,1998,28 (7-8):457-463.
    Monreal, C.M., Schnitzer, M., Schulten, H.R., et al. Soil organic structures in macro and microaggregates of a cultivated Brown Chernozem [J]. Soil Biology & Biochemistry,1995,27 (6):845-853.
    Mubarak, A.R., Rosenani, A.B. Soil organic matter fractions in humid tropics as influenced by application of crop residues [J]. Communications in Soil Science and Plant Analysis,2003,34 (7-8):933-943.
    Muneer, M., Oades, J.M. The role of Ca-organic interactions in soil aggregate stability.3. Mechanisms and models [J]. Australian Journal of Soil Research,1989,27:411-423.
    Nadelhoffer, K.J., Fry, B. Controls on natural N-15 and C-13 abundances in forest soil organic matter [J]. Soil Science Society of America Journal,1988,52:1633-1640.
    Nierop, K.GJ., Jansen, B., Verstraten, J.A. Dissolved organic matter, aluminium and iron interactions: precipitation induced by metal/carbon ratio, pH and competition [J]. Science of the Total Environment,2002,300:201-211.
    Nissenbaum, A., Schallinger, K.M. The distribution of the stable carbon isotope (13C/12C) in fractions of soil organic matter [J]. Geoderma,1974,11 (2):137-145.
    Oades, J.M., Waters, A.G. Aggregate hierarchy in soils [J]. Austria Journal of soil science,1991,29: 815-828.
    Pan, GX., Smith, P., Pan, W.N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture, Ecosystems & Environment,2009,129 (1-3): 344-348.
    Pan, G.X., Li, L.Q., Wu, L.S., et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,2003,10 (1):79-92.
    Pan, GX., Wu, L.S., Li, L.Q., et al. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region, China [J]. Journal of Environmental Sciences,2008a,20 (4):456-463.
    Pan, GX., Wu, L.S., Li, L.Q., et al. Organic carbon stratification and size distribution of three typical paddy soils from Taihu Lake region [J]. China Journal of Enviromental Sciences,2008b,20 (4): 463-465.
    Pandey, A.K., Pandey, S.D., Misra, V. Stability constants of metal-humic acid complexes and its role in environmental detoxification [J]. Ecotoxicology Environmental Safety,2000,47 (2):195-200.
    Piccolo, A., Mbagwu, J.S.C. Role of hydrophobic components of soil organic matter in soil aggregate stability [J]. Soil Science Society of America Journal,1999,63:1801-1810.
    Piccolo, A. The supramolecular structure of humic substances:a novel understanding of humus chemistry and implications in soil science [J]. Advances in Agronomy,2002,75:57-134.
    Piccolo, A., Spaccini, R., Nieder, R., et al. Sequestration of a biologically labile organic carbon in soils by humified organic matter [J]. Climatic Change,2004,67:329-343.
    Piccolo, A., Conte, P., Spaccini, R., et al. Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria [J]. European Journal of Soil Science,2005,56:343-352.
    Pojasak, T., Kay, B.D. Effects of root exudates from corn and bromegrass on soil structural stability [J]. Candian Journal of Soil Science,1990,70:351-362.
    Puget, P., Chenu, C., Balesdent, J. Total and young organic matter distributions in aggregates of silty cultivated soils [J]. European Journal of Soil Science,1995,46 (3):449-459.
    Puget, P., Angers, D.A., Chenu, C. Nature of carbohydrates associated with water-stable aggregates of two cultivated soils [J]. Soil Biology & Biochemistry,1998,31 (1):55-63.
    Puget, P., Chenu, C., Balesdent., J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates [J]. European Journal of Soil Science,2000,51:595-605.
    Pullin, M.J., Cabaniss, S.E. The effects of pH, ionic strength, and iron-fulvic acid interactions on the kinetics of nonpotochemical iron transformations I. Iron(II) oxidation and iron(Ⅲ) colloid formation [J]. Geochimica et Cosmochimica Acta,2003a,67:4067-4077.
    Pullin, M.J., Cabaniss, S.E. The effects of pH, ionic strength, and iron-fulvic acid interaction on the kinetics of nonphotochemical iron transformations. Ⅱ. The kinetics of thermal reduction [J]. Geochimica et Cosmochimica Acta,2003b,67:4079-4089.
