几种我国常见鱼类对经典生物操纵的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界范围内,富营养化已经成为影响湖泊水质的主要问题。欧美等国研究证明经典生物操纵是湖泊富营养化和水华治理的有效方法,并且已有很多成功的案例,但是在我国成功的案例却较少。同时,在我国很多湖泊中都养殖有经济型的鱼类,而鱼类是经典生物操纵实施过程中的制约因素。
     本实验针对我国浅水湖泊中常见的鱼类,分析在水体富营养化的条件下不同鱼类对经典生物操纵的影响,为通过生物操纵的手段治理富营养化的湖泊具有重要的指导意义。
     本研究在东湖共建立21个围隔,从2011年8月到10月进行围隔实验,为期3个月。在实验系统中通过人工添加大型枝角类大型溞(100ind./L)和几种我国长江中下游鱼类(四种鱼投放量均为50g/m3)至围隔中开展实验。结果显示养殖鲢鱼的围隔与对照相比大型溞密度下降最低;鳙鱼、鲤鱼和鲫鱼的围隔均使大型溞的存活均率大大降低。与此同时,养殖鲢鱼使围格内蓝藻和绿藻的密度较对照组有降低,养殖鲤鱼和鲫鱼使围格内蓝藻密度明显增加。在不同的鱼类以及浮游动植物密度变化的影响下使得各个围隔内的水体物理化学指标均产生了不同的变化。养殖鲢鱼的围隔内水体透明度较养殖其他鱼的围格较高。养殖鲤鱼和鲫鱼的围隔均使水体的TP、TN上升,叶绿素a含量也增加。可见,适当密度的养殖鲢鱼对经典生物操纵有一定的促进作用,而养殖鲤鱼和鲫鱼则不利于经典生物操纵的进行。
     以围隔实验研究了在低氮和高氮两种不同营养盐水平下鲢鱼对经典生物操纵的影响。结果显示在低氮水平下(TP=50μg/L,TN≤1.5mg/L),添加鲢鱼和Daphnia的围隔对比高氮水平(TP=50μg/L,TN<3mg/L)中透明度较高,总磷、高锰酸钾指数和叶绿素含量均较低,并且蓝藻和绿藻的密度也明显较低。这揭示了在较低的总氮水平下密度合适的鲢鱼对经典生物操纵更能起到积极的促进作用。
     通过在室内进行的不同鱼类在不同温度下对大型溞的摄食的实验显示了在三种温度水平下,对大型溞摄食最多的为鲤鱼,其次是鳙鱼,最少的为鲢鱼。在30℃时,各种鱼类对大型溞的摄食量均是最高的,其次是25℃。
     综上所述,在我国养殖有适当密度的适当鱼类的湖泊中开展经典生物操纵来治理湖泊的富营养化是具有极强的可行性的。
Eutrophication has become the main problems affecting the lake water quality all around the world. Studies in Europe and the United States have shown that traditional biomanipulation is an effective method dealing with eutrophic lakes and water governance, and many successful traditional biomanipulation exercises have been conducted internationally, but in China the case is less successful. Because a lot of lakes in China are breeding economical fish which is a restricting factor of the implementation of traditional biomanipulation.
     This paper studied common fish's effect on traditional biomanipulation in the shallow lakes with eutrophication in China, which has an important significance for dealing with eutrophic lakes by means of traditional bio-manipulation.
     The experiments were conducted in21experimental enclosures in East Lake. The experiment time was three months from August2011to October. The experiment chose one enclosure only with large Cladocera Daphnia (100ind./L) as control group, the other enclosures were not only with large Cladocera Daphnia but also with fish from the middle and lower reach of the Yangtze River (each amount is50g/m3). The density of Daphnia magna in enclosures with silver carp decreased to the minimum; in bighead carp, common carp and crucian carp enclosures, Daphnia magna survival are greatly reduced compared with the control. Meanwhile, the density of cyanobacteria and green algae in silver carp enclosure is lower than the control group, the density of cyanobacteria in carp and crucian carp enclosures increased significantly. Physical and chemical indicators of water bodies within each enclosure changed differently under the influence of different fish and plankton density. Silver carp enclosure has higher water transparency than others. In the common carp and crucian carp enclosures, the content of water's TP, TN and chlorophyll a also rise. Accordingly, the appropriate density of silver carp have a certain role in promoting traditional biomanipulation while breeding common carp and crucian carp is not conducive to traditional biomanipulation.
