铁电/铁磁异质复合薄膜中界面应力效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电/铁磁异质复合材料因其巨大的应用潜力而受到研究者的广泛关注。此类材料不仅同时具有铁电性和铁磁性,而且还具有磁电耦合效应,利用这一效应,可以设计磁探测器、新功能存储器、磁电马达等多种新型器件。一般认为磁电耦合效应的产生是由于复合体系中铁电相与铁磁相之间的应力作用,但由于普通的复合体系(如固熔块材复合体系、叠层复合体系等)中应力情况复杂,因此目前的研究对复合磁电材料中应力耦合的机理缺乏规律性的认识。然而在异质外延复合磁电薄膜中,薄膜的取向、厚度、界面粗糙度等都可以得到精确的控制,进而可以控制铁电相与铁磁相之间的应力作用情况,这为研究复合磁电材料的应力耦合机制奠定了基础。
     本文从研究BaTiO_3/CoFe_2O_4双层复合磁电薄膜的外延生长过程出发,采用原位反射式高能电子衍射(RHEED)与后位高分辨X射线衍射(XRD)结合的方法,对异质外延复合磁电薄膜的界面应力情况进行充分表征。在获得复合薄膜中基本的应力作用情况后,进一步对应力引起的磁电性能变化进行研究。通过设计厚度系列、层数系列的实验,实现了利用结构变化调制应力变化,进而获得较优的铁电、铁磁性能。这一研究为进一步探索复合磁电材料的应力耦合机制奠定了基础。
     在对BaTiO_3/CoFe_2O_4双层复合薄膜的生长过程、界面应力情况和界面应力效应的研究中发现,第一层BaTiO_3以层状模式生长,在其上生长的CoFe_2O_4受到压应力作用,在40nm以内主要以层状-岛状模式生长,厚度进一步增加时,生长模式转换为岛状生长模式。应力释放主要发生在生长模式转变阶段。CoFe_2O_4对BaTiO_3的张应力随着CoFe_2O_4厚度的增加而增大,增大的张应力使BaTiO_3的四方铁电性下降,导致BaTiO_3的Pr值下降,当CoFe_2O_4的厚度为120nm时,复合薄膜的2Pr值仅为3μC/cm~2。磁电效应研究表明,在静态磁场作用下,BaTiO_3/CoFe_2O_4复合薄膜的剩余极化值Pr值增大,增大的幅度随磁场强度的增强而增大,并且当极化电压达到5V时出现极大值。
     在对多层系列Pb(Zr_(0.52)Ti_(0.48))O_3/NiFe_2O_4复合薄膜的研究中发现,在一定范围内复合层数的增加可以加强Pb(Zr_(0.52)Ti_(0.48))O_3与NiFe_2O_4之间的应力耦合作用,复合薄膜的Pr值也随之提高,当复合层数达到7层时,2Pr值达到最大值65μC/cm~2;但当复合层数进一步增加时,耦合应力通过界面缺陷等方式释放,造成Pr值的回落;应力变化对复合薄膜的铁磁性能影响较弱。
Magnetoeletirc composite material has drawn wide interest of researchers for its potential uses. In magnetoeletirc material, ferroelectrics and ferromagnetics coexist, and a dielectric polarization can be induced by an external magnetic field or conversely, a phenomenon known as the magnetoeletric (ME) effect. Materials systems with strong ME effect have potential applications as magnetic field and stress sensors, data storage and switching devices, actuators and etc. The ME effect in multiferroic composites comes from the direct strain-coupling between ferroelectric phase and ferromagnetic phase. Unfortunately, the physics mechanisms by which the different order parameters can be coupled are generally poorly understood, and in most of the composite systems, including ceramic composites, laminated composites and etc, the situation of residual strain is very complex. In epitaxial thin-film heterostructure, however, the studies of magnetoelectric composite could be permited precisely as crystallographic orientation, layer thickness and interfacial roughness may be controlled accurately, which makes the study of stress interaction in ME composites possible.
