“红层”区某生活垃圾填埋场的地下水环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾填理后,由于自含水、生化反应及大气降水淋滤等来源,会产生具有污染性的垃圾渗滤液。填埋场在运行和维护监管期,渗滤液可穿透防渗系统而进入地下水含水层。渗滤液从形成、下渗至地下水环境中的运移为三维运移过程。本文利用数值模拟法对填埋场防渗系统不同运行状态下,渗滤液下渗对地下水污染的程度及范围进行模拟计算。揭示填埋渗滤液溶质迁移过程及其对地下水环境污染的特点,从而为垃圾填埋场污染控制和地下水环境保护提供科学依据。
     通过对某垃圾填埋场野外调查及地质、水文地质资料收集,分析研究区含水层特征及水文地质条件,阐明四川“红层”地区浅层风化裂隙水边界与地表分水岭密切相关的规律。根据填埋场防渗系统所处的三种不同工况,计算渗滤液下渗量:在防渗系统的理想状态下,渗滤液下渗量仅154.81L/d;在常规状态(膜部分破损)下,渗滤液下渗量增加至1623.1L/d;而在防渗系统失效的状态下,渗滤液下渗量极大,约为8404.8L/d。
     应用Visual MODFLOW软件中的MODFLOW及MT3DMS模块,对研究区地下水渗流场及地下水中溶质运移过程进行模拟。结果显示,至填埋场运行结束,在理想状态下,超标溶质仅是5种(COD、NH4、Cl、Cr及Hg)模拟计算溶质中的2种(COD、 NH4),而最大超标范围为115m,在距离垃圾坝100m处COD、NH4浓度分别为3mg/L0.4mg/L;在常规状态下,超标溶质类别及数量与理想状态一致,仅超标范围增至240m,在距离垃圾坝100m处COD、 NH4浓度分别为263mg/L、30mg/L;防渗层失效的条件下,5种模拟计算溶质均超标,超标范围100-300m,在距离垃圾坝100m处COD、 NH4、 Cl、Cr及Hg浓度分别为1800mg/L、220mg/L、250mg/L、0.2mg/L及0.03mg/L。由以上模拟计算结果显示,防渗系统对渗滤液的下渗起到极好的阻隔作用,能有效缓解地下水环境的污染。在设置防渗系统并保证其完整性的前提下,进入地下水系统中污水量明显减少,不仅污染影响范围明显收缩,且地下水系统中污染组分的富集量亦减少,更有利于填埋场地下水环境的保护与恢复。
Landfill leachate generated from self-aqueous biochemical reactions and precipitation leaching that has pollution characteristics after landfill. The landfill is a long-running project, the leachate can penetrate impervious system into the groundwater aquifer. The migration process that leachate infiltration into the groundwater environment is three-dimensional. In this paper, the extent and scope of the groundwater pollution is calculated by numerical simulation method under different operating conditions of impervious system. The leachate solute transport process and the groundwater environmental pollution characteristics is revealed.And thus provide scientific basis for the the landfill pollution control and groundwater environmental protection control measures.
     In this paper, it is expound the law that the shallow weathered fissure water boundary is equivalent to the surface watershed in red-stratum area through surveys and data collection of geological, hydrogeological. A landfill as an example which is located in red stratum area, the amount of leachate infiltration is154.81L/d under ideal condition of impervious system, the amount is1623.08L/d under normal condition,and the amount is8404.81L/d under invalid condition.
     And then,leachate pollution factor is determined based on the research data. The MODFLOW and MT3DMS module of Visual MODFLOW is applied to simulation calculate the groundwater seepage field and solute transport.The results showed that5kinds of ion (COD、NH4、Cl、Cr and Hg)there are2kinds(COD、NH4) of excessive in the ideal conditions until the end of the operation of the landfill. The maximum range exceeded115m. The concentration of COD-. NH4is3mg/L and0.4mg/L in where distance garbage dam form100m.The excessive ion in the normal conditions as same as the ideal it's. The maximum range exceeded240m. The concentration of COD、 NH4is263mg/L and30mg/L in the same position.The5kinds of ion are excessive in the invalid conditions. The maximum range exceeded100~300m. The concentration of COD,NH4,Cl,Cr and Hg is180mg/L,220mg/L、250mg/L、0.2mg/L and0.03mg/L in the same position.
     By the simulation calculation results show that impermeable system has an important role to obstruct leachate infiltration that effective mitigation of environmental pollution of groundwater.Though the barrier effect is obvious in low-permeability red-stratum area.In the settings of the impervious system, leachate infiltration was significantly reduced. Therefore, the scope of influence and ion enrichment of contamination in the groundwater system is significant contraction.Under this conditions, it is conducive to the recovery of the groundwater environment after landfill closure.
引文
[1]Bruner M A, Rao M, Dumont J N, et al. Ground and surface water developmental toxicity at a municipal landfill:description and weather-related variation[J].Ecotoxicology and Environmental Safety, 1998,39:215-226.
    [2]BatelaanO,Triest L. Regional groundwater discharge:phreatophyte mapping,groundwater modelling and impact analysis of land-use change[J]. Journal of Hydrology,2003,275:86-108.