    Rasmussen, C., Southard, R.J., Horwath, W.R. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils [J]. Global change biology,2006,12 (5):834-847.
    Rhoades, C.C., Eckert, G.E., Coleman, D.C. Soil carbon differences among forest, agriculture, and secondary vegetation in lower montane ecuador [J]. Ecological Applications,2000,10 (2): 497-505.
    Roscoe, R., Buurman, P., Velthorst, E.J., et al. Soil organic matter dynamics in density and particle size fractions as revealed by the 13C/12C isotopic ratio in a Cerrado's oxisol [J]. Geoderma,2001,104 (3-4):185-202.
    Rounsevell, M.D.A., Evans, S.P., Bullock, P. Climate change and agricultural soils:impacts and adaptation [J]. Climatic Change,1999,43:683-709.
    Rulmont, A., Cahay, R., Liegeois-Duyckaerts, M., et al. Vibrational spectroscopy of phosphate:Some general correlations between structure and spectra [J]. European Journal of Solid State and Inorganic Chemistry,1991,28:207-219.
    Rumpel, C, Eusterhues, K., Kogel-Knabner, I. Non-cellulosic neutral sugar contribution to mineral associated organic matter in top-and subsoil horizons of two acid forest soils [J]. Soil Biology & Biochemistry,2010,42 (2):379-382.
    Senesi, N., Calderonib, G. Structural and chemical characterization of copper, iron and manganese complexes formed by paleosol humic acids [J]. Organic Geochemistry 1988,13:1145-1152.
    Senesi, N., Griffith, S.M., Schnitzer, M., et al. Binding of Fe3+ by humic materials [J]. Geochimica et Cosmochimica Acta,1977,41 (7):969-976.
    Shadkami, F., Helleur, R. Recent applications in analytical thermochemolysis [J]. Journal of Analytical and Applied Pyrolysis,2010,89 (1):2-16.
    Shang, C., Tiessen, H. Carbon turnover and carbon-13 natural abundance in organo-mineral fractions of a tropical dry forest soil under cultivation. [J]. Soil Science Society of America Journal,2000, 64:2149-2155.
    Shirshova, L.T., Ghabbour, E.A., Davies, G. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures [J]. Geoderma,2006,133 (3-4): 204-216.
    Simpson, M.J., Johnson, P.C.E. Identification of mobile aliphatic sorptive domains in soil humin by solid-state 13C nuclear magnetic resonance [J]. Enviromental Toxicology and Chemistry,2006, 25 (1):52-57.
    Six, J., Elliott, E.T., Paustian, K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biology and Biochemistry, 2000,32 (14):2099-2103.
    Six, J., R. T. Conant, E. A. Paul, et al. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils [J]. Plant and Soil,2002,241:155-176.
    Solomon, D., Lehmann, J., Kinyangi, J., et al. Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils [J]. Soil Sci. Soc. Am. J.,2005,69: 107-119.
    Solomon, D., Lehmann, J., Kinyangi, J., et al. Long-term impacts of anthropogenic perturbations on dynamics and speciation of organic carbon in tropical forest and subtropical grassland ecosystems [J]. Global Change Biology,2007,13 (2):511-530.
    Song, G.H., Li, L.Q., Pan, G.X., et al. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry,2005,74:47-62.
    Soon, Y.K., Arshad, M.A. Comparison of the decomposition and N and P mineralization of canola, pea and wheat residues [J]. Biology and Fertility of Soils,2002,36:10-17.
    Spaccini, R., Piccolo, A. Molecular characterization of compost at increasing stages of maturity.2. Thermochemolysis-GC-MS and 13C-CPMAS-NMR spectroscopy [J]. Journal of Agricultural and Food Chemistry,2007,55:2303-2311.
    Spaccini, R., Piccolo, A. Molecular characteristics of humic acids extracted from compost at increasing maturity stages [J]. Soil Biology & Biochemistry,2009,41:1164-1172.
    Spaccini, R., Sannino, D., Piccolo, A., et al. Molecular changes in organic matter of a compost-amended soil [J]. European Journal of Soil Science,2009,60:287-296.
