基于CSCS模型的全球及区域潜在自然植被时空分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于生物气候的植被分类模型在全球气候变化与生态系统响应研究方面扮演重要角色。本研究利用全球共享气象数据库以及GIS空间分析等方法,在验证了CSCS (Comprehensive and Sequential Classification System)模型的模拟全球潜在自然植被(Potential Natural Vegetation, PNV)分类精度的基础上,分析了全球及区域尺度上当前及过去100年PNV类型的时空分布格局及变化规律;研究了未来50年全球及区域PNV演替趋势;以中国为例探索研究了残存PNV及其典型区的分布范围;研究了CSCS理论在现存自然植被生长状况监测与评价方面的应用;最后以本研究取得的核心成果为基础,开发了基于CSCS的全球潜在自然植被分类管理信息系统。主要研究结果有:
     1)在全球尺度上,CSCS PNV同RF PNV (Ramankutty&Foley PNV). HLZ (Holdridge Life Zones)、BIOME4模型之间具有较好的一致性。CSCS模型不仅能够成功地预测冻原、荒漠和森林的分布,而且同HLZ模型相比,对草地植被具有更好的分类能力。
     2)基于CSCS模型,除了南极洲以外,全球PNV可划分为10个类组和42个类型。除永久冰雪和内陆水体外,全球PNV总面积为1.289335×108km2,占陆地总面积的96.07%。中国PNV可划分为10个类组,除亚热极干亚热带荒漠类和炎热极干热带荒漠类之外,全国有40类PNV。由于受人类活动的影响,现存植被同潜在植被之间存在显著差异。PNV受人类影响程度由小至大依次为冻原、荒漠、林地、灌丛和草地。
     3)过去100年间(1901-2000),除热荒漠和萨王纳植被类组外,其余8种植被类组的分布中心在南北半球的移动方向。热荒漠植被类组在南半球的移动距离是10个类组中最大的。除了冻原与高山草甸、亚热带森林和温带湿润草地植被类组外,其他7种植被类组在南半球的移动距离均大于北半球。
     4)在全球范围内未来50年(2001-2050)陆地温度将呈上升趋势,尤其是北半球地区温度上升幅度较大,降水的变化没有明显的地域规律。总体而言,全球气候大致向着暖干化的趋势发展,但局部地区存在向暖湿化变化的趋势。中国未来50年温度上升幅度在1.5-4.5℃之间,降水表现出明显的南增北减的趋势。未来50年全球潜在冻原植被的面积急剧减少,潜在荒漠和潜在草地植被的面积增大,潜在森林植被的面积略有增加,但增加幅度不大;中国潜在自然植被面积的变化趋势同世界总趋势类似,但面积变化幅度有所不同。
     5)中国残存PNV面积约为624.7089万km2,占国土面积的65.07%。残存PNV典型区占残存PNV面积的16.13%,占国土面积的9.65%。典型区主要分布在人口较少、海拔较高、地形复杂的西南和西部地区,而地势较平坦的东北、华北、华中地区没有残存PNV典型区分布,东南及沿海区域有零星的分布。
     6)青藏高原未来气候在西部地区将呈现暖干化趋势,而在中东部绝大部分地区则呈暖湿化趋势。受此影响,未来青藏高原将出现热荒漠类组。分布于高原南部的潜在森林植被将向高原北部扩展,面积大幅增加,增加率达125%;而潜在草地植被(冻原与高山草甸、冷荒漠、半荒漠、温带湿润草地和斯太普)面积将大幅减少,减少率为25%。其中,明显受温度升高和降水再分配影响的潜在冻原与高山草甸植被类组变化最为剧烈,其面积有大幅萎缩的态势,减少率达56.82%。
     7)在以上研究的基础上,从系统体系结构、数据组织、系统功能设计等方面出发,设计并开发了基于ArcGIS Server和Flex等技术的全球潜在自然植被分类管理信息系统网站。
Bioclimatology based vegetation classification models play an important role in studying the response of terrestrial ecosystems to global warming. On the basis of validation for classification accuracy of Potential Natural Vegetation (PNV) types simulated by the Comprehensive and Sequential Classification System (CSCS) model, using the global sharing meteorological databases and GIS spatial analysis approach, this study analyzed the spatio-temporal distribution patterns, change rules and the succession tendency of PNV types in the global and regional scales in the past100years (1901-2000) and the future50years (2001-2050); Taking China as an example, the distribution of remained PNV types and its typical areas, as well as the application of CSCS theory in monitoring and evaluating the growth condition of existing vegetation were studied; Ultimately, on the basis of the main results of this study, the global PNV management system based on CSCS model was developed.The results are as follows:
     1) On a global scale there are good agreements among maps produced by the CSCS method and the globally well-accepted Ramankutty&Foley PNV (RF PNV), Holdridge Life Zone (HLZ) and BIOME4PNV models. Comparing with HLZ, the CSCS model can not only predict the spatial distribution extent of tundra, desert and forest, but also identify grassland vegetation types preferably.