    [3]Dorthe Lapke Jensen, Anna Ledin, Thomas H. Christensen, Speciation of Heavy Metals in Landfill Leachate Polluted Groundwater[J]. Water Research,1999(33):2642-2650.
    [4]Ozaki, Masa-aki, Watanabe, et al. Characteristics of heavy metal release from incinerated ash, melted slag and their re-products [J]. Water Science and Technology,1997,36(1):267-274.
    [5]Bilski J J, Alva A K. Transport of heavy metals and cations in a fly ash amended soil[J].Fule and Energy Abstract,1996,37(2):148.
    [6]杨永峰,张志,刘子凤,离子交换法处理重金属矿山地下水的试验研究[J].工程建设与设计,2004,(8):56-58
    [7]朱广伟,陈英旭,田光明.污水污泥土地投放重金属的环境效应研究进展[J].生态学杂志,,2003,22(4):49-54
    [8]董军,赵勇胜,赵晓波等.垃圾渗滤液对地下水污染的PRB原位处理技术[J].环境科学,2003,24(5):151-156
    [9]付美云,周立祥.垃圾渗滤液水溶性有机物对土壤吸附重金属Cd2+, Pb2+的影[[J].环境科学学报,2006,26(5):828-834
    [10]杨巧艳,查坤.垃圾填埋处理中微量金属元素迁移和转变特性分析[J].2005,24(6):96-98
    [11]张志杰.几种工业废水可生化性判定指标的验证与评价[J].环境科学研究,1993,6
    [12]王琪,杨玉飞.填埋结构对渗滤液水质变化影响研[[J].环境工程,2005,23(4):69-73
    [13]刘疆鹰,徐迪民,赵由才等.大型垃圾填埋场渗滤水 NH4衰减规律[J].环境科学学报,2001,21(3):323-327
    [14]孙立志,阎文歧.城市垃圾填埋场浸出液产量的计算方法[J].环境卫生工程,1997(2):12-16
    [15]王红旗.城市氮循环和氮污染研究[M].北京:北京师范大学出版社,1998:70-100
    [16]何炳乔,金胜敏.吉林市及外围地下水氮污染状况与机理探讨[J].环境中氮污染与氮循环论文集.1983
    [17]周星志,黄迪辉。我国卫生填埋场防渗技术的研究现状及发展探讨[J]。中国建筑防水,2007.
    [18]靖向党,阮文军。垃圾填埋场防渗技术的现状[J]。长春工程学院学报,2006。
    [19]Bear,J.,On the tenson form of dispersion in porous media[J].Geophys.Res.,66(4).1185-1197.
    [20]De Josselin de Jong,G.,and M.J.Bossen,1961,Discussion of "On the tenson form of dispersion"by J.Bear,J.Geophys.Res.,10,3623-3624.
    [21]Harleman,D.R.E.,and R.R.Rumer,1962,The Dynamics of Salt-Water Intrusion in Porous Media,Report 55,Hydrodynamic Lab.,MIT,Cambridge,MA.
    [22]Bachmat,Y.,and J.Bear,1964,The general equation of hydrodynamic dispersion in homogeneous isotropic mediums[J]. Geophys.Res.,69(12),2561-2567.
    [23]Bachmat,Y.,1967,On the similitude of dispersion phenomena in homogeneous and isotropic porous media[J]. Water Resour.Res.,3(4),1079-1083.
    [24]Skibitzke,H.E.,and G.M.Robinson,1963,Dispersion in Ground Water Flowing through Heterogeneous Materials,U.S.Geological Survey Professional Paper 386-B.
    [25]Neuman,S.P.,1973,Calibration of distributed parameter groundwater flow models viewed as a multiple-objective decision process under uncertainty,Water Resour.Res.,9(4).1006-1021.
    [26]Freeze,R.A.,1975,A stochastic conceptual analysis of one-dimensional groundwater flow in non-uniform homogeneous media, Water Resour.Res.,11 (5),725-741.
    [27]Parkhurst,D.L.,D.C.Thorstenson,and L.N.Plummer,1980,PHREEQE-A Computer Program for Geochemmical Calculations,U.S.Geological Survey Water-Resources Investigations Report 80-96.
    [28]Yeh,G.T.,and V.S.Tripathi,1989,A critical evaluation of recent developments of hydrogeochemical transport models of reactive multi-chemical components, Water Resour.Res.,25(1),93-108.
    [29]徐玉佩.地下水中溶质运移数值计算(有限元法)及其在冲洗种稻改良盐碱地中的应用[J].水利学报,1983,(04).
    [30]林学钰,李生彩.承压含水层中二维溶质运移和弥散的微机模拟(有限单元法)[J].吉林大学学报(地球科学版),1986,(02).
    [31]黄康乐.求解二维饱和-非饱和溶质运移问题的交替方向特征有限单元法[J].水利学报,1988,(07).
    [32]宋汉周.包气带中水分运动和溶质运移研究综述[J].世界地质,1989,(02).