    Spaccini, R., Piccolo, A., Conte, P., et al. Increased soil organic carbon sequestration through hydrophobic protection by humic substances [J]. Soil Biology & Biochemistry,2002,34: 1839-1851.
    Stemmer, M., Gerzabek, M.H., Kandeler, E. Organic matter and enzyme activity in particle-size fractions of soils obtained after low-energy sonication [J]. Soil Biology and Biochemistry,1998,30 (1): 9-17.
    Stott, D.E., Kassim, G, Jarrell, W.M., et al. Stabilization and incorporation into biomass of specific plant carbons during biodegradation in soil [J]. Plant and Soil,1983,70:15-26.
    Struyk, Z., Sposito, G. Redox properties of standard humic acids [J]. Geoderma,2001,102 (3-4): 329-346.
    Tatzber, M., Stemmer, M., Spiegel, H., et al. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures [J]. Journal of plant nutrition and soil science,2007,170 (4):522-529.
    Thevenot, M., Dignac, M.-F., Rumpel, C. Fate of lignins in soils:A review [J]. Soil Biology & Biochemistry,2010,42 (8):1200-1211.
    Tisdall, J.M. Possible role of soil microorganisms in aggregation in soils [J]. Plant and Soil,1994,117: 145-153.
    Umbreit, W.W. Modern microbiology. SanFrancisco [M].1962.
    Unger, P.W. Aggregate and organic carbon concentration interrelationships of a Torrertic Paleustoll [J]. Soil & Tillage Research,1997,42:95-113.
    van Bergen, P.F., Nott, C.J., Bull, I.D., et al. Organic geochemical studies of soil from the Rothamsted Classical Experiments. IV. Preliminary results from a study of the effect of soil pH on organic matter decay [J]. Organic Geochemistry,1998,29:1779-1795.
    Van Hees, P.A.W., Vinogradoff, S.I., Edwards, A.C., et al. Low molecular weight organic acid adsorption in forest soils:effects on soil solution concentrations and biodegradation rates [J]. Soil Biology & Biochemistry,2003,35 (8):1015-1026.
    Vancampenhout, K, Wouters, K., De Vos, B., et al. Differences in chemical composition of soil organic matter in natural ecosystems from different climatic regions-A pyrolysis-GC/MS study [J]. Soil Biology & Biochemistry,2009,41 (3):568-579.
    Vitorello, V.A., Cerri, C.C., Andreux, F., et al. Organic matter and natural carbon-13 distribution in forested and cultivated oxisols [J]. Soil Science Society of America Journal,1989,53:773-778.
    Vogel, W.C. A manual for training reclamation inspectors in fundamentals of soils and revegetation. USDA-northern forest experimental station. Produced for OSM, Ankeny, IA, [J],1987:178pp.
    von Lutzow, M., Kogel-Knabner, I., Ekschmitt, K, et al. Stabilization of organic matter in temperate soils:mechanisms and their relevance under different soil conditions-a review [J]. European Journal of Soil Science,2006,57 (4):426-445.
    Volkoff, B., Cerri, C.C. Carbon isotope fractionation in subtropical Brazilian grassland soils. Comparison with tropical forest soils [J]. Plant and Soil,1987,102:27-31.
    von Lutzow, M., Kogel-Knabner, I., Ludwig, B., et al. Stabilization mechanisms of organic matter in four temperate soils:Development and application of a conceptual model [J]. Journal of Plant Nutrition and Soil Science,2008,171 (1):111-124.
    West, T.O., Six, J. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity [J]. Climatic Change,2007,80:25-41.
    White, D., Beyer, L. Pyrolysis-gas chromatography/mass spectrometry and pyrolysis-gas chromatography/flame ionization detection analysis of three Antarctic soils [J]. Journal of Analytical and Applied Pyrolysis,1999,50 (1):63-76.
    Wick, A.F., Ingram, L.J., Stahl, P.D. Aggregate and organic matter dynamics in reclaimed soils as indicated by stable carbon isotopes [J]. Soil Biology & Biochemistry,2009,41 (2):201-209.
    Wilson, M.A., Pugmire, R.J., Zilm, K.W., et al. Cross-polarization 13C NMR spectroscopy with 'magic angle" spinning characterizes organic matter in whole soils [J]. Nature,1981,294:648-650.