     In this paper, we firstly studied the growth process of BaTiO_3/CoFe_2O_4 bilayer films. Reflection high-energy electron diffraction (RHEED) and high-resolution x-ray diffraction (HRXRD) were used to analyze situation of the interfacial stress. Changes of the ferroelectric and ferromagnetic qualities of the composites films induced by the interfacial stress were also studied. We achieved the control of the interfacial strain by adjusting the thickness of each layer and the number of layers in the composite films.
     In the study of BaTiO_3/CoFe_2O_4 bilayer films, we found that the BaTiO_3 layer was grown on SrTiO3 substrate in a layer-by-layer growth mode. Within 40 nm, the CFO layer was grown in Stransky-krastonov growth mode, and when the thickness exceeded 40nm, the growth mode changed into island growth mode. The relaxation of the interfacial stress mainly happened during the period of growth mode transformation. The remnant polarization of the composite films decreases with the increasing of CFO thickness. This should be induced by the strengthened tensile stress which weakens the ferroelectric tetragonal phase of BTO. When the thickness of CFO attains to 120 nm, the 2Pr of the composite films decreased to 3μC/cm~2.The polarization had a response to the static magnetic field, which was strengthened with the increasing magnetic field. The response attained to maximum when the electric field was 5V.
     In the study of the multilayer films of Pb(Zr_(0.52)Ti_(0.48))O_3/NiFe_2O_4, we found that the interfacial strain between the Pb(Zr_(0.52)Ti_(0.48))O_3 layer and the NiFe_2O_4 layer would be strengthened as the number of layers in the films increased in a certain range, which leading to the increases of remnant polarization of the films. When the number of layers was 7, the 2Pr attains to maximum of 65μC/cm~2. When the number of layer exceeded the range, the interfacial stress would be relaxed, causing the falling of the remnant polarization. The changes of the interfacial stress had a weak effect on the ferromagnetic qualities of the films.
引文
[1] W. Eerenstein, N. D. Mathur, J. F. Scott. Multiferroic and magnetoelectric materials. Nature. 2006, vol 442:17
    [2] R. Ramesh, Nicolaa. Spaldin. Multiferroics: progress and propects in thin films. Nature. 2007, vol 6: 21-29
    [3] Shashank. Priya, Rashed Islam, Shuxiang Dong, et al. Recent advancements in magnetoeletric particulate and laminate composites. J Electroceram. 2006, 9042: 5
    [4] M. A. Zurbuchen, T. Wu, S. Saha, et al. Multiferroic composite feroelectric-ferromagnetic films. Appl. Phys. Lett. 2005, 87:232908
    [5] Richard. Bergs, Rashed A. Islam, Michael Vickers, et al. Magnetic field anomaly detector using magnetoelectric composites. J. Appl. Phys. 2007, 101: 024108
    [6]张茹,王淼,张宁,等. (Ni0.8Zn0.2Fe2O4)epoxy-PZT双层膜中的磁电效应.物理学报. 2006, 55 (5): 2548
    [7] N. Ortega, Ashok. Kumar, R. S. Katiyar, et al. Maxwell-Wagner space charge effects on the Pb(Zr, Ti)O3-CoFe2O4 multilayers. Appl. Phys. Lett. 2007, 91: 102902