     2) Based on CSCS model,10broad vegetation categories and42classes of the potential vegetation can be identified at global scale excluding Antarctica, the area of global PNV excluding regions of permanent snow/ice cover and inland water is1.289335×108km2, which covers96.07%of the total land area of Earth. In China there are10broad vegetation categories and40classes excluding subtropical extrarid subtropical desert and tropical extrarid tropical desert. There is significant difference between the existing vegetation and PNV due to the influence of human activities. According to the magnitude of human influence in ascending order, the PNV types are tundra, desert, forest, shrubland and grassland, respectively.
     3) During the period of past100years, excluding the warm desert and savanna, the shift direction of the rest of8broad vegetation categories are different in the northern and southern hemispheres. The shift distance of the warm desert in the southern hemisphere was the largest among the10broad vegetation categories. Except for tundra&alpine steppe, subtropical forest and temperate humid grassland, the shift distances in the southern hemisphere for the rest of7broad PNV categories were larger than that in the northern hemisphere.
     4) The global land temperature has an increasing trend in future50years, especially in the northern hemisphere. The variation of global precipitation has no distinct regional regulation. Overall, the global climate would be warming and drying, but warming and humid in local area. In China, the temperature rising range would be during1.5-4.5℃and precipitation would be distinctly increasing in south and decreasing in north over the next50years. In future (i.e., by the end of the year2050), the area of global potential tundra would be decreasing rapidly, while the area of potential desert and grassland would be increasing, and the area of potential forest would be slightly increasing; the change tendency of the potential vegetation area in China is similar to that in global scale, but different in area change magnitude.
     5) The area of remained PNV types is624.7089×104km2in China, accounting for65.07%of total land area. The area of remained PNV typical area account for16.13%and9.65%of total remained PNV area and total land area, respectively. The typical area is mainly distributed in the southwestern and the western regions with the sparsely populated, high altitude and complex terrain. There is no typical area of remained PNV types in northeastern, northern and central areas of China, and rare distributed in southern and coastal area.
     6) It would be warming and drying in the west, and warming and humid in the most of eastern areas in the Qinghai-Tibet Plateau (QTP) in the future (i.e., by the end of the year2050), and the warm desert would appear in the period2001-2050. In the future, the area of forest in the QTP region would be increasing significantly, and the increasing rate reaches125%. However, the area of grassland (including tundra&alpine steppe, frigid desert, semi-desert, temperate humid grassland and steppe) would have an obvious decreasing trend, and the decreasing rate is25%. Because of affected significantly by temperature rise and precipitation redistribution, the area of tundra&alpine steppe would be reducing severely, almost56.82%area would be decreasing in the future.
     7) On the basis of existed studies, the system structure, data organization and system function design, the global PNV management system website was designed and developed by use of ArcGIS Server and Flex framework.
引文
[1]张连义,王刚,宝路如.锡林郭勒盟草地MODIS—NDVI植被指数和估产牧草产量季节变化特征一以2005年4-9月的变化为例[J].草业科学,2008,25(3):6-11.
    [2]辛晓平,张保辉,李刚,等.1982-2003年中国草地生物量时空格局变化研究[J].自然资源学报,2009,24(9):1582-1591.
    [3]胡自治.草原分类学概论[M].北京:中国农业出版社,1997.
    [4]许鹏.中国草地分类原则与系统的讨论[J].四川草原,1985,2(3):1-7.