    Wiseman, C.L.S., Puttmann, W. Soil organic carbon and its sorptive preservation in central Germany [J]. European Journal of Soil Science,2005,56 (1):65-76.
    Xie, L., Shang, C. Role of Humic Acid and Quinone Model Compounds in Bromate Reduction by Zerovalent Iron [J]. Environmental Science & Technology,2005,39 (4):1092-1100.
    Xie, L., Shang, C., Zhou, Q. Effect of Fe(III) on the bromate reduction by humic substances in aqueous solution [J]. Journal of Environmental Sciences,2008,20 (3):257-261.
    Xu, J.M., Yuan, K.N. Dissolution and Fractionation of Calcium-Bound and Iron-and Aluminum-Bound Humus in Soils [J]. Pedosphere,1993,3 (01):75-80.
    Zang, X., van Heemst, J.D.H., Dria, K.J., et al. Encapsulation of protein in humic acid from a histosol as an explanation for the occurrence of organic nitrogen in soil and sediment [J]. Organic Geochemistry,2000,31 (7-8):679-695.
    Zhou, P., Pan, G.X., Spaccini, R., et al. Molecular changes in particulate organic matter (POM) in a typical Chinese paddy soil under different long-term fertilizer treatments [J]. European Journal of Soil Science,2010,61 (2):231-242.
    Zhou, P., Song, G., Pan, G., et al. Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China [J]. Geoderma,2009,153 (1-2):52-60.
    Zibilske, L.M., Materon, L.A. Biochemical properties of decomposing cotton and corn stem and root residues [J]. Soil Science Society of America Journal,2005,69:378-386.
    Zularisam, A.W., Ismail, A.F., Salim, M.R., et al. Fabrication, fouling and foulant analyses of asymmetric polysulfone (PSF) ultrafiltration membrane fouled with natural organic matter (NOM) source waters [J]. Journal of Membrane Science,2007,299 (1-2):97-113.
    Zysset, M., Berggren, D. Retention and release of dissolved organic matter in Podzol B horizons [J]. European Journal of Soil Science,2001,52 (3):409-421.
    蔡祖聪,Mosier, A.R土壤水分状况对CH4氧化,N2O和CO2排放的影响[J].土壤,1999,(6):289-298.
    慈恩,杨林章,马力,等.长期耕作水稻土的有机碳分布和稳定碳同位素特征[J].水土保持学报,2007,21(5):72-75.
    窦森,张晋京,Lichtfouse, E.,等.用δ13C方法研究玉米秸秆分解期间土壤有机质数量动态变化[J].土壤学报,2003,40(3):328-334.
    龚子同.中国土壤系统分类:理论、方法、实践[M].北京:科学出版社,1999.
    郝余祥,程丽娟.不同粒径土壤团聚体的微生物组成[J].土壤,1979,12(2):31-35.
    黄欠如,胡锋,袁颖红,等.长期施肥对红泥砂田团聚体特征的影响[J].土壤,2007,39(4):608-613.
    黄山,芮雯奕,彭现宪,等.稻田转变为旱地下十壤有机碳含量及其组分的变化特征[J].环境科学,2009,30(4):1146-1151.
    李辉信,袁颖红,黄欠如,等.不同施肥处理对红壤水稻土团聚体有机碳分布的影响[J].土壤学报,2006,43(3):422-429.
    李恋卿,潘根兴,龚伟,等.太湖地区儿种水稻土的有机碳储存及其分布特性[J].科技通报,2000b,16(6):421-432.
    李恋卿,潘根兴,张旭辉.退化红壤植被恢复中表层土壤微团聚体及其有机碳的分布变化[J].土壤通报,2000a,31(5):193-195.
    李世朋,汪景宽,王开勇,等.土壤中钙键和铁/铝键结合的有机碳差异的比较[J].土壤通报,2003,34(6):501-504.
    李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化[J].土壤学报,2007,44(2):244-251.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002,9(1):81-85.
    孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响[J].土壤学报,2005,42(5):769-776.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题[J].地球科学进展,2003,18(4):609-618.
    潘根兴,赵其国.我国农田土壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20(4),20:384-393.
