9-硫脲表奎宁在介孔二氧化硅表面的组装及催化性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受生物酶催化高效性、温和性、不对称选择性的启发,能够同时活化亲核、亲电基团,高效催化手性C-C键形成的有机小分子催化剂成为催化化学、有机化学、绿色化学、化学仿生学、化学生物学等领域的研究热点。随着全球资源与环境危机越来越严重,以及工业化大规模连续使用的迫切要求,可以大大简化分离过程、催化剂容易回收再循环使用、更符合绿色化学发展趋势的多相仿生催化体系越来越受到关注。鉴于此,本论文以介孔二氧化硅材料为载体,通过巯丙基共价偶联的方式,实现了具有刚性结构且应用广泛的单分子双官能团有机催化剂9-硫脲表奎宁的多相化。主要内容及结论包括:
     1.以SBA-15和MCM-41两种介孔材料为载体,制备了多相9-硫脲表奎宁催化剂(分别记为SBA-15-SQT和MCM-41-SQT)。对两种载体组装的催化剂结构进行了详细的研究,发现催化活性中心9-硫脲表奎宁同时分布在SBA-15的内外表面,但主要分布在MCM-41的外表面。
     2.采用吲哚与亚胺的不对称Friedel-Crafts反应、硝基甲烷与查儿酮的共轭加成反应和丙二酸二甲酯与反式硝基苯乙烯的不对称加成反应研究SBA-15-SQT的催化性能。发现在载体表面的固定化强化了9-硫脲表奎宁的不对称诱导选择性,均获得了高于相应的均相催化体系的ee值。调变Friedel-Crafts反应底物进一步发现,SBA-15-SQT对反应物吲哚的电子效应不敏感,而对亚胺的电子效应敏感。与SBA-15-SQT比较,催化活性中心主要分布在外表面的MCM-41-SQT在吲哚与亚胺不对称Friedel-Crafts反应中的转化率与产率较高,但选择性与ee值降低。
     3.循环使用5次后SBA-15-SQT催化剂的对映体选择性基本不变。
     4.调变组装方法,在外表面钝化SBA-15的内孔表面组装9-硫脲表奎宁,制备催化活性中心完全组装在孔道内的多相催化剂,记为CH_3-SBA-15-SQT。在硝基甲烷与查儿酮的共轭加成反应中,CH_3-SBA-15-SQT的选择性和ee值不仅明显高于均相体系,且高于SBA-15-SQT。但在不对称Friedel-Crafts反应中,外表面的钝化未对催化剂性能产生明显增强。
Inspired by the high efficiency and selectivity of enzymes which can activate both nucleophilic and electrophilic functional groups under mild conditions,organocatalysts for chiral C-C bond formation have been attracting much attention in fields such as catalytic chemistry,organic chemistry,and green chemistry.The readily perfect separation of catalysts from the reaction media and subsequently facile recycle in organic catalytic processes is urgently desired concerning the striving for environmentally benign chemical processes or methodologies and economic benefits.Herein,attempts have been made to enhance the enantioselectivity through the immobilization of 9-thiourea cinchona alkaloid on mesoporous silica,in addition to preparing a readily recycled and regenerated heterogeneous catalyst.
     1.9-thiourea epi-quinine has been supported on SBA-15 and MCM-41,respectively, using a mercapto group as linker.The resulting materials are denoted SBA-15-SQT and MCM-41-SQT.9-thiourea epi-quinine moieties are distributed on both interior and exterior surface of SBA-15,while mainly on the exterior surface of MCM-41.
     2.In the asymmetric Friedel-Crafts reaction of indole and imine,conjugate addition reaction of nitromethane and chalcone,and asymmetric addition reaction of dimethyl malonate and trans-beta-nitrostyrene,SBA-15-SQT exhibits higher ee value than its homogenous counterpart.MCM-41-SQT shows higher conversion and yield but lower selectivity and ee value than SBA-15-SQT in the asymmetric Friedel-Crafts reaction of indole and imine.
     3.The enatioselectivity of SBA-15-SQT remains basically unchanged after being recycled for five times.
     4.The immobilization of 9-thiourea epi-quinine is further controlled to occur inside the nanosized channels of SBA-15 by pre-protecting the exterior surface.The resulting material is denoted CH_3-SBA-15-SQT.In the conjugate addition reaction of nitromethane and chalcone,CH_3-SBA-15-SQT shows higher selectivity and ee value than both of its homogenous counterpart and SBA-15-SQT.But no obvious enhancement of selectivity and ee has been observed in the asymmetric Friedel-Crafts reaction,in comparison with SBA-15-SQT.
引文
[1]Tehshik P Y,Eric N J.Privileged chiral catalysts[J].Science,2003,299:1691-1693
    [2]金晓敏,吴建.卟啉类光敏药物的研究进展[J].中国药物化学杂志,2002,12:52-56
    [3]王杏乔,高爽,于连香.对烷氧基苯基苯并卟啉的新法合成及性能研究[J].高等学校化学学报,1998,19:854-857
    [4]Paul R.Porphyrin S Ⅲ.1 The structure of the porphine~2 ring system othemund[J].J.Am.Chem.Soc.,1939,61:2912-2915
    [5]Adler A D,Longo F R,Finarelli J D,Goldmacher J,Assour J,Korsakoff L.A simplified synthesis for meso-tetraphenylporphine[J].J.Org.Chem.,1967,32:476-476
    [6]Lindsey J S,Schreiman I C,Hsu H C,Kearney P C,Marguerettaz A M.Rothemund and adler-longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J].J.Org.Chem.,1987,52:827-836
    [7]郭灿城,何兴涛.合成四苯基卟啉及其衍生物的新方法[J].有机化学,1991,11:416-419
    [8]柳魏,安庆大.四(对-癸酰氧基)苯基卟啉过渡金属配合物的合成及红外光声光谱解析[J].高等学校化学学报,2001,22:16-20
    [9]Hayaishi O.Molecular mechanism of oxygen activation[M].Chapter 1,3,10.New York:Academic Press,1974
    [10]吴越,张岱山,生物化学及生物物理进展,1983,4:10
    [11]De Vos D E,Jacobs P A.Heterogenization of Mn and Fe complex oxidation catalysts[J].Catalysis Today,2000,57:105-114
    [12]李臻,夏春谷.金属卟啉催化烯烃环氧化及反应机理研究[J].化学进展,2002,14:384-390
    [13]Tsutomu K,Barry K S.The first practical method for asymmetric epoxidation[J].J.Am.Chem.Soc.,1980,102:5974-5976