    [5]许鹏.草地资源调查与规划学[M].北京:中国农业出版社,2000.
    [6]任继周.分类、聚类与草原类型[J].草地学报,2008,16(1):4-10.
    [7]周广胜,张新时.全球气候变化的中国气候-植被分类研究[J].植物学报,1996,38(1):8-17.
    [8]Tang G.P., Shafer S.L., Bartlein P.J., et al. Effects of experimental protocol on global vegetation model accuracy:A comparison of simulated and observed vegetation patterns for Asia [J]. Ecological Modelling,2009,220(12):1481-1491.
    [9]Lobo A., Rebollar J.L.G. Model-based discriminant analysis of Iberian potential vegetation and bio-climatic indices [J]. Physics and Chemistry of the Earth, Parts A/B/C,2010,35(1-2): 52-56.
    [10]刘华民,吴绍洪,郑度,等.潜在自然植被研究与展望[J].地理科学进展,2004,23(1):62-70.
    [11]Box E.O. Plant functional types and climate at the global scale [J]. Journal of Vegetation Science,1996,7(3):309-320.
    [12]Holdridge L.R. Determination of world plant formations from simple climatic data [J]. Science,1947,105(2727):367.
    [13]Neilson R.P. A model for predicting continental-scale vegetation distribution and water balance [J]. Ecological Applications,1995,5(2):362-385.
    [14]Prentice I.C., Cramer W., Harrison S., et al. A global biome model based on plant physiology and dominance, soil properties and climate [J]. Journal of Biogeography,1992,19(2): 117-134.
    [15]Sellers P., Bounoua L., Collatz G, et al. Comparison of radiative and physiological effects of doubled atmospheric CO2 on climate [J]. Science,1996,271(5254):1402.
    [16]Sitch S., Smith B., Prentice I.C., et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model [J]. Global Change Biology,2003,9(2):161-185.
    [17]Brzeziecki B., Kienast F., Wildi O. A simulated map of the potential natural forest vegetation of Switzerland [J]. Journal of Vegetation Science,1993,4(4):499-508.
    [18]Yue T.X., Fan Z.M., Liu J.Y. Changes of major terrestrial ecosystems in China since 1960 [J]. Global and Planetary Change,2005,48(4):287-302.
    [19]Yue T.X., Fan Z.M., Liu J.Y., et al. Scenarios of major terrestrial ecosystems in China [J]. Ecological Modelling,2006,199(3):363-376.
    [20]Yue T.X., Fan Z.M., Chen C.F., et al. Surface modelling of global terrestrial ecosystems under three climate change scenarios [J]. Ecological Modelling,2011,222(14):2342-2361.
    [21]赵茂盛,Neilson P.气候变化对中国植被可能影响的模拟[J].地理学报,2002,57(001):28-38.
    [22]刘华民,吴绍洪,郑度,等.潜在自然植被研究与展望[J].地理科学进展,2004,23(001):62-70.
    [23]赵东升,李双成,吴绍洪.青藏高原的气候植被模型研究进展[J].地理科学进展,2006,25(4):68-78.
    [24]赵传燕,冯兆东,南忠仁,等.黄土高原祖厉河流域潜在植被分布模拟研究[J].地理学报,2007,62(1):52-61.
    [25]任继周.按照苏联先进理论划分我国草原类型的原则之商榷——以甘肃省中部草原为例试行划分[J].中国畜牧兽医杂志,1957,(4):155-160.
    [26]任继周.甘肃中部的草原类型[J].甘肃农业大学学报,1959,(2):1-15.
    [27]任继周,胡自治,牟新待.我国草原类型第一级——类的生物气候指标[J].甘肃农业大学学报,1965,(2):48-64.
    [28]任继周,牟新待,胡自治,等.青海省草原类型第一级——“类”的初步研究[J].甘肃农业大学学报,1974,(2):30-40.
    [29]胡自治,张普金,南志标,等.甘肃省的草原类型[J].甘肃农业大学学报,1974,(1):1-27.
    [30]任继周,胡自治,牟新待,等.草原的综合顺序分类法及其草原发生学意义[J].中国草原,1980,(1):12-24.
