结构—海床耦合系统非线性动力分析数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,沉入式大圆筒结构在港口、海岸及近海工程领域得到了进一步的应用,与此同时,结构-波浪-海床耦合系统的稳定性分析研究已成为国内外科学研究中比较前沿性的课题之一。从以往的科研成果可以看出,仅仅对大圆筒结构进行静力稳定性分析是远远不能满足需要的。目前,国内外许多学者正对结构-波浪-海床耦合系统的动力失稳破坏机理进行进一步的研究。
     为了对结构-波浪-海床耦合系统进行动力稳定性分析,进一步加深对该耦合系统失稳破坏机理的认识,本文比照模型试验,基于MSC.Marc软件平台建立了该耦合系统的动力有限元计算模型。在模型中,通过二次开发,在将改进哈丁模型中的等效剪切模量和能表征软粘土在循环荷载作用下孔压发展变化规律的孔压模型引进Marc的基础上,采用了MSC.Marc Python中的PyMentat模块,将改进的哈丁模型中的等效阻尼比的变化进入算例,对结构-波浪-海床耦合系统进行动力响应分析,重点考察了阻尼的效应。
     此外,还将在材料动本构关系中较为常用的Ramberg-Osgood非线性无弹性模型引入数值模型中,对同一耦合系统进行了动力响应计算,并与哈丁等效线性化方法进行了对比,得到了一些有用的结论,对耦合系统的动力响应有了更深入的认识。
     本文的研究成果为以后此类结构系统的动力稳定性分析提供了成果上的积累,并为以后的相关研究提供方法上的支持。
In recent years, embedded large cylinder has further application in harbors, coast and off-shore engineering, In the mean time, the stability analytical research of seabed-wave-structure coupling system is one of the frontier projects at home and abroad. From the previous study, we know that the merely static stability analysis of large cylinder structure is far from demand. At present, many scholars at home and abroad are further investigating the mechanism of instability and failure of seabed-wave-structure coupling system.
     In order to analyze the dynamic stability of seabed-wave-structure coupling system, to further understand the instability and failure of this coupling system, in the thesis we contrasted the model test and based on the MSC.Marc software we established the dynamic finite element computing model of this coupling system. In the model, through second development, we improved the equivalent cut model of Harden model and under the effect of cycle loading, the token soft clay made the development law of pore pressure. Based on this pore pressure model fetch in Marc, we adopted PyMentat module of MSC.Marc Python, put the change of equivalent Damping ratio of the improved Harden model into the examples, analyzed the dynamic response of the seabed-wave-structure coupling system, emphasized review on the damping effect.
     Furthermore, we introduced Ramberg-Osgood nonlinear nonelastic model that frequently used in dynamic constitutive relation of material into the data model, calculated the dynamic response to the same coupling system, contrasted with the method of Harden equivalent linear, made out some valuable conclusion and had further understanding to the dynamic response of the coupling system.
     The research results made out in the thesis provide accumulation to the dynamic stability analysis of the same kind of structure system and give methodological support to the correlative research.
引文
[1]唐云.结构-波浪-海床动力相互作用系统的数值模拟.天津大学硕士学位论文,2003.
    [2]Hardin BO and Black WL. Vibration Modulus of Normally Consolidated Clay. Journal of the Soil Mechanics and Foundations Division, ASCE, 1968, 94(SM2): 353-369.
    [3]王世水.改进的等效线性化计算模型及在结构-波浪-海床耦合系统动力分析中的应用.天津大学硕士学位论文,2005.
    [4]沈珠江,徐刚.堆石料的动力变形特性.水利水运科学研究.1996,2
    [5]王建华,杨进良,田会礼.场地地震响应分析的若干问题.天津大学学报.1998,31(6)
    [6]Grigori Muravskii & Sam Frydman.Site response analysis using a non-linear hysteretic model.Soil Dynamics and Earthquake Engineering.1998,17
    [7]Katona MG.A simple contact-friction interface element with application to buried culvert.Proc Synp on Impl of Computer Procedures and stress-strain Laws in Geotech Eng,Chicagp,Illinois,1981,vol1
    [8]吴明战,周红波,陈竹昌.循环加载后饱和软拈土退化性状的试验研究.同济大学学报.1998,26(3)
    [9]刘海笑,王世水.改进的等效线性化计算模型及在结构海床耦合系统动力分析中的应用.中国港湾建设,2006,No.1:12-15.