    [14]Xia Q H,Ge H Q,Ye C R Liu Z M,Su K X.Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation[J].Chem.Rev.,2005,105:1603-1662
    [15]Woodard S S,Finn M G,Sharpless K B.Mechanism of asymmetric epoxidation.1.Kinetics[J].J.Am.Chem.Soc.,1991,113:106-113
    [16]Wu Y D,David L K W.A density functional study on the stereocontrol of the Sharpless epoxidation[J].J.Am.Chem.Soc.,1995,117:11327-11336
    [17]Pitchen P,Duiiach E,Deshmukh M N,Kagan H B.An efficient asymmetric oxidation of sulfides to sulfoxides[J].J.Am.Chem.Soc.,1984,106:8188-8193
    [18]John R C,Leslie D O,Lester M B.Oxygenation of dialkyl sulfides by a modified Sharpless reagent:a model system for the flavin-containing monooxygenase[J].J.Am.Chem.Soc.,1990,112:3191-3195
    [19]Baleizao C,Garcia H.Chirai Salen complexes:an overview to recoverable and reusable homogeneous and heterogeneous catalysts[J].Chem.Rev.,2006,106:3987-4043
    [20]Vankelecom I F J.Polymeric membranes in catalytic reactors[J].Chem.Rev.,2002,102:3779-3810
    [21]Hawkins J M,Watson T J N.Asymmetric catalysis in the pharmaceutical industry[J].Angew.Chem.Int.Ed.,2004,43,3224-3228
    [22]吴福忠.中性氨基酸拆分及消旋过程的研究[D].上海:华东理工大学,2002
    [23]An Z,Zhang W,Shi H,He J.An effective heterogeneous L-proline catalyst for the asymmetric aldol reaction using anionic clays as intercalated support[J].J.Cat.,2006,241:319-327
    [24]Eder U,Sauer G,Wiechert R.New type of asymmetric cyclization to optically active steroid CD partial structures[J].Angew.Chem.Int.Ed.,1971,10:496-497
    [25]List B,Lerner R A,Farbas Ⅲ C F.Proline-catalyzed direct asymmetric Aldol reactions[J].J.Am.Chem.Soc.,2000,122:2395-2396
    [26]List B.Proline-catalyzed asymmetric reactions[J].Tetrahedron 2002,58:5573-5590
    [27]Ramachary D B,Chowdari N S,Barbas Ⅲ C F.Amine-catalyzed direct self Diels-Alder reactions of α,β-unsaturated ketones in water:synthesis of pro-chiral cyciohexanones[J].Tetrahedron Lett.,2002,43:6743-6746
    [28]Berlin Y A,Burin A L,Ratner M A.Charge Hopping in DNA[J].J.Am.Chem.Soc.,2001,123:260-268
    [29]Saito S,Yamamoto H.Design of acid-base catalysis for the asymmetric direct Aldol reaction[J].Acc.Chem.Res.,2004,37:570-579
    [30]Kofoed J,Nielsen J,Reymond J L.Discovery of new peptide-based catalysts for the direct asymmetric aldol reaction[J].Bioorg.Med.Chem.Lett.,2003,13:2445-2447
    [31]Jiang Z,Liang Z,Wu X,Lu Y.Asymmetric aldol reactions catalyzed by tryptophan in waterElectronic supplementary information(ESI)available:experimental details[J].Chem.Commun.2006,2801-2803
    [32]Amedjkouh M.Aqua-organocatalyzed direct asymmetric aldol reaction with acyclic amino acids and organic bases with control of diastereo- and enantioselectivity[J].Tetrahedron:Asymmetry 2007,18:390-395
    [33]Arai S,Niwa D,Nishide H,Takeoka S.Atropisomers of meso-conjugated uracyl porphyrin derivatives and their assembling structures[J].Org.Lett.,2007,9:17-20
    [34]Ramasastry S S V,Albertshofer K,Utsumi N,Tanaka F,Barbas Ⅲ C F.Mimicking fructose and rhamnulose aldolases:organocatalytic syn-Aldol reactions with unprotected dihydroxyacetone[J].Angew.Chem.Int.Ed.,2007,46:5572 -5575
    [35]Ramasastry S S V,Zhang H,Tanaka F,Barbas Ⅲ C F,Direct catalytic asymmetric synthesis of anti-1,2-amino alcohols and syn-1,2-diols through organocatalytic anti-Mannich and syn-Aldol reactions[J].J.Am.Chem. Soc.,2007,129:288-289
    [36]Davies S G,Sheppard R L,Smith A D,Thomson J E.Highly enantioselective organocatalysis of the Hajos-Parrish-Eder-Sauer -Wiechert reaction by the β-amino acid cispentacin[J].Chem.Commun.,2005,3802-3804
    [37]Alberto G,Gernot F.Y-conjugated compounds:the equilibrium geometries and electronic structures of guanidine,guanidinium cation,urea,and 1,1-diarninoethylene[J].J.Am.Chem.Soc.,1993,115:2362-2372
    [38]Hart K W,Clarke A R,Wigley D B,Waldman A D B,Chia W N,Barstow D A,Atkinson T,Jones J B.Holbrook J J.A strong carboxylate-arginine interaction is important in substrate orientation and recognition in lactate dehydrogenase[J].Biochem.Biophys.Acta.,1987,914,294-298
    [39]Rowe H L,Spencer N,Philp D.Acceleration of a dipolar cycloaddition by a simple bisamide receptor[J].Tetrahedron.Lett.,2000,41:4475-4479
    [40]沈宗旋,王亚玲,张雅文.胍类化合物的制备及在有机合成中的应用[J].有机化学,2002,22:388-396
    [41]Opitz J G,Ciglic M I,Haugg M,Trautwein-Fritz K,Raillard S A,Jermann T M,Benner S A.Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA[J].Biochemistry,1998,37:4023-4033