    [31]胡自治.草原分类方法研究的新进展[J].国外畜牧学(草原与牧草),1994,(4):1-9.
    [32]胡自治,高彩霞.草原综合顺序分类法的新改进:I.类的划分指标及其分类检索图[J].草业学报,1995,4(3):1-9.
    [33]胡自治.人工草地分类的新系统——综合顺序分类法[J].中国草地,1995,95(4):1-4.
    [34]高彩霞,胡自治,龙瑞军,等.草原综合顺序分类法的新改进:II.类的计算机检索[J].草业科学,1995,12(5):5-8.
    [35]常中央.草原综合顺序分类法的新改进:III.类的典型性判别与判别系统[J].草业科学,1995,12(6):2-24.
    [36]赵军.从生态信息图谱的角度看草原综合顺序分类法检索图[J].草原与草坪,2005,(2):12-14.
    [37]赵军.天然草地生态信息图谱与草业生态信息学的理论与实践研究[D].兰州;甘肃农业大学,2007.
    [38]任继周.中国大百科全书[J].北京:中国大百科全书出版社,1990.
    [39]梁天刚,冯琦胜,黄晓东,等.草原综合顺序分类系统研究进展[J].草业学报,2011,20(5):252-258.
    [40]任继周,梁天刚,林慧龙,等.草地对全球气候变化的响应及其碳汇潜势研究[J].草业学报,2011,20(2):1-22.
    [41]高怀瀛,郭婧,任正超,等.世界草地综合顺序分类图的制作[J].草原与草坪,2011,31(3):15-19.
    [42]李红梅,马玉寿,白彦芳.气候变化对青海高原植被演变的影响分析[J].冰川冻土,2010,32(2):414-421.
    [43]邹德富,冯琦胜,王莺,等.基于GIS的甘南地区草原综合顺序分类研究[J].草业科学,2011,28(1):27-32.
    [44]赵军,刘喆,杨梅.基于GIS的甘南高原草原分类与制图研究[J].中国农村小康科技,2011,1(1):39-41.
    [45]张美玲,陈全功,蒋文兰,等.基于草地综合顺序分类法的CASA模型改进[J].中国草地学报,2011,33(4):5-11.
    [46]蒲小鹏,武学敏,张德罡WindowsXP系统下草原综合顺序分类法草地类的计算机检索工具开发[J].数字技术与应用,2011,6):93-95.
    [47]李飞,赵军,赵传燕,等.中国西北干旱区潜在植被模拟与动态变化分析[J].草业学报,2011,20(4):42-50.
    [48]李飞,赵军,赵传燕,等.中国干旱半干旱区潜在植被演替[J].生态学报,2011,31(3):689-697.
    [49]Ren J.Z., Hu Z.Z., Zhao J., et al. A grassland classification system and its application in China [J]. The Rangeland Journal,2008,30(2):199-209.
    [50]Hutchinson M. Anusplin version 4.3. Centre for resource and environment studies [J]. Canberra:The Australian National University,2004,
    [51]New M., Hulme M., Jones P. Representing Twentieth-Century Space-Time Climate Variability. Part Ⅰ:Development of a 1961-90 Mean Monthly Terrestrial Climatology [J]. Journal of Climate,1999,12(3):829-856.
    [52]New M, Lister D., Hulme M., et al. A high-resolution data set of surface climate over global land areas [J]. Climate research,2002,21(1):1-25.
    [53]Hijmans R.J., Cameron S.E., Parra J.L., et al. Very high resolution interpolated climate surfaces for global land areas [J]. International Journal of Climatology,2005,25(15): 1965-1978.
    [54]Jarvis C.H., Stuart N. A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part Ⅱ:the interaction between the number of guiding variables and the type of interpolation method [J]. Journal of Applied Meteorology,2001, 40(6):1075-1084.
    [55]Mitchell T.D., Jones P.D. An improved method of constructing a database of monthly climate observations and associated high(?)\resolution grids [J]. International Journal of Climatology, 2005,25(6):693-712.
    [56]Ramankutty N., Foley J.A. Estimating historical changes in global land cover:croplands from 1700 to 1992 [J]. Global Biogeochemical Cycles,1999,13(4):997-1027.