    潘根兴,周萍,李恋卿,等.固碳土壤学的核心科学问题与研究进展[J].土壤学报,2007,44(2):327-337.
    潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响--以太湖地区太湖 地区黄泥土肥料长期试验为例[J].生态学报,2006,26(11):3704-3710.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008,4(5):282-289.
    宋国菡.耕垦下表土有机碳库变化及水稻土有机碳的团聚体分布与结合形态[D].南京:南京农业大学,2005.
    孙维纶,王立德,朱克贵.水稻土的研究Ⅷ.江苏丘陵冲田水稻土的腐殖质和络合态铁[J].南京农业大学学报,1987,(3):74-79.
    唐晓红,邵景安,高明,等.保护性耕作对紫泥田团聚体组成和有机碳储量的影响[J].应用生态学报,2007a,18(5):1029-1034.
    唐晓红,邵景安,黄雪夏,等.垄作免耕下紫泥田有机碳的分布特征[J].土壤学报,2007b,44(2):235-243.
    王立德,孙维纶,袁国栋,等.水稻土的研究Ⅶ.两种不同起源的水稻土腐殖质组成和性质的比较[J].南京农业大学学报,1986,62(2):62-68.
    王旭东,张一平.土娄土不同粒径团聚体中胡敏酸性质结构研究[J].干旱地区农业研究,1997,15(2):69-72.
    魏朝富,高明,谢德体,等.有机肥对紫泥田水稳性团聚体的影响[J].土壤通报,1995,26(3):114-116.
    文启孝等.土壤有机质研究法.北京:中国农业出版社[M],1984:285-286.
    文倩,关欣.土壤团聚体形成的研究进展[J].干旱区研究,2004,21(4):434-438.
    吴景贵,吕岩,王明辉,等.有机肥腐解过程的红外光谱研究[J].植物营养与肥料学报,2004,10(3):259-266.
    肖彦春,窦森.土壤腐殖质各组分红外光谱研究[J].分析化学,2007,35(11):1596-1600.
    徐建民,侯惠珍,袁可能.土壤有机矿质复合体研究Ⅷ.分离钙键有机矿质复合体的浸提剂—-硫酸钠[J].土壤学报,1998,35(4):468-474.
    徐建民,赛夫,袁可能.土壤有机矿质复合体研究Ⅸ.钙键复合体和铁铝键复合体中腐殖质的性状特征[J].土壤学报,1999,36(2):168-178.
    尹云锋,蔡祖聪.利用δ13C方法研究添加玉米秸秆下红壤总有机碳和重组有机碳的分解速率[J].土壤学报,2007,47(4):1022-1027.
    尹云锋,杨玉盛,高人,等.植物富集13C标记技术的初步研究[J].土壤学报,2010,44(6):790-793.
    袁颖红,李辉信,黄欠如,等.不同施肥处理对红泥砂田微团聚体有机碳汇的影响[J].生态学报,2004,24(12):2961-2966.
    张琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-242.
    张晋京,窦森,张大军.长期施肥对土壤有机质δ13C值影响的初步研究[J].农业环境科学学报,2006,25(2):382-387.
    张晋京,窦森.土壤有机质研究中的δ13C方法[J].土壤通报,1999,30(5):235-238.
    张晋京,窦森.玉米秸秆分解期间胡敏酸、富里酸动态变化的研究[J].土壤通报,2005,36(1):134-136.
    张晋京,窦森.灼烧土中玉米秸秆分解期间胡敏酸、富里酸动态变化的研究[J].吉林农业大学学报,2002,24(3):60-64.
    章明奎,何振立,陈国潮,等.利用方式对红壤水稳定性团聚体形成的影响[J].土壤学报,1997,34(4):359-366.
    周萍,潘根兴.长期不同施肥对太湖地区黄泥土水稳性团聚体颗粒态有机碳的影响[J].土壤通报,2007,38(2):256-261.
    周萍,宋国菡,潘根兴,等.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体物理保护作用[J].土壤学报,2008,45(6):1063-1071
    周萍,宋国菡,潘根兴,等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅱ.团聚体内有机碳的化学结合机制[J].土壤学报,2009,46(2):263-273.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.