    [42]Trost B M,Kazmaier U.Internal redox catalyzed by triphenylphosphine[J].J.Am.Chem.Soc.,1992,114:7933-7935
    [43]Cao C,Lu X.A novel deoxygenation-isomerization reaction of 4-hydroxy-2-ynoic esters and hydroxy-ynones[J].J.Chem.Soc.,Chem.Commun.1993,993:394-395
    [44]Cao C,Lu X.Reinvestigation on the catalytic isomerisation of carboncarbon triple bonds[J].J.Chem.Soc.Perkin trans.1.,1993,993:1921-1923
    [45]陆熙炎.从贫电子炔烃出发的合成方法学研究[J].有机化学 2001,21(11):769-783
    [46]Xu Z,Lu X.Phosphine-catalyzed[3+2]cycloaddition reaction of methyl 2,3-butadienoate and N-tosylimines.A novel approach to nitrogen heterocycles[J].Tetrahedron.Lett.,1997,38:3461-3464
    [47]Ahrendt K A,Borths C J,MacMillan D W C.New strategies for organic catalysis:the first highly enantioselective organocatalytic Diels-Alder reaction[J].J.Am.Chem.Soc.,2000,122:4243-4244
    [48]Juhl K,Jorgensen K A.The first organocatalytic enantioselective Inverse-Electron-Demand Hetero-Diels-Alder reaction[J].Angew.Chem.Int.Ed.,2003,42:1498-1501
    [49]Wynberg H,Staring E G.Asymmetric synthesis of(S)- and(R)-malic acid from ketene and chloral[J].J.Am.Chem.Soc.,1982,104:166-168
    [50]Calter M A.Catalytic,asymmetric dimerization of methylketene[J].J.Org.Chem.,1996,61:8006-8007
    [51]Taggi A E,Hafez A M,Wack H,Young B,Ferraris D,Lectka T.The development of the first catalyzed reaction of ketenes and lmines:catalytic, asymmetric synthesis of β-lactams[J]. J. Am. Chem. Soc, 2002, 124: 6626-6635
    [52] Iwabuchi Y, Nakatani M, Yokoyama N, Hatakeyama S. Chiral amine-catalyzed asymmetric Baylis-Hillman reaction: a reliable route to highly enantiomerically enriched (α-methylene-β-hydroxy) esters[J]. J. Am. Chem. Soc, 1999, 121: 10219-10220
    [53] Blake A J, Friend C L, Outram R J, Simpkins N S, Whitehead A J. The highly enantioselective transformation of silylketenes into α-silylthioesters catalysed by cinchona alkaloids[J]. Tetrahedron Lett., 2001, 42: 2877-2881
    [54] Dolling U H, Davis P, Grabowski E J J. Efficient catalytic asymmetric alkylations. 1. Enantioselective synthesis of (+)-indacrinone via chiral phase-transfer catalysis [J]. J. Am. Chem. Soc, 1984, 106: 446-447
    [55] Tian S K, Deng L. A highly enantioselective chiral Lewis Base-catalyzed asymmetric cyanation of ketones[J]. J. Am. Chem. Soc, 2001, 123(25): 6195-6196
    [56] Tian S K, Hong R, Deng L. Catalytic asymmetric cyanosilylation of ketones with Chiral Lewis Base[J]. J. Am. Chem. Soc, 2003, 125: 9900-9901
    [57] Johnson J S. Catalyzed reactions of acyl anion equivalents[J]. Angew. Chem. Int. Ed., 2004, 43: 1326-1328
    [58] Malkov A V, Dufkova L, Farrugia L, Kocovsky P. Quinox, a quinoline-type N-oxide, as organocatalyst in the asymmetric allylation of aromatic aldehydes with allyltrichlorosilanes: the role of arene-arene interactions[J]. Angew. Chem. Int. Ed., 2003, 42: 3674-3677
    [59] De Vos D E, Dams M, Sels B F, Jacobs P A. Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations[J]. Chem. Rev., 2002, 102:3615-3640
    [60] Song C E, Lee S. Supported chiral catalysts on inorganic materials[J]. Chem. Rev., 2002, 102: 3495-3524
    [61] Copret C, Chabanas M, Saint-Arroman R P, Basset J M. Homogeneous and heterogeneous catalysis: bridging the gap through surface organometallic chemistry [J]. Angew. Chem. Int. Ed., 2003, 42: 156-181
    [62] Benaglia M, Puglisi A, Cozzi F. Polymer-supported organic catalysts[J].Chem. Res., 2003, 103: 3401-3429
    [63] Thomas J M, Raja R, Lewis D W. Single-site heterogeneous catalysts[J].Angew: Chem. Int. Ed., 2005, 44: 6456-6482
    [64] Heitbaum M, Glorius F, Escher I. Asymmetric heterogeneous catalysis[J].Angew. Chem. Int. Ed., 2006, 45: 4732-4762
    [65] Cozzia F. Immobilization of organic catalysts: when, why and how[J]. Adv.Synth. Catal., 2006, 348: 1367-1390
    [66] Zhao X S, Bao X Y, Guo W, Lee F Y. Immobilizing catalysts on porous materials[J]. Material Today, 2006, 9: 32-39
    [67] Saluzzo C, Lamouille T, Guyader F L, Lemaire M. Synthesis and studies of 6,6'-BINAP derivatives for the heterogeneous asymmetric hydrogenation of methyl acetoacetate[J]. Tetrahedron: Asymmetry, 2002, 13: 1141-1146
    [68] Annunziata R, Benaglia M, Cinquini M Cozzi F, Pitillo M. Poly(ethylene glycol)-supported bisoxazolines as ligands for catalytic enantioselective synthesis[J]. J. Org. Chem., 2001, 66: 3160-3166
    