    [57]Holdridge L.R. Life zone ecology [J]. Life zone ecology,1967, rev. ed.)):
    [58]Holdridge L.R., Grenke W. Forest environments in tropical life zones:a pilot study [J]. Forest environments in tropical life zones:a pilot study,1971,
    [59]Haxeltine A., Prentice I.C. BIOME3:An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types [J]. Global Biogeochemical Cycles,1996,10(4):693-709.
    [60]Kaplan J.O. Geophysical applications of vegetation modeling [D]. Sweden; Lund University, 2001.
    [61]Kaplan J.O. Wetlands at the Last Glacial Maximum-Distribution and methane emissions [J]. Geophysical Research Letters(0094-8276),2002,29(6):3-1.
    [62]Kaplan J.O., Bigelow N., Prentice I.C., et al. Climate change and Arctic ecosystems:2. Modeling, paleodata-model comparisons, and future projections [J]. Journal of geophysical research,2003,108(D19):8171.
    [63]Diffenbaugh N.S., Sloan L.C., Snyder M.A., et al. Vegetation sensitivity to global anthropogenic carbon dioxide emissions in a topographically complex region [J]. Global Biogeochemical Cycles,2003,17(2):1067.
    [64]Song M., Zhou C, Ouyang H. Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau [J]. Journal of Vegetation Science,2005,16(3): 341-350.
    [65]郝君明.中国Holdridge生命地带与潜在植被空间格局研究[D].兰州;西北师范大学,2009.
    [66]Lugo A., Brown S., Dodson R., et al. The Holdridge life zones of the conterminous United States in relation to ecosystem mapping [J]. Journal of Biogeography,1999,26(5): 1025-1038.
    [67]Olson D.M., Dinerstein E., Wikramanayake E.D., et al. Terrestrial ecoregions of the world:a new map of life on earth [J]. BioScience,2001,51(11):933-938.
    [68]Hart J.F. Central tendency in areal distributions [J]. Economic Geography,1954,30(1): 48-59.
    [69]IPCC. Climate change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge:Cambridge University Press.
    [70]况雪源,刘健,王红丽,等.近千年来南北半球气候变化模拟比较[J].科学通报,2008,53(7):821-828.
    [71]IPCC. Climate change 2007:Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Geneva, Switzerland,2007.
    [72]陈君颖,田庆久.高分辨率遥感植被分类研究[J].遥感学报,2007,11(2):221-227.
    [73]刚永和.乐都县天然草地分类探讨[J].草业科学,1997,14(4):8-12.
    [74]郭孝,张莉.河南草地的分类[J].国外畜牧学—草原与牧草,1998,1):11-13.
    [75]马红彬,王宁.宁夏草地的分类[J].宁夏农学院学报,2000,21(2):63-67.
    [76]马红彬,王宁,韩丙芳,等.用改进的综合顺序分类法对黄土高原草地分类的探讨[J].中国草地,2002,24(2):1-5.
    [77]Tuxen R. Die heutige potentielle naturliche Vegetation als Gegenstand der Vegetationskartierung [M]. Bundesanst. fur Vegetationskartierung,1956.
    [78]毕思文.全球变化与地球系统科学统一研究的最佳天然实验室——青藏高原[J].系统工程理论与实践,1997,17(5):72-77.
    [79]莫申国,张百平,程维明,等.青藏高原的主要环境效应[J].地理科学进展,2004,23(2):88-96.
    [80]顾梦鹤,王涛,杜国祯.施肥对高寒地区多年生人工草地生产力及稳定性的影响[J].兰州大学学报(自然科学版),2010,46(6):59-63.
    [81]朴世龙,方精云,贺金生,等.中国草地植被生物量及其空间分布格局[J].植物生态学 报,2004,28(4):491-498.
    [82]色音巴图,贾峰.中国北方草地生物量时空分异的定位监测研究[J].中国草地,2003,25(5):9-14.
    [83]王莺,夏文韬,梁天刚,等.基于MODIS植被指数的甘南草地生物量[J].兰州大学学报(自然科学版),2009,45(5):73-78.
    [84]徐丹丹,李文龙,王迅,等.垂直植被指数的计算和精度分析[J].兰州大学学报(自然科学版),2010,45(5):73-78.