     This experiment has studied the effect of silver carp in the low and high nitrogen levels on the classical biological manipulation.The results showed that the different total nitrogen nutritional level has different effects on traditional biomanipulation. Low nitrogen levels (TP=50μg/L, TN≤1.5mg/L) contrast of high nitrogen levels (TP=50μg/L, TN≤3mg/L) in the higher degree of transparency, total phosphorus, potassium permanganate index and chlorophyll content were lower, and the density of cyanobacteria and green algae also significantly lower. This reveals the density of silver carp in the lower level of total nitrogen play a positive role in promoting traditional biomanipulation.
     The indoor experiment of different fish feeding on Daphnia magna at different temperatures shows the most average daily feeding of Daphnia magna is by crucian carp, followed by bighead carp, at least by silver carp at three different temperatures. At30℃, the volume of a variety of fish feeding on Daphnia magna is the highest, followed by25℃.
     In summary, it is useful to carry out classical biological manipulation for controlling lake eutrophication in appropriate fish lakes of the appropriate density.
引文
[1]秦伯强,朱广伟.长江中下游地区湖泊水和沉积物中营养盐的赋存、循环及其交换特征[J].中国科学(D辑:地球科学).2005(S2).
    [2]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [3]郭建敏.生物陶粒对河水中有机物、氨氮的去除作用[J].城镇供水.2007(03).
    [4]诸敏.五里湖-梅梁湖区水污染与防治[J].环境监测管理与技术.1995,7(1):99-107.
    [5]王晓华,刘慕凡,张家玉,et a1.治污工程对武汉东湖生态恢复的研究与探讨[J].环境科学与技术.2002(02).
    [6]Qin Bq, H B G G. The Dynamics of resuspension and conceptual mode of nutrient releases from sediments in large shallow Lake Taihu, China [J]. Chin Sci Bullet. 2004,49(1):54-64.
    [7]李文朝.浅水湖泊生态系统的多稳态理论及其应用[J].湖泊科学.1997(02).
    [8]黎明,刘德启,沈颂东,袁雯,姜海燕.国内富营养化湖泊生态修复技术研究进展[J].水土保持研究.2007(05).
    [9]董晓丹,周琪,周晓东.我国河流湖泊污染的防治技术及发展趋势[J].地质与资源.2004(01).
    [10]Jacoby JM, Gibbons HL, Stoops KB. Response of a shallow, polymictic lake to buffered alum treatment [J]. Lake Reservoir Manage.1994,10(2):103-112.
    [11]戴兴春,徐亚同,黄民生.污染环境中微生物修复的几种方法[J].上海化工2004,29(1):10-12.
    [12]Moss B. Brian MossEngineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components [J]. Hydrobiologia.1990,200-201(1):367-377.
    [13]方云英,杨肖娥,常会庆,濮培民.利用水生植物原位修复污染水体[J].应用生态学报.2008(02).
    [14]Thesis J, Zielinski K, Lang H. Biomanipulation by introduction of herbivrous zooplankton:A helpful shock for eutrophic lakes[J]. Hydrobiologia.1990,200-201: 59-68.
    [15]Mcqueen DJ, Post JR, Mills EL. Trophic relationships in freshwater pelagic ecosystems [J]. Can J Fish Aquat Sci.1986,43:1571-1581.
    [16]Benndorf J, Foodweb manipulation without nutrient control:A useful strategy in lake restoration [J]. Schweiz Z Hydrol.1987,49(2):237-248.
    [17]谢平.鲢、鳙与水华的控制[M].北京:科学出版社,2003.