    [69] Hallman K, Moberg C. Polymer-bound bis(oxazoline) as a chiral catalyst[J]. Tetrahedron: Asymmetry, 2001, 12, 1475-1478
    [70] Heitbaum M, Glorius F, Escher I. Asymmetric heterogeneous catalysis[J]. Angew. Chem. Int. Ed., 2006, 45: 4732-4762
    [71] Choi S D, Kim G J. Enantioselective hydrolytic kinetic resolution of epoxides catalyzed by chiral Co(III) salen complexes immobilized in the membrane reactor[J]. Cata. Lett., 2004, 92: 35-40
    [72] Canali L, Cowan E, Gibson C L, Sherrington D C, Deleuze H. Remarkable matrix effect in polymer-supported Jacobsen's alkene epoxidation catalysts[J]. Chem. Commun., 1998, 2561-2562
    [73] Thierry B, Plaquevent J C, Cahard D. Poly(ethylene glycol) supported cinchona alkaloids as phase transfer catalysts: application to the enantioselective synthesis of a-amino acids[J]. Tetrahedron: Asymmetry, 2003,14: 1671 - 1677
    [74] Mazzei M, Marconi W, Riocci M. Asymmetric hydrogenation of substituted acrylic acids by Rh'-aminophosphine chiral complex supported on mineral clays[J]. J. Mol. Catal., 1980, 9: 381-387
    [75] Fraile J M, Garcia J I, Harmer M A, Herrerias C I, Mayoral J A. Bis(oxazoline)-metal complexes immobilized by electrostatic interactions as heterogeneous catalysts for enantioselective Diels-Alder reactions[J]. J. Mol. Catal. A: Chem., 2001, 165:211-218
    [76] Jamis J, Anderson J R, Campi E M, Jackson W R. Aqueous enantioselective hydrogenations involving silica-heterogenised catalysts[J]. J. Organomet. Chem., 2000, 603: 80-85
    [77] Jamis J, Anderson J R, Dickson R S, Campi E M, Jackson W R. Modified silica-heterogenised catalysts for use in aqueous enantioselective Hydrogenations[J]. J. Organomet. Chem., 2001, 627: 37-43
    [78] Gelman F, Avnir D, Schumann H, Blum J. Sol-gel entrapped chiral rhodium and ruthenium complexes as recyclable catalysts for the hydrogenation of itaconic acid[J]. J. Mol. Catal. A.: Chem., 1999, 146: 123-128
    [79] Frunza L, Kosslick H, Landmesser H, Hoft E, Fricke R. Host/guest interactions in nanoporous materials I. The embedding of chiral salen manganese(III) complex into mesoporous silicates[J]. J. Mol. Catal. A: Chem., 1997, 123: 179-187
    [80] Zhang H, Sun J M, Ma D, Bao X H, Klein-Hoffmann A, Weinberg G, Su D S, Schlogl R. Unusual mesoporous SBA-15 with parallel channels running along the short axis[J]. J. Am. Chem. Soc. 2004, 126:7440 -7441
    [81] Brunner H, Bielmeier E, Wiehl J. Asymmetrische katalysen L. Heterogene enantioselektive hydrierungen mit immobilisierten rhodium(l)- komplexen [J]. J. Organomet. Chem., 1990, 384: 223-241
    [82] Fan Q H, Ren C Y, Yeung C H, Hu W H, Chan A S C. Highly effective soluble polymer-supported catalysts for asymmetric hydrogenation[J]. J. Am. Chem. Soc, 1999, 121: 7407-7408
    [83] Pu L. Rigid and sterically regular chiral l,l'-binaphthyl polymers in asymmetric catalysis[J]. Chem. Eur. J., 1999, 5: 2227-2232
    [84] Rob T H, Colasson B, Schulz E, Spagnol M, Lemaire M. Diam-BINAP'; a highly efficient monomer for the synthesis of heterogeneous enantioselective catalysts[J]. Tetrahedron Lett., 2000, 41: 643-646
    [85] Yang X W, Liu H Q, Xu M H, Lin G Q. A highly efficient and practical new PEG-bound bi-cinchona alkaloid ligand for the catalytic asymmetric aminohydroxylation of alkenes[J]. Tetrahedron: Asymmetry, 2004, 15: 1915-1918
    [86] Yi B, Fan Q H, Deng G J, Li Y M, Qiu L Q, Chan A S C. Novel chiral dendritic diphosphine ligands for Rh(I)-catalyzed asymmetric hydrogenation: remarkable structural effects on catalytic properties[J]. Org. Lett. 2004, 6: 1361-1364
    [87] Chen Y C, Wu T F, Jiang L, Deng J G, Liu H, Zhu J, Jiang Y Z. Synthesis of dendritic catalysts and application in asymmetric transfer hydrogenation [J]. J. Org. Chem. 2005, 70, 1006-1010
    [88] Johnson B F G, Raynor S A, Shephard D S, Mashmeyer T, Thomas J M, Sankar G, Bromley S, Oldroyd R, Gladdenc L, Mantlec M D. Superior performance of a chiral catalyst confined within mesoporous silica[J]. Chem. Commun., 1999, 1167-1168
    [89] Kim G J, Shin J H. The catalytic activity of new chiral salen complexes immobilized on MCM-41 by multi-step grafting in the asymmetric epoxidation[J]. Tetrahedron Lett., 1999, 40: 6827-6830
    [90] Zhou X G, Yu X Q, Huang J S, Li S G Li L S, Che C M. Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins[J]. Chem. Commun., 1999, 2377-2378
    [91] Raynor S A, Thomas J M, Raja R, Johnson BFG, Bell RG, Mantle M D. A one-step, enantioselective reduction of ethyl nicotinate to ethyl nipecotinate using a constrained, chiral, heterogeneous catalyst[J]. Chem. Commun., 2000, 1925-1926
    [92] Piaggio P, Langham C, McMorm P, Bethell D, Bulman-Page P C, Hancock F E, Sly C, Hutchings G J. Synthesis of nornicotine, nicotine and other functionalised derivatives using solid-supported reagents and scavengers [J]. J. Chem. Soc. Perkin Trans. 2, 2000, 1: 143-148
    [93] Bigi F, Moroni L, Maggi R, Sartori G. Heterogeneous enantioselective epoxidation of olefins catalysed by unsymmetrical (salen)Mn(III) complexes supported on amorphous or MCM-41 silica through a new triazine-based linker[J]. Chem. Commun., 2002, 716-717
    [94] Corma A, Iborra S, Roddriguez I, Iglesias M, Sanchez F. MCM-41 heterogenized chiral amines as base catalysts for enantioselective Michael reaction[J]. Catal. Lett., 2002, 82: 237-242
    [95] Jones M D, Raja R, Thomas J M, Johnson BFG, Lewis D W, Rouzaud J, Harris K D M. Enhancing the enantioselectivity of novel homogeneous organometallic hydrogenation catalysts[J]. Angew. Chem. Int. Ed., 2003, 42:4326-4331
    