    [10]Ishihara K. Evaluation of Soil Properties for Use in Earthquake Response Analysis in Geomechanical Practice. Geomechanical Modeling in Engineering Practice. Dungar R and Studer JA, Eds., Balkema, Rotterdam, The Netherlands, 1986.
    [11]Matasovic N and Vucetic M. A Pore Pressure Model for Cyclic Straining of Clay. Soils and foundations, 1992, 32(3): 156-173.
    [12]Jardine RJ. Some Observations of the Kinematic Nature of Soil Stiffness. Soils and Foundations, 1992, 32(2): 111-124.
    [13]Koutsoftas DC. Effect of Cyclic Loads on Undrained Strength of Two Marine Clays. Journal of the Geotechnical Engineering Division, ASCE, 1978, 104(5): 609-620.
    [14]克拉夫(R.W.Clough),彭津(J.Penzien)著王光远等译.结构动力学.北京:科学出版社,1981.
    [15]Hardin,B.O. and Drnevich,V. P. Shear modulus and damping in soils: measurement and parameter effects. J. Soil Mech. Found. Div., ASCE,1972,98
    [16]陈火红编.Marc有限元实例分析教程.北京:机械工业出版社,2002
    [17]Desai C S,et al.Thin-layer element for interface and joints.Int.Journ.Num,& Analy.Methods in Geomech.,1984,8(3):19-43
    [18]Hardin BO and Black WL. Closure to“Vibration Modulus of Normally Consolidated Clay”. Journal of the Soil Mechanics and Foundations Division, ASCE, 1969, 95(SM6): 1531-1537.
    [19]熊祝华.塑性力学基础知识.北京:高等教育出版社,1986
    [20]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,2005
    [20]吴世明,徐攸在.土动力学现状与发展.岩土工程学报.1998,20(3)
    [21]黄雨,陈竹昌,周红波.上海软土的动力计算模型.同济大学学报.2000,28(3)
    [22]Clough G W,et al.Interface properties of sand.Journ.Geot.Engrg.,ASCE,1982,108(4):648-654
    [23]顾淦臣编.土石坝地震工程.南京:河海大学出版社,1989
    [24]Ishihara, K., Evolution of soil properties for use in earthquake response analysis . In Proceedings, International Symposium of Numerical Models in Geomechanics, Zurich, 1982, PP. 237-259
    [25]G. A. Athanasopoulos, T. B. Panagiotakos and S. A. Maravegias.NOLISM:a pc program for the evaluation of parameters describing the non-linear dynamic behavior of soil materials. Computers & Geosciences Volume 24, Issue 10 , December 1998, Pages 953-963
    [26]Desai C S,et al.Cyclic testing and modeling of interface.Journ.Geot.Engrg.,ASCE,1895,111(6):793-815
    [27]刘海笑.港口工程结构在随机波作用下的动力响应研究:[博士后工作报告],天津;天津大学,2000