    [85]刘勇洪,牛铮.基于MODIS遥感数据的宏观土地覆盖特征分类方法与精度分析研究[J].遥感技术与应用,2004,19(4):217-224.
    [86]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J].植物生态学报,2006,30(1):1-8.
    [87]任安才.基于TM影像的川西北理塘草地生物量与植被指数关系研究[D].四川;四川农业大学,2008.
    [88]杨英莲,邱新法,殷青军.基于MODIS增强型植被指数的青海省牧草产量估产研究[J].气象,2007,33(6):102-106.
    [89]于嵘,蔡博峰,温庆可.基于MODIS植被指数的西北农业灌溉区生物量估算[J].农业工程学报,2008,24(10):141-144.
    [90]周陆生,李海红.青藏高原东部牧区大——暴雪过程及雪灾分布的基本特征[J].高原气象,2000,19(4):450-458.
    [91]张镱锂,李炳元,郑度.论青藏高原范围与面积[J].地理研究,2002,21(1):1-10.
    [92]Vose R., Menne M., Durre I., et al. GHCN Daily:A Global Dataset for Climate Extremes Research; proceedings of the American Geophysical Union Spring Meeting Abstracts, F, 2007 [C].
    [93]Stow D., Daeschner S., Hope A., et al. Variability of the seasonally integrated normalized difference vegetation index across the North Slope of Alaska in the 1990s [J]. International Journal of Remote Sensing,2003,24(5):1111-1117.
    [94]Song Y, Ma M, Veroustraete F. Comparison and conversion of AVHRR GIMMS and SPOT VEGETATION NDVI data in China [J]. International Journal of Remote Sensing,2010, 31:2377-2392.
    [95]刘桂芳,卢鹤立.1961-2005年来青藏高原主要气候因子的基本特征[J].地理研究,2010,29(12):2281-2288.
    [96]郭铌,王小平,蔡迪花,等.近20多年来西北绿洲植被指数的变化及其成因[J].干旱区研究,2010,27(1):75-82.
    [97]丁明军,张镱锂,刘林山,等.1982-2009年青藏高原草地覆盖度时空变化特征[J].自然资源学报,2010,25(12):2114-2122.
    [98]刘吉夫,陈颙,陈棋福,等WebGIS应用现状及发展趋势[J].地震,2003,23(004):10-20.
    [99]彭明军,李宗华WebGIS实现技术及发展研究[J].测绘信息与工程,2001,001):41-44.
    [100]潘春华,刘寿强WebGIS解决方案及开发方法[J].计算机工程与设计,2002,23(010):58-61.
    [101]吴信才,郭玲玲WebGIS开发技术分析与系统实现[J].计算机工程与应用,2001,37(5):96-99.
    [102]王刚,吕海宝.GIS的发展方向—WebGIS [J]东北测绘,2001,24(004):13-16.
    [103]黄诗峰,李纪人,徐美.基于WebGIS的全国水环境信息系统的设计与初步实现[J].水文,2003,23(004):22-25.
    [104]陈春来,石纯,吴丹.论WebGIS及其发展趋势[J].衡阳师范学院学报,2004,25(003):98-101.
    [105]周炳喜.基于LCDS和Flex Viewer的电网台风WebGIS研究[D];华东师范大学,2010.
    [106]王艳华.基于ArcGIS的重庆市地下河数据库设计,实现和系统开发[D];西南大学,2010.
    [107]左振华.基于ArcGIS API for Flex的人性化路径搜索算法研究及实现[D];内蒙古师范大学,2010.
    [108]Andresen T., Stracke F. Applying Advanced Techniques to the Dissemination of Satellite Based Crisis Information [J]. Photogrammetrie-Fernerkundung-Geoinformation,2010, 2010(6):489-497.
    [109]高晓蓉,徐丹,雷瑛.基于Flex和REST服务的WebGIS系统开发—以陇西县地理空间信息应用系统为例[J].遥感技术与应用,2011,26(1):123-128.
    [110]汪林林,胡德华,王佐成,等.基于Flex的RIA WebGIS研究与实现[J].计算机应用,2008,28(012):3257-3260.
    [111]赵一飞Flex 4.0 RIA开发宝典[M].北京:电子工业出版社,2011.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.