    [96] Beadham I, Dhar D, Chandrasekaran S, Proc. Indian acad. sci. (Chem. Sci.), 2003,115:365-366
    
    [97] Zhang H D, Xiang S, Li C. Enantioselective epoxidation of unfunctionalised olefins catalyzed by Mn(salen) complexes immobilized in porous materials via phenyl sulfonic group[J]. Chem. Commun., 2005, 1209-1211
    
    [98] Zhang H D, Zhang Y M, Li C. Enantioselective epoxidation of unfunctionalized olefins catalyzed by the Mn(salen) catalysts immobilized in the nanopores of mesoporous materials[J]. J. Catal., 2006, 238: 369-381
    
    [99] Kureshy R I, Ahmad I, Khan N H, Abdi S H R, Pathak K, Jasra R V. Chiral Mn(III) salen complexes covalently bonded on modified MCM-41 and SBA-15 as efficient catalysts for enantioselective epoxidation of nonfunctionalized alkenes[J]. J. Catal., 2006, 238: 134-141
    
    [100] Kureshy R I, Ahmad I, Khan N H, Abdi S H R, Pathak K, Jasra R V. Encapsulation of a chiral Mn (salen) complex in ordered mesoporous silicas: an approach towards heterogenizing asymmetric epoxidation catalysts for non-functionalized alkenes[J]. Tetrahedron: Asymmetry, 2005, 16: 3562-3569
    
    [101] Kureshy R I, Ahmad I, Khan N H, Abdi S H R, Singh S, Pandia P H, Jasram R V. New immobilized chiral Mn(III) salen complexes on pyridine N-oxide-modified MCM-41 as effective catalysts for epoxidation of nonfunctionalized alkenes[J]. J. Catal., 2005, 235: 28-34
    
    [102] Calderon F, Fernande R, Sanchez F, Fernandez-Mayoralas A. Asymmetric aldol reaction using immobilized proline on mesoporous support[J]. Adv. Synth. Catal., 2005, 347: 1395-1403
    
    [103] Pathak K, Bhatt A P, Abdi S H R, Kureshy R I. Khan N H, Ahmad I, Jasra R V. Enantioselective addition of diethylzinc to aldehydes using immobilized chiral BINOL-Ti complex on ordered mesoporous silicas[J]. Tetrahedron: Asymmetry, 2006, 17: 1506-1513
    
    [104] Yang H Q, Li J, Yang J, Liu Z M, Yang Q H. Asymmetric reactions on chiral catalysts entrapped within a mesoporous cage[J]. Chem. Commun., 2007, 0: 1086-1088
    
    [105] Raja R, Thomas J M, Jone M D, Johnson B F G, Vaughan D E W. Constraining asymmetric organometallic catalysts within mesoporous supports boosts their enantioselectivity[J]. J. Am. Chem. Soc, 2003, 125: 14982-14983
    
    [106] Hu A, Yee G T, Lin W. Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones[J]. J. Am. Chem. Soc, 2005, 127: 12486-12487
    