    [18]Xie P, Liu JK. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms:a synthesis of decades of research and application in a subtropical hypereutrophic lake [J]. The Scientific World.2001,1:337-356.
    [19]Xie P, Liu JK. Studies on the influence of planktivorous fishes (silver carp and bighead carp) on the phytoplankton community in a shallow eutrophic Chinese lake (Donghu Lake) using enclosure method[C]. Beijing:International Academic Publishers,1991.
    [20]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境.1999(03).
    [21]Hrbacek J, Dvorakova M, Korinek V, L Prochazkova. Demonstration of the effect of the fish stock on the species composition of zooplankton and intensity of metabolism of whole plankton association[J]. Verh. Inter. Ver. Limnol.1961,14: 192-195.
    [22]Brooks JL, Dodson SI. Predation, body size, and composition of plankton [J]. Science.1965,150:28-35.
    [23]Shapiro J, V La Marra, M Lynch. Biomanipulation:An ecosystem approach to lake restoration [J]. In P.L. Brezonik and J.L. Fox, eds., Water Quality Management through Biological Control, Gainesville[J]. FL:Dept. of Env. Eng.Sciences, Univ. Florida.1975:85-96.
    [24]Bergman E, Hamrin SF, Romare P. The effects of cyprinid reduction on the fish community [J]. Arch Hydrobiol.1994,130:1-33.
    [25]Beklioglu M, Ince O, Tuzun I. Restoration of the eutrophic Lake Eymir, Turkey, by biomanipulation after a major external nutrient control [J]. Hydrobiologia.2003, 490(1-3):93-105.
    [26]Carpenter SR, Kitchell JF, Hodgson JR. Cascading trophic interactions and lake productivity [J]. BioScience.1985,35:634-639.
    [27]Sierp MT, Qin JG, Recknagel F. Biomanipulation:a review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia[J]. Reviews in fish biology and fisheries.2009,19(2):143-165.
    [28]Van Meijer ML, Jeppesen E, Van Donk E, Moss B. Long-term responses to fish stock reduction in small lakes:interpretation of five-year results of four biomanipulation cases in the Netherlands and Denmark [J]. Hydrobiologia.1994, 275-276(1):457-466.
    [29]Gulati RD, Van Donk E. Lakes in The Netherlands, their origin, eutrophication and restoration:State-of the-art review[J]. Hydrobiologia.2002,478(1-3):73-106.
    [30]Jeppesen E, JP Jensen, P Kristensen, M Sondergard, E Mortensen, O Sortkjaer, K Olrik. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2:Threshold levels, long-term stability and conclusions [J]. Hydrobiologia. 1990,201(200):219-227.
    [31]Flrm S. Control of eutrophication by silver carp (Hypophthalmichthys molitrixon) in the tropical Paranoa Reservior (Brasilia, Brazil):a mesocosm experiment[J]. Hydrobiologia.1993,257:142-143.
    [32]Annadotter H, Cronberg G, Agren R, Lundstedt B, Nilsson PA, S Strobeck. Multiple techniques for lake restoration [J]. Hydrobiologia.1999,395-396:77-85.
    [33]秦伯强.湖泊富营养化治理的技术对策[J].环境保护.2007(19).
    [34]刘建康,谢平.生态科学.2003(03).
    [35]刘元波,陈伟民,范成新,et a1.太湖梅梁湾藻类生态模拟与蓝藻水华治理对策分析[J].湖泊科学.1998(04).
    [36]崔福义,林涛,马放,et a1.水体治理中鲢鳙生物操纵作用的实验研究[J].南京理工大学学报(自然科学版).2004(06).
    [37]刘永定.从根本上控制蓝藻水华的生产力[N].科技日报.
    [38]WU Qinglong. On the sustainable development of fishery in East Taihu Lake[J]. Journal of Lake Science.2001,13(4):338-343.
    [39]Chen DQ, Duan XB, Liu S. On the status of fisheries in the Yangtze River and its management[J]. Acta Hydrobiologica Sinica.2002,26(6):685-690.