    [8] T. Wu, M. A. Zurbuchen, S. Saha, et al. Observation of magnetoelectric effect in epitaxial ferroelectric film/manganite crystal heterostructures. Physical. Review. B. 2006, 73:134416
    [9] K. S. Chang, M. A. Aronova, C. L. Lin, et al. Exploration of artificial multiferroic thin-film heterostructures using composition spreads. Appl. Phys. Lett. 2004, 84: 3091
    [10] Manfred. Fiebig. Revival of the magnetoelectric effect. J. Phys. D. 2005, 38: R123-R152
    [11]杨帆,文玉梅,郑敏,等.磁致/压电/磁致层合材料磁电响应分析.传感技术学报. 2006, 19(6): 2371-2375
    [12]熊锐,周忠坡.发展中的磁电材料.信息记录材料. 2006, 7(6): 26-31
    [13] J. Van. Suchetelene. Product properties: a new application of composite materials. Philips Res. Rep. 1972, 27: 28
    [14] J van den Boomgaard, R. A. J. Born. A sintered magnetoelectric composite material BaTiO3-Ni(Mn,Co)Fe2O4. J. Mater. Sci. 1978, 13: 1538
    [15] J van den Boomgaard, A. M. J. G. Van. Run, J van Suchetelene. Magnetoelectricity in Piezoelectric-magnetostricitive composites. Ferroelectrics. 1976, 10: 295
    [16] J van den Boomgaard, D. R. Terrell, R. A. J. Born, et al. An in situ grown eutectic magnetoelectrie composite material.Ⅰ. Composition and unidirectional solidifieation. J. Mater. Sci. 1974, 9:1705
    [17] A. M. J. G. Van. Run, D. R. Terrell. J.H. Scholing. An in situ grown eutectic magnetoelectrie composite material.Ⅱ. Physical properties. J. Mater. Sci. 1974, 9:1710
    [18] J. Ryu, A. V’azquez Carazo, K. Uchino, et al. Magnetoelectric properties in iezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 2001, 40: 4948
    [19] J. Ryu, S. Priya, A. V’azquez Carazo, et al. Effect of the magentostrictive layer on magnetoelectric properties in lead zirconate. J. Am. Ceram. Soc. 2001, 84: 2905
    [20] G. Srinivasan, C. P. DeVreugd, C. S. Flattery, et al. Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl. Phys. Lett. 2004, 85: 2550
    [21] H. Zheng, J. Wang, S. E. Lofland, et al. Multiferroic BaTiO3-CoFe2O4 nanostructrues. Science. 2004, 303: 601
    [22] Hyejin Ryu, P. Murugavel, J. H. Lee, S.C.Chae, et al. Magnetoelectric effects of nanoparticulate Pb(Zr0.52 Ti0.48)O3-NiFe2O4 composite films. Appl. Phys. Lett. 2006, 89: 102907
    [23] Jian-ping Zhou, Hongcai He, Zhan Shi, et al. Magnetoelectric CoFe2O4/Pb(Zr0.52 Ti0.48)O3 double-layer thin film prepared by pulsed-laser deposition. Appl. Phys. Lett. 2006, 88: 013111
    [24] Jian-guo Wan, Hao Zhang, Xiuwei Wang, et al. Magnetoelectric CoFe2O4-lead zirconate titanate thick films prepared by a polyvinylpyrrolidone-assisted sol-gel method. Appl. Phys. Lett. 2006, 89:122914
    [25]周剑平,何泓材,施展,等. PMNNT/ CoFe2O4复合材料的结构和磁电性能.硅酸盐学报. 2006, 34(10): 1213-1219
    [26]周剑平,施展,刘刚,等.铁电/铁磁1-3型结构复合材料磁电性能分析.物理学报. 2006, 55(7): 3766-3771
    [27] M.Zeng, J. G. Wan, Y. Wang, et al. Resonance magnetoelectric effect in bulk composite of lead zirconate and nickel ferrite. J.Appl.Phys. 2003, 95: 8069