    [107] Fraile J M, Garcia J I, Mayoral J A, Roldan M. Simple and efficient heterogeneous copper catalysts for enantioselective C-H carbene insertion[J].Org.Lett.,2007,9:731-733
    [108]Davis M E.Ordered porous materials for emerging applications[J].Nature.2002,417:813-821
    [109]Kresge C T,Leonowicz M E,Roth W J,Vartuli J C,Beck J S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359:710-712
    [110]李波,稻恒伸一,宫崎千绘,高桥治雄.高结晶规则大孔硅的制备和应用[J].材料研究学报,2000,14:625-633
    [111]Tanev P T,Pinnavaia T J.A neutral templating route to mesoporous molecular sieves[J].Science,1995,267:865-867
    [112]Tanev P T,Chibwe M,Pinnavaia T J.Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds[J].Nature,1994,368:321-323
    [113]Jun S,Joo S H,Ryoo R,Kruk M,Jaroniec M,Liu Z,Ohsuna T,Terasaki O.Synthesis of new,nanoporous carbon with hexagonally ordered mesostructure[J].J.Am.Chem.,2000,122:10712-10713
    [114]Firouzi A,Kumar D,Bull L M,Besier T,Sieger P,Huo Q,Stucky G D.Cooperative organization of inorganic-surfactant and biomimetic assemblies[J].Science,1995,267:1138-1143
    [115]Hunter H M A,Wright P A.Synthesis and characterisation of the mesoporous silicate SBA-2 and its performance as an acid catalyst[J].Micropor.Mesopor.Mater.,2001,43:361-373
    [116]Bagshaw S A,Prouzet E,Pinnavaia T J.Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants[J].Science,1995,269:1242-1244
    [117]Attard G S,Glyde J C,Goltner C G.Liquid-crystalline phases as templates for the synthesis of mesoporous silica[J].Nature,1995,378:366-368
    [118]Macquarrie J D.Direct preparation of organically modified MCM-type materials:Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM[J].Chem.Commun.1996,1961-1962
    [119]Tanev P T,Pinnavaia T J,A neutral templating route to mesoporous molecular sieves[J].Science,1995,267:865-867
    [120]Reddy K M,Moudrakovski I L,Sayari A.Synthesis of mesoporous vanadium silicate molecular sieves[J]J.Chem.Soc.,Chem,Commun,1994,994:1059-1060
    [121]Zhao D Y,Goldfarb D.Synthesis of mesoporous manganosilicates:Mn-MCM-41,Mn-MCM-48 and Mn-MCM-L[J].J.Chem.Soc.,Chem.Commun.,1995,995:875-876
    [122]Zhang Z R,Suo J S,Zhang X M.Synthesis of highly active tungsten-containing MCM-41 mesoporous molecular sieve catalyst[J].J.Chem.Soc.Chem.Commun.,1998,2:241-242
    [123]Wang X X,Lefebvre F,Patarin J,Basset J M.Synthesis and characterization of zirconium containing mesoporous silicas:Ⅰ. Hydrothermal synthesis of Zr-MCM-41-type materials[J]. Micropor. Mesopor. Mater., 2001, 42: 269-276
    [124] Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993,261: 1299-1303
    [125] Finnefrock A C, Ulrich R, Chesne A D, Honeker C C, Schumacher K, Unger K K, Gruner S M, Wiesner U. Metal oxide containing mesoporous silica with bicontinuous "Plumber's Nightmare" morphology from a block copolymer-hybrid mesophase[J]. Angew. Chem. Int. Ed., 2001, 40: 1207-1211
    [126] Zhao D Y, Huo Q, Feng J, Chmelka B, Gtucky S. Nonionic triblock and star diblock copolymer and Oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc, 1998, 120:6024-6036
    [127] Sakamoto Y, Kaneda M, Terasaki O, Zhao D, Kim J M, Stucky G., Shin H J, Ryoo R. Direct imaging of the pores and cages of three-dimensional mesoporous materials[J]. Nature, 2000, 408: 449-453
    [128] Yu C, Yu Y, Zhao D. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer[J]. Chem. Commun., 2000, 0: 575-576
    [129] Yu C, Yu Y, Miao L, Zhao D. Highly ordered mesoporous silica structures templated by poly(butylene oxide) segment di- and tri-block copolymers[J]. Micropor. Mesopor. Mater., 2001, 44-45: 65-72
    [130] Matos J R, Kruk M, Mercuri L P, Jaroniec M, Zhao L, Kamiyama T, Terasaki O, Pinnavaia T J, Liu Y. Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time[J]. J. Am. Chem. Soc, 2003, 125:821-829
    [131] Davis M E. New vistas in zeolite and molecular sieve catalysis[J]. Acc Chem. Res., 1993,26: 111-115
    [132] Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T. Synthesis and characterization of chiral mesoporous silica[J], Nature, 2004, 429: 281-284
    [133] Ohsuna T, Liu Z, Che S, Terasaki O. Characterization of chiral mesoporous materials by transmission electron microscopy[J], Small, 2004, 1: 233-237
    
    [134] Jin H, Z Liu, Ohsuna T, Terasaki O, Inoue Y, Sakamoto K, Nakanishi T, Ariga K, Che S. Control of morphology and helicity of chiral mesoporous silica[J]. Adv. Mater., 2006, 18: 593-596
    [1] Connon S J. Organocatalysis mediated by (thio)urea derivatives[J]. Chem. Eur.J. 2006, 12:5418-5427
    
    [2] Marcelli T, Maarseveen JHV, Hiemstra H. Cupreines and cupreidines: an emerging class of bifunctional cinchona organocatalysts[J]. Angew. Chem. Int. Ed. 2006, 45: 7496-7504
    [3] Vakulya B, Varga S, Csampai A, Soos T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona organocatalysts[J]. Org. Lett. 2005, 7: 1967-1969
    [4] Wang Y Q, Song J, Hong R, Li H, Deng L. Asymmetric Friedel-Crafts reaction of indoles with imines by an organic catalyst[J]. J. Am. Chem. Soc. 2006, 128:8156-8157
    [5] McCooey S H, Connon S J. Urea- and thiourea-substituted cinchona alkaloid derivatives as highly efficient bifunctional organocatalysts for the asymmetric addition of malonate to nitroalkenes: inversion of configuration at C9 dramatically improves catalyst performance [J]. Angew. Chem. Int. Ed. 2005, 44: 6367-6370
    [6] Christiane M B, Amal T, Scott E S. A general organic catalyst for asymmetric addition of stabilized nucleophiles to acyl imines[J]. Tetrahedron 2006, 62: 11499-11505
    [7] Zhao D Y, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science 1998, 279: 548-552
    [8] Zhao D Y, Huo Q, Feng J, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and Oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures[J]. J. Am. Chem. Soc. 1998, 120: 6024-6036
    [9] Jernings W B, Lovely C J. The titanium tetrachloride induced synthesis of N-phosphinoylimines and N-sulphonylimine directly from aromatic aldehydes[J]. Tetrahedron 1991, 47: 5561-5568
    [10] Chemla F, Hebbe V, Normant J f. An easy synthesis of aliphatic and aromatic N-sulfonyl aldimines[J]. Synthesis 2000, 1: 75-77
    
    [11] Kang T, Park Y, Yi J. Highly selective adsorption of Pt~(2+) and Pd~(2+) using thiol-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res. 2004, 43: 1478-1484
    
    [12] Wang Y Q, Yang C M, Zibrowius B, Spliethoff B, Linden M, SchUth F. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure[J]. Chem. Mater. 2003, 15: 5029-5035
    