    [40]长江水系渔业资源调查协作组.长江水系渔业资源[M].北京:海洋出版社,1990.
    [41]张堂林,李钟杰,郭青松.长江中下游四个湖泊鱼类与渔业研究[J].水生生物学报.2008(02).
    [42]邱顺林,刘绍平,黄木桂,陈大庆,段辛斌.长江中游江段四大家鱼资源调查[J].水生生物学报.2002(06).
    [43]卢山,胡军华,肖成云,胡慧建.洪湖鱼类物种组成及影响因素评价[J].野生动物.2006(06).
    [44]何俊,谷孝鸿,白秀玲.太湖渔业产量和结构变化及其对水环境的影响[J].海洋湖沼通报.2009(02).
    [45]过龙根,谢平,倪乐意,胡万明,李洪远.巢湖渔业资源现状及其对水体富营养化的响应研究[J].水生生物学报.2007(05).
    [46]彭平波,刘松林,胡慧建,胡军华,何木盈.洞庭湖鱼类资源动态监测与研究[J].湿地科学与管理.2008(04).
    [47]张堂林,李钟杰.鄱阳湖鱼类资源及渔业利用[J].湖泊科学.2007(04).
    [48]王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998.
    [49]杜宝汉,李永安.洱海鱼类多样性危机及解危对策[J].环境科学研究.2001(03).
    [50]陈自明,杨君兴,苏瑞凤,et a1.滇池土著鱼类现状[J].生物多样性.2001(04).
    [51]若云飘.异龙湖[Z].2011:2012.
    [52]Chen F, Xie P. The Effects of Fresh and Decomposed Microcystis aeruginosa on cladocerans from a subtrophic Chinese lake [J]. Journal of Freshwater Ecology. 2003,18(1):97-104.
    [53]韩士群,严少华,范成新,曹旭静.长肢秀体溞对富营养化水体藻类的生物操纵[J].江苏农业学报.2006(01).
    [54]郭匿春.浮游动物与藻类水华控制[D].中国科学院水生生物研究所,2007.
    [55]张钰,谷孝鸿,朱光敏,何俊.太湖微囊藻对几种枝角类种群影响的实验生物学分析[J].湖泊科学.2007(05).
    [56]张镇,陈非洲,周万平,刘正文.南京玄武湖隆线溞牧食对浮游动物的影响[J].湖泊科学.2009,21(3):415-419.
    [57]蒋燮治,堵南山.中国动物志淡水枝角类[M].北京:科学出版社,1979.
    [58]倪達书,蒋燮治.花鲢和白鲢的食料问题[J].动物学报.1954(01).
    [59]陈少莲.东湖放养鲢、鳙鱼种的食性分析[J].水库渔业.1982(03).
    [60]林涛,崔福义,刘冬梅,马放,张立秋.水源治理中鱼类的摄食选择性对其生物操纵作用的影响[J].哈尔滨工业大学学报.2006(01).
    [61]鲁敏,谢平.武汉东湖后湖区浮游甲壳动物群落结构的研究[J].水生生物学报.2002(02).
    [62]Hanazato T, Yasuno M. Zooplankton community structure driven by vertebrate and invertebrate predators [J]. Oecologia.1989,81:450-458.
    [63]JJ Gilbert. Suppression of rotifer population by Daphnia:A review of the evidence, the mechanisms and the effects on zooplankton community structure [J]. Limnol Oceanogr.1988,33(6):1286-1303.
    [64]田利,王金鑫,张丽彬,王启山,黄超.鲢鱼、芦台鲌鱼对富营养化水体中藻类的控制作用[J].生态环境.2008,17(4):1334-1337.
    [65]张丽彬,王金鑫,王启山,王嵩,李建平.浮游动物在生物操纵法除藻中的作用研究[J].生态环境.2007,23(1):198-200.
    [66]胡鸿均,魏印心.中国淡水藻类:系统、分类及生态[M].北京:科学出版社,2006.