    [28]Martin G. R.Effects of system compliance on liquefaction tests.Journal of Geotechnical Engineering Division,1978,104(4):463-480
    [29]陈火红等编著.MSC.Marc二次开发指南.北京:科学出版社,2004
    [30]王建华,要明伦.循环应变下饱和砂(粉)土衰化动力特性研究.水利学报.1997,7
    [31]陈国兴,谢君裴,张克绪.土与结构材料界面性状的研究概况.世界地震工程.1994,4
    [32]Brandt J R T.Behavior of soil-concrete interfaces.Canada:The University of Alberta,1985
    [33]王世水,刘海笑.随机波作用下大圆筒结构物上波浪力的计算. 2003 MSC.Software中国用户年会,2003
    [34]刘海笑,王仲捷,唐云,张申.随机波作用下沉入式大圆筒结构的动土压力及结构失稳机理探究.中国港湾建设,2002,No.6
    [35]刘海笑,唐云.结构—波浪—海床耦合系统接触面效应的考察. 2002 MSC.Software中国用户年会,2002
    [36]朱泓,殷宗泽.土与结构材料接触面性能研究综述.河海科技进展.1994,14(4):1-8
    [37]孔亮,王燕昌,郑颖人.土体动本构模型研究评述.宁夏大学学报(自然科学版).2001,22(1)
    [38]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报.1999,27(1)
    [39]胡黎明,濮家骝.土与结构物接触面特性研究.工程力学(增刊),2001
    [40]雷晓燕,李宁.接触摩擦单元新模型的理论及应用.华东交通大学报,1993,10(2):1-17
    [41]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究.岩土工程学报.2001,23(4):431-435
    [42]殷宗泽,朱泓.土与结构材料接触面的变形及其数学模拟.岩土工程学.1994,16(3):14-22
    [43]胡黎明,濮家骝.土与结构物接触面特性研究.工程力学(增刊).1998
    [44]肖建,林海波等编著. Python编程基础.北京:清华大学出版社,2003
    [45]Tim Altom, Mitch Chapman.云舟工作室译. Python编程指南.北京:中国水利水电出版社,2002
    [46]戴德沛主编.阻尼技术的工程应用.北京:清华大学出版社,1991.10
    [47]黄宗明,白绍良,赖明.结构地震反应时程分析中的阻尼问题评述.地震工程与工程震动.Vol.16,No.2.1996.6:95-105
    [48]李田.结构时程动力分析中的阻尼取值研究.土木工程学报.第30卷第3期,1997.6:68-73
    [49]任艳荣,李玉标.砂质海底管土相互作用的数值模拟.中国海洋平台.第21卷第3期,2006.6:18-22
    [50]刘汉龙,余湘娟.土动力学与岩土地震工程研究进展.河海大学学报.1999.第1期,No.1
    [51]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型.地震工程与工程震动.Vol.12,No.2,1992.6:69-78
    [52]鲍文博,徐金花,陈四利等.动力基础系统非线性本构关系的研究.地震工程与工程震动.第24卷,第5期,2004.10:52-55
    [53]李小军,廖振鹏.土应力应变关系的粘-弹-塑性模型.地震工程与工程震动.第9卷,第3期,1989.9:65-72
    [53]郑大同,王惠昌.循环荷载作用下土的非线性应力应变模型.岩土工程学报.第5卷,第1期,1983.2:66-76
    [54]黄文熙.土的弹塑性应力-应变模型理论.清华大学学报(自然科学版).1979.1:1-26
    [55]赵彤,于晓黎.高层建筑-基础-土体耦合系统的动力分析.地震工程与工程震动.第11卷,第3期,1991.9:67-75
    [56]潘厚志.天然软土与深埋结构相互作用的数值模拟方法:[博士学位论文],天津;天津大学,2000
    [57]汪同庆主编.Fortran 90程序设计.武汉:武汉大学出版社,2002.7
    [58]徐芝纶.弹性力学简明教程.北京:高等教育出版社,1983
    [59]陈万佳主编.港口水工建筑物.北京:人民交通出版社,1997
    [60]钱家欢,郭志平等.土工原理与计算.北京:水利出版社,1980
    [61]栾茂田,吴兴征,阴吉英等.堆石料动力特性参数对面板堆石坝三维非线性地震晌应的影响.水力发电学报.2001,1
    [62]顾尧章.海底粘土的剪切模量.岩土工程学报.1995,17(2)
    [63]陈波,吕西林,李培振等.均匀土—桩基—结构相互作用体系的计算分析.地震工程与工程振动.2002,22(3)