    
    [13] Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators[J]. J. Mater. Chem. 2003, 13: 2505-2514
    [14] Wang X G, Kyle S K L, Jerry C C Ch, Soofin Ch. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials[J]. J. Phys. Chem. B 2005, 109: 1763-1769
    [15] Brunner H, Bugler J, Nuber B. Preparation of 9-amino(9-deoxy)cinchona alkaloids[J]. Tetrahedron: Asymmetry 1995,6: 1699-1702
    [16] Fa H B, Zhao L, Wang X Q, Yu J H, Huang Y B, Yang M, Wang D J. Chiral recognition of mesoporous SBA-15 with an incorporated chiral porphyrin[J]. Eur. J. Inorg. Chem. 2006, 4355-4361
    [17] Melero J A, Stucky G D, Griekena R V, Morales G. Direct syntheses of ordered SBA-15 mesoporous materials containing arenesulfonic acid groups[J]. J. Mater. Chem., 2002, 12: 1664-1670
    [18] Saikia L, Srinivas D, Ratnasamy P. Chemo-, regio- and stereo-selective aerial oxidation of limonene to the endo-l,2-epoxide over Mn(Salen)-sulfonated SBA-15[J]. Applied Catalysis A: General 2006, 309: 144-154
    [19] Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements[J]. Langmuir 1997, 13: 6267-6273
    
    [20] Kruk M, Jaroniec M. Characterization of the porous structure of SBA-15[J]. Chem. Mater. 2000, 12: 1961-1968
    [21] Wang B M, Wu F H, Wang Y, Liu X F, Deng L. Control of diastereo- selectivity in tandem asymmetric reactions generating on adjacent stereocenters with bifunctional catalysis by cinchona alkaloids[J]. J. Am. Chem. Soc. 2007, 129: 768-769
    [22] Bartoli G, Bosco M, Carlone A, Locatelli M, Mazzanti A, Sambri L, Melchiorre P. Organocatalytic asymmetric hydrophosphination of nitroalkenes[J]. Chem. Commun., 2007, 722-724
    [23] Wang J, Li H, Zu L S, Jiang W, Xie H X, Duan W H, Wang W. Organocatalytic enantioselective conjugate additions to enones[J]. J. Am. Chem. Soc. 2006, 128: 12652-12653
    [24] Bartoli G, Bosco M, Carlone A, Cavalli A, Locatelli M, Mazzanti A, Ricci P, Sambri L, Melchiorre P. Organocatalytic asymmetric conjugate addition of 1,3-dicarbonyl compounds to maIeimides[J]. Angew. Chem. Int. Ed. 2006, 45: 4966-4970
    [25] Li H M, Wang Y Q, Deng L. Enantioselective Friedel-Crafts reaction of indoles with carbonyl compounds catalyzed by bifunctional cinchona alkaloids[J]. Org. Lett. 2006, 8: 4603-4605
    [26] Tillman A L, Ye J X, Dixon D J. Direct enantio- and diastereoselective Mannich reactions of malonate and P-keto esters with N-Boc and N-Cbz aldimines catalysed by a bifunctional cinchonine derivative[J]. Chem. Commun., 2006, 1191-1193
    [27] Song J, Wang Y, Deng L. The Mannich reaction of malonates with simple imines catalyzed by bifunctional cinchona alkaloids: enantioselective synthesis of α-amino acids[J]. J. Am. Chem. Soc. 2006, 128: 6048-6049
    [28] Liu T Y, Cui H L, Long J, Li B J, Wu Y, Ding L S, Chen Y C. Organocatalytic and highly stereoselective direct vinylogous Mannich reaction[J]. J. Am. Chem. Soc. 2007, 129: 1878-1879
    [29] Ye J X, Dixon D J, Hynes P S. Enantioselective organocatalytic Michael addition of malonate esters to nitro olefins using bifunctional cinchonine derivatives[J]. Chem. Commun., 2005, 4481-4483
    [30] Gu C L, Liu L, Sui Y, Zhao J L, Wang D, Chen Y J. Highly enantioselective Michael additions of a-cyanoacetate with chalcones catalyzed by bifunctional cinchona-derived thiourea organocatalyst[J]. Tetrahedron: Asymmetry 2007,18: 455-463
    [31] Pettersen D, Piana F, Bernardi L, Fini F, Fochi M, Sgarzani V, Ricci A. Organocatalytic asymmetric aza-Michael reaction: enantioselective addition of O-benzylhydroxylamine to chalcones[J]. Tetrahedron Lett. 2007, 48: 7805-7808
    [32] Ma J A, Wan J H, Zhou Y B, Wang L X, Zhang W, Zhou Q L. New chiral dinitrogen ligands containing sp~2N-sp~3N in the enantioselective cyclopropanation of olefins[J]. J. Mol. Catal. A. Chem. 2003, 196: 109-115
    [33] Wittkopp A, Schreiner P R. Metal-free, noncovalent catalysis of Diels - Alder reactions by neutral hydrogen bond donors in organic solvents and in water[J]. Chem. Eur. J. 2003, 9: 407-414
    [34] Taylor M S, Jacobsen E N. Asymmetric catalysis by chiral hydrogen-bond donors[J]. Angew. Chem. Int. Ed. 2006, 45: 1520-1543
    [35] Okino T, Hoashi Y, Furukawa T, Xu X N, Takemoto Y. Enantio- and diastereoselective michael reaction of 1, 3-dicarbonyl compounds to nitroolefins catalyzed by a bifunctional thiourea[J]. J. Am. Chem. Soc. 2005, 127:119-125
    [36] Hamza A, Schubert G, Soos T, Papai I. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation[J]. J. Am. Chem. Soc. 2006, 128: 13151-13160
    [1] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc. 1992, 114: 10834-10843
    