    [28] H. Yu, M. Zeng, Y. Wang, et al. Magnetoelectric resonance-banding of Terfenol-D/epoxy-Pb(Zr,Ti)O3 bilayers in parallel and series connections. Appl. Phys. Lett. 2005, 86: 032508
    [29] Jian-ping Zhou, Hong-cai He, Zhan Shi, et al. Dielectric, magnetic, and magnetoelectricproperties of laminated PbZr0.52 Ti0.48O3/CoFe2O4 composite ceramics. J. Appl. Phys. 2006, 100: 094106
    [30] Haimei Zheng, Jens Kreisel, Ying-Hao Chu, et al. Heteroepitaxially enhanced magnetic anisotropy in BaTiO3-CoFe2O4 nanostructrues. Appl. Phys. Lett. 2007, 90:113113
    [31] J. X. Zhang, Y. L. Li, D. G. Schlom, et al. Phase-field model for epitaxial ferroelectric and magnetic nanocomposite thin films. 2007, 90: 052909
    [32] R. V. Chopdekar, Y. Suzuki. Magnetoelectric coupling in epitaxial CoFe2O4 on BaTiO3. Appl. Phys. Lett. 2006, 89: 182506
    [33] V. Corral-Flores, D. Bueno-Baques, D. Carrillo-Flores, et al. Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 2006, 99: 08J503
    [34] N. Ortega, P. Bhattacharya, R. S. Katiyar, et al. Multiferroic properties of Pb(ZrTi)O3/NiFe2O4 composite thin films. J. Appl. Phys. 2006, 100: 126105
    [35] Sangwoo Ryu, Jung H. Park, Hyun M. Jang. Magnetoelectric coupling of [00l]-oriented Pb(Zr0.4Ti0.6)O3-Ni0.8Zn0.2Fe2O4 multeilayered thin films. Appl. Phys. Lett. 2007, 91: 142910
    [36] J. X. Zhang, J. Y. Dai, C. K. Chow, et al. Magnetoelectric coupling in CoFe2O4/SrRuO3/Pb(Zr0.52Ti0.48)O3 heteroepitaxial thin film structure. Appl. Phys. Lett. 2008, 92: 022901
    [37] S. H. Xie, J. Y. Li, Y. Qiao, Y. Y. Liu, et al. Multiferroic CoFe2O4-Pb(Zr0.52Ti0.48)O3 nanofibers by electrospinning. Appl. Phys. Lett. 2008, 92: 062901
    [38] Shenqiang Ren, Manfred Wutting. Magnetoelectric nano-Fe3O4/ CoFe2O4‖Pb(Zr0.53Ti0.47)O3 composite. Appl. Phys. Lett. 2008, 92: 083502
    [39] Lei Li, Yi Qi Lin, Xiang Ming Chen. CoFe2O4/Pb(Zr0.52Ti0.48)O3 disk-ring magnetoelectric composite structures. J. Appl. Phys. 2007, 102:064103
    [40] Hong-cai He, Jing Ma, Jing Wang. Orientation-dependent multiferroic properties in Pb(Zr0.52Ti0.48)O3-CoFe2O4 nanocoposite thim films derived by a sol-gel processing. J. Appl. Phys. 2008, 103: 034103
    [41]江辉明,叶志清,曾明生.脉冲激光沉积(PLD)机理分析及其应用.江西师范大学学报(自然科学版),2005,29(1):53-57
    [42]高国棉,陈长乐,王永仓.脉冲激光沉积( PLD)技术及其应用研究.空军工程大学学报(自然科学版),2005,6(3):77-81
    [43] M. Kanai, T. Kawai, S.Kawai. Atomic layer and unit cell layer growth of (Ca, Sr)CuO2 thin film by laser molecular beam epitaxy. Appl. Phys. Lett. 1991, 58(7):771-773
    [44]秦文福. RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长: [工学博士论文],大连,大连理工大学, 2004
    [45] T. Frey, C. C. Chi, C. C. Tsuei, et al. Effect of atomic oxygen on the initial growth mode in thin epitaxial cuprate films. Phys. Rev. B. 1994, 49(5): 3483-3491
    [46] Y. R. Li, Z. Liang, Y. Zhang, et al. Growth modes transition induced by strain relaxation in epitaxial MgO thin films on SrTiO3 (001) substrates. Thin solid films, 2005, 489: 245-250
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.