    [67]蒋燮治,堵南山.中国动物志淡水枝角类[M].北京:科学出版社,1979.
    [68]沈嘉瑞.中国动物志节肢动物门甲壳纲桡足类[M].北京:科学出版社,1979.
    [69]王家揖.中国淡水轮虫志[M].北京:科学出版社,1961.
    [70]国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [71]李琪,李德尚,熊邦喜.放养鲢鱼对水库围隔浮游生物群落结构的影响[J].生态学报.1993,13(1):30-37.
    [72]金春华,陆开宏,王扬才.改性明矾浆和滤食性动物控制月湖的蓝藻水华[J].宁波大学学报(理工版).2004(02).
    [73]Starling FLRM. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil):a mesocosm experiment[J]. Hydrobiologia.1993,257(3):143-152.
    [74]Radke RJ, K.U. Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrixon (Val.)] on phyto- and zooplankton in a mesotrophic reservoir:results from an enclosure experiment [J]. Freshw Biol.2002,47:2337-2344.
    [75]王嵩,王启山,张丽彬,王金鑫.水库大型围隔放养鲢鱼、鳙鱼控藻的研究[J].中国环境科学.2009(11).
    [76]Benndorf J, R.W., Koop J. Top-down control of phytoplankton:the role of time scale, lake depth and trophic state [J]. Freshwater Biology.2002,47(12): 2282-2295.
    [77]Mcqueen D J. Manipulating lake community structure:where do we go from here?[J]. Freshwater Biology 1990,23(3):613-620.
    [78]Mcqueen DJ, P.J., Mills EL. Trophic relationships in freshwater pelagic ecosystems [J]. Can J Fish Aquat Sci.1986,43(p):1571-1581.
    [79]Lafontainne N, M.D. Contrasting trophic level interactions in Lake St. George and Haynes Lake (Ontario) Canada[J]. Can J Fish Aquat Sci.1991,48(p):356-363.
    [80]Hosper SH, J.E. Biomanipulation additional to nutrient control for restoration of shallow lakes in The Netherlands [J]. Hydrobiologia.1990,200/201:523-534.
    [81]Benndorf J. Conditions for effective biomanipulation; conclusions derived from whole-lake experiments in Europe [J]. Hydrobiologia.1990,200-201(1):187-203.
    [82]Benndorf J. Possibilities and limits for controlling eutrophication by manipulation [J]. Internationale Revue der gesamten Hydrobiologie und Hydrographie .2007,80(4):519-534.
    [83]Jeppesen E, J.J., P Kristensen, M Sondergaard, E Mortensen, O Sortkjaer, K Olrik. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: Threshold levels, long-term stability and conclusions [J]. Hydrobiologia.1990, 20-201(1):219-227.
    [84]RA. V. The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors[J]. Paris:OECD; Technical Report.1968, DAS/CSI:68.
    [85]王瑜,刘录三,方玉东,刘存歧,朱延忠.生物操纵方法调控湖泊富营养化研究进展[J].自然科学进展.2009(12).
    [86]常锋毅.浅水湖泊生态系统的草-藻型稳态特征与稳态转换研究[D].武汉:中科院水生生物研究所,2009.
    [87]Bays J S, C.T.L. Zooplankton and Trophic State Relationships in Florida Lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences.1983,40(10):1813-1819.
    [88]王松波.长江中下游浅水湖泊的浮游动物群落结构研究[D].中国科学院水生生物研究所,2008.
    [89]杨宇峰,黄祥飞.武汉东湖浮游动物群落结构的研究[J].应用生态学报.1994(03).
    [90]孙刚,盛连喜,冯江,et a1.中国湖泊渔业与富营养化的关系[J].东北师大学报(自然科学版).1999(01).
    [91]杨宇峰,黄祥飞.鲢鳙对浮游动物群落结构的影响[J].湖泊科学.1992(03).
    [92]李荫玺,王开宏,刘俊.大头鲤生态环境及食性分析研究[J].云南环境科学.1995(01).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.