    [2] Zhao X S, Audsley F, Lu G Q. Irreversible change of pore structure of MCM-41 upon hydration at room temperature [J]. J. Phys. Chem. B 1998, 102:4143-4146
    [3] Xu R R, Pang W Q, Yu J H. Chemistry-zeolite and porous materials (in Chinese), Beijing: Science Press, 2005, 68-85
    [4] Xie Y X, Chen W, Xu Q, Guo J K. J Wuhan Univ Technol (in Chinese), 2002,24(9): 1-4
    [5] Ciesla U, Schuth F. Ordered mesoporous materials[J]. Micropor. Mesopor. Mater. 1999,27: 131-149
    [6] Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell R S, Stucky G D, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka B F. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructure[J]. Science 1993, 261: 1299-1303
    [7] Vakulya B, Varga S, Csampai A, Soos T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona using bifunctional cinchona[J]. Org. Lett. 2005, 7: 1967-1969
    [8] Kang T, Park Y, Yi J. Highly selective adsorption of Pt~(2+) and Pd~(2+) using thiol-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res. 2004, 43: 1478-1484
    [9] Wang Y Q, Yang C M, Zibrowius B, Spliethoff B, Linden M, Schuth F. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure[J]. Chem. Mater. 2003, 15: 5029-5035
    [10] Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators[J]. J. Mater. Chem. 2003, 13: 2505-2514
    
    [11] Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements[J]. Langmuir 1997, 13: 6267-6273
    
    [12] Kruk M, Jaroniec M. Characterization of the porous structure of SBA-15 [J]. Chem. Mater. 2000, 12: 1961-1968
    [1] Song C E, Kim D H, Choi D S. Chiral organometallic catalysts in confined nanospaces: significantly enhanced enantioselectivity and stability[J]. Eur. J. Inorg. Chem. 2006, 2927-2935
    
    [2] Goettmanna F, Sanchez C. How does confinement affect the catalytic activity of mesoporous materials?[J]. J. Mater. Chem., 2007, 17: 24-30
    [3] Yang H Q, Zhang L, Zhong L, Yang Q H, Li C, Enhanced cooperative activation effect in the hydrolytic kinetic resolution of epoxides on [Co(salen)] catalysts confined in nanocages[J]. Angew. Chem. Int. Ed. 2007,46: 1-6
    [4] Notestein J M, Katz A. Enhancing heterogeneous catalysis through cooperative hybrid organic-inorganic interfaces[J]. Chem. Eur. J. 2006, 12: 3954-3965
    [5] Thomas J M, Raja R, Lewis D W. Single-site heterogeneous catalysts[J]. Angew. Chem. Int. Ed. 2005, 44: 6456-6482
    [6] Johnson B F G, Raynor S A, Shephard D S, Mashmeyer T, Thomas J M, Sankar G, Bromley S, Oldroyd R, Gladdenc L, Mantlec M D. Superior performance of a chiral catalyst confined within mesoporous silica[J]. Chem. Commun., 1999, 1167-1168
    [7] Zhan B Z, White M A, Sham T K, Pincock J A, Doucet R J, Rao K V R, Robertson K N, Cameron T S. Zeolite-confined nano-RuO_2: A green, selective, and efficient catalyst for aerobic alcohol oxidation[J]. J. Am. Chem. Soc. 2003, 125: 2195-2199
    [8] Fraile J M, Garcia J I, Mayoral J A, Roldan M. Simple and efficient heterogeneous copper catalysts for enantioselective C-H carbene insertion[J]. Org. Lett. 2007, 9: 731-733
    [9] Juan F d, Ruiz-Hitzky E. Selective functionalization of mesoporous silica[J]. Adv. Mater. 2000, 12: 430-432
    [10] Zhang L X, Shi J L, Yu J, Hua Z L, Zhao X G, Ruan M L. A new in-situ reduction route for the sunthesis of Pt nanoclusters in the channels of mesoporoue silica SBA-15[J]. Adv. Mater. 2002, 14: 1510-1513
    
    [11] Wang X G, Lin K S K, Chan J C C, Cheng S. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials[J]. J. Phys. Chem. B 2005, 109: 1763-1769
    
    [12] Wang Y Q, Yang C M, Zibrowius B, Spliethoff B, Linden M, Schiith F. Directing the formation of vinyl-functionalized silica to the hexagonal SBA-15 or large-pore Ia3d structure[J]. Chem. Mater. 2003, 15: 5029-5035
    
    [13] Llusar M, Monros G, Roux C, Pozzo J L, Sanchez C. One-pot synthesis of phenyl- and amine-functionalized silica fibers through the use of anthracenic and phenazinic organogelators[J]. J. Mater. Chem. 2003, 13: 2505-2514
    
    [14] Sindorf D W, Maciel G E. ~(29)Si CP/MAS NMR studies of methylchlorosilane reactions on silica gel[J]. J. Am. Chem. Soc, 1981, 103: 4265-4266
    
    [15] Sindorf D W, Maciel G E. Solid-state NMR studies of the reactions of silica surfaces with polyfunctional chloromethylsilanes and ethoxymethylsilanes [J]. J. Am. Chem. Soc. 1983, 105: 3767-3776
    [16] Kang T, Park Y, Yi J. Highly selective adsorption of Pr~(2+) and Pd~(2+) using thiol-functionalized mesoporous silica[J]. Ind. Eng. Chem. Res. 2004, 43: 1478-1484
    [17] Wang X G, Kyle S K L, Jerry C C C, Soofin Ch. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials[J]. J. Phys. Chem. B 2005, 109: 1763-1769
    [18] Vakulya B, Varga S, Csampai A, Soos T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional cinchona using bifunctional cinchona[J]. Org. Lett. 2005, 7: 1967-1969
    [19] Kruk M, Jaroniec M, Sayari A. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements[J]. Langmuir 1997, 13: 6267-6273
    [20] Kruk M, Jaroniec M. Characterization of the porous structure of SBA-15 [J]. Chem. Mater. 2000, 12: 1961-1968
    [21] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc. 1992, 114: 10834-10843
    [22] Huo Q, Margolese D I, Stucky G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials[J]. Chem. Mater. 1996, 8(5): 1147-1160
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.