    [64]李昕,周晶,陈健云.考虑土体非线性特性的直埋管道—土体系统的动力反应分析.计算力学学报.2001,18(2)
    [65]吴世明等.土动力学.北京:中国建筑工业出版社,2000
    [66]谢定义编.土动力学.西安:西安交通大学出版社,1988
    [67]杨桂通.土动力学.北京:中国建材工业出版社,2000
    [68]胡聿贤.地震工程学.北京:地震出版社,1988
    [69]龚晓南主编.土工计算机分析.北京:中国建筑工业出版社,2000
    [70]王杰贤编.动力地基与基础.北京:科学出版社,2001
    [71]刘昭培,丁学成.结构动力学,北京:高等教育出版社,1989
    [72]林家浩,曲乃泗等.计算结构动力学.北京:高等教育出版社,1989
    [73]刘尔烈主编.结构力学.天津:天津大学出版社,1996
    [74]赵明华主编.土力学与基础工程.武汉;武汉工业大学出版社,2000
    [75]孙更生,郑大同主编.软土地基与地下工程.北京:中国建筑工业出版社,1984
    [76]候钊主编.天津软土地基.天津:天津科学技术出版社,1987
    [77]Desai C S,et al.Modeling for cyclic normal and shear behavior ofinterface.Journ.Geot.Engrg.,ASCE,1988,114(7):1198-1217
    [78]Hardin,B.O. and Drnevich,V. P. Shear modulus and damping in soils: design equations and curves.J.Soil Mech. Found. Div., ASCE,1972,98
    [79]M.H.EL Naggar & M.Novak.Nonlinear lateral interaction in pile dynamics.Soil Dynamics and Earthquake Engineering.1995,14:141-157
    [80]Purin, A., Frydman,S. and talesnick, M. Normalized nondegrading behaviour of soft clay under cyclic simple shear loading. J. Geotech. Eng., ASCE, 1995,121
    [81] Sun, J. L., Golesorkhi, R. and Seed, H. B., Dynamic moduli and damping ratios for cohesivesoils. Report UCB/EERC 88/15, Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1988
    [82]陈生水,沈珠江.强震区域土石坝地震永久变形的计算.河海大学学报.1990,18(2)
    [83]肖裕行,王泳嘉.二维离散单元法接触处理的新算法.岩石力学与工程学报,1999,18(4):409-413
    [84]唐云,刘海笑.土动力学中等效线性模型和等效线性化算法在MSC.Marc中的实现.2003 MSC.Software中国用户年会,2003
    [85]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法.土木工程学报.1998,31(3):55-64
    [86]王凤霞,荆玉龙.浅谈土与结构动力相互作用.低温建筑技术.2001,4
    [87]窦力军,杨柏坡.土-结构动力相互作用几个实际应用问题.世界地震工程.1999,15(4):62-68
    [88]李辉,赖明.土-结构动力相互作用研究综述(Ⅰ).重庆建筑大学报.1999,21(4):112-116
    [89]郭维,周宏业.土-结构动力相互作用研究.中国铁道科学.2001,22(4)
    [90]梁青槐.土-结构动力相互作用数值分析方法的评述.北方交通大学学报.1997,21(6):690-694
    [91]蒋建国,周绪红.土-结构动力相互作用研究的发展历程及展望.岩土工程学报.1999,4(6):46-49
    [92]王兰民,唐毅,袁中夏.第4届国际岩土地震工程和土动力学进展大会论文综述.世界地震工程.2001,17(3)
    [93]邹离湘,李相.动力荷载下砂土的本构模型探讨.深圳大学学报(理工版).1999,16(1)
    [94]秦小多,陈少林,曾心传.二维非均匀饱和土的地震反应分析.地震工程与工程振动.1999,19(1)
    [95]栾茂田.关于岩土工程研究中若干基本力学问题的思考.大连理工大学学报. 1999,39(2)
    [96]张学言,闫澍旺.岩土塑性力学基础.天津:天津大学出版社.2004
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.