    [33]赵全升.济南市岩溶地下水溶质运移模型研究[J].工程勘察,1991,(04).
    [34]Douglas,杨永强,段淑娟.模拟地下水溶质运移的修正特征值法和混合有限单元法[J].世界地质,1992,(02).
    [35]邱克俭,戚隆溪,秦宁.饱和非饱和土壤中溶质运移的数值模拟[J].力学学报,1993,(01).
    [36]杨金忠,叶自桐.野外非饱和土壤水流运动速度的空间变异性及其对溶质运移的影响[J].水科学进展,1994,(01).
    [37]杜国平,陈建生,刘怀成.同位素示踪模拟地下水溶质运移速度的研究[J].地下水,1995,(03).
    [38]吴吉春,薛禹群,谢春红,张志辉.含水层中考虑水—岩间阳离子交换的溶质运移方程[J].水科学进展,1996,(02).
    [39]王晓红Laplace变换边界积分方程与Schapery数值反演法模拟溶质运移问题[J].水文地质工程地质,1997,(06).
    [40]吴吉春,薛禹群,谢春红.越流含水层系统中的溶质运移方程[J].水文地质工程地质,1998,(01).
    [41]吴吉春,薛禹群,等.山西柳林泉裂隙发育区溶质运移三维数值模拟[J].南京大学学报(自然科学),2000,(6):728~734.
    [42]刘春平,邵明安.多孔介质溶质运移边界层理论初探[J].土壤学报,2001,38(2):256-262.
    [43]朱玉水,段存俊.MT3D-通用大三维地下水污染物运移数值模型[J].东华理工学院学报,2005,28(1):26-29.
    [44]谈叶飞,周志芳.溶质运移试验中有色示踪剂高锰酸钾和亮蓝适用性的对比[J].河海大学学报(自然科学版),2008,(01).
    [45]黄勇,周志芳,余钟波HydroGeoSphere在锦屏水电站坝址区水流和溶质运移模拟中的应用[J].水动力学研究与进展A辑,2009,(02).
    [46]冯绍元,高光耀,霍再林,詹红兵.考虑弥散尺度效应的抽水井附近溶质运移模型及半解析解[J].水利学报,2010,(09).
    [47]尹升华,吴爱祥,胡凯建,王洪江.堆浸过程中溶质运移机制及影响因素[J].中南大学学报(自然科学版),2011,(04).
    .[48]王文强.地下水水质评价方法浅析[J].地下水,2007,(06).
    [49]《营山城市垃圾处理工程可行性研究报告》,深圳市市政设计研究院有限公司,2011年7月;
    [50]Horace Moo-Young,Barues Johnson. Characterization of Infiltration Rate From Landfills:Supporting Groundwater Modeling Efforts[J].Environmental Monitoring and Assessment,2004[96]:283-311.
    [51]张翠云,马琳娜,张胜,等.Visual Modflow在石家庄市地下水硝酸盐污染模拟中的应用[J].地球学报.2007,28(6):561-566.
    [52]Rajamanickam R, Nagan S. Groundwater quality modeling of Amaravathi River Basin of Karur district, Tamil Nadu,using Visual Modflow[J]. International Journal of Environmental Sciences 2010,(1):91-108.
    [53]郑春苗.《地下水污染物迁移模拟》[M].北京:高等教育出版社,2009.9:1-369.
    [54]杨昌民,石军广,徐成杰,等.不同地质条件下填埋场渗滤液污染的数值模拟[J].勘查科学技术.2008,(5):15-20.
    [55]左锐,王金生,滕彦国.《滨海区石化项目的地下水环境保护措施研究》[J].北京师范大学学报:自然科学版,2009,45(5/6):647—653;
    [56]中华人民共和国环境保护部.《环境影响评价技术导则地下水环境》(HJ610-2011)[S].北京:中国标准出版社,2011;
    [57]Lynn W.Gelhar, Claire Welty. A Critical Review of Data on Field-Scale Dispersion in Aquifers.[J].WATER RESOURCES RESEACH.1992,28[7]:1954-1974.
    [58]王俊桃,谢娟,张益谦.矿山废石淋溶对水环境的影响[J].地球科学与环境学报.2006,28(4):92-96.
    [59]《1:20万区域水文地质报告(昭通幅)》,云南省地质局水文地质工程地质队,1979年9月;
    [60]中华人民共和国环境保护部.《生活垃圾填埋场污染控制标准》(GB16889-2008)[S].
    [61]中华人民共和国建设部.《生活垃圾卫生填埋场防渗系统工程技术规范》(CJJ1 13-2007)[S].
    [62]中华人民共和国环境保护部.《生活垃圾填埋场渗滤液处理工程技术规范》(HJ564-2010)[S].
    [63]中华人民共和国建设部.《生活垃圾卫生填埋技术规范》(CJJ17-2004)[S].
    [64]中华人民共和国建设部.《生活垃圾卫生填埋场封场技术规程》(CJJ 112-2007)[S].
    [65]中华人民共和国建设部.《城市环境卫生设施规划规范》(GB50337-2003)[S].
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.