含随机参数结构的动态响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众多的研究工作表明,结构参数的随机变异性可以引起结构随机动力响应的大幅度涨
    落,结构力学参数的随机性还可能成为主导因素,在结构系统模型中引入随机性的概念,采
    用随机结构系统模型是较确定性结构系统模型更为合理的一种选择。
     本文的研究工作主要由两个部分组成;第一部分是分别用分段线性化方法和等效随机系
    统方法对含随机参数非线性结构动态响应统计量的求解;第二部分是建立了用扩阶随机有限
    元方法求解含随机参数粘弹性问题的计算模型。主要工作如下:
    1.用Monte-Carlo数值模拟技术对含随机参数结构频率响应函数进行分析。在单自由情况
     中,质量和刚度的随机能削弱频响函数的峰值;对多自由度情况,参数的变化将引起频
     响函数的大幅值增加,从两个自由度的数值模拟可以看出,在随机抽样调查中,质量和
     刚度的小变异,会给频响函数带来大的突变,这是按照灵敏度的方法所不能预示的,也
     是试验测试中应该引起注意的。
    2.用分段线性化方法计算了含随机参数非线性结构的动态响应。计算结果可以看出本文解
     和Monte-Carlo模拟解十分吻合,曲线几乎重合,说明方法可靠,而且计算时间相比
     Monte-Carlo法少很多。对随机和确定结构计算的结果表明,当考虑参数随机时,位移、
     速度响应将发生大的变化。在相同条件下,结构非线性时的响应时程和线性时还是有大
     的差异的。正负幅值的大小,以及出现的时刻都发生了变化。因此,在研究随机结构时,
     有必要对非线性情况进行分析。
    3.必须注意到,计算非线性随机结构所采用的分段线性化方法仅适用于单自由度质量随机
     时的情况,刚度和阻尼随机时,由于涉及到求解等效刚度、等效阻尼以及等效刚度均方
     差、等效阻尼均方差,而不可解。其本质上是参数的随机和非线性不耦合时,才适用,
     当参数的随机和非线性耦合时,质量、刚度、阻尼随机,以及多自由度的情况,将采用
     等效随机系统分析方法加以解决。本文推导了相应的多自由度的计算公式,给出了算法,
     编制了非线性迭代计算程序。从计算结果可以看出本文解和Monte-Carlo模拟解十分吻
     合,而且计算时间相比Monte-Carlo法少很多。本文提出的等效随机系统分析法,原理
     清楚,方法简单,算例的精度较高,有望在处理非线性随机动力问题中得到较大发展。
    4.介绍了随机有限元方法的研究现状,对于线弹性问题,方法趋于成熟,但是用随机的思
     想来进行粘弹性结构的分析的研究工作迄今少有见诸报导;本文在空间上采用有限元
     法,在时域上采用差分的方法,首次建立了用扩阶随机有限元方法求解含随机参数粘弹
     性问题的计算模型,推导了相应的有限元公式,给出了算法,编制了有限元程序。计算
     结果可以看出,本文解和Monte-Carlo模拟的结果吻合,计算时间相比Monte-Carlo法少。
     随机和确定结构计算的结果表明,当考虑参数随机时,位移响应将发生变化,有必要考
     虑随机的情况。
Many investigations show that randomicity of structures?parameter will bring large value of stochastic dynamic response of structures. Randomicity of structures?mechanics parameter may be dominant factors. Therefore, introduction of randomicity into system model of structure and using random system model are more reasonable than that of determinate system model.
     The work in this dissertation mainly consists of two parts. In the first part, the dynamic response of nonlinear structures with uncertain physical parameters is studied by means of subsection linearization method and equivalent random systems method, separately. In the second part, a method for analyzing the response of viscoelastic structures with uncertain physical parameters is proposed, with FEM in space domain and discrete method in time domain. The main results of this study are lists as follows:
    1. The statistical characteristic of frequency response functions of single and two degrees of freedom structures with uncertain physical parameters are obtained by using Monte-Carlo method, and some results are presented. For the single degree of freedom systems, the randomicity of mass and stiffness can considerably weaken the peak value of frequency response functions. While for the two degrees of freedom structures, the randomicity of parameters will increase the peak value of frequency response functions largely. The numerical value simulation of two degrees of freedom structures shows that the small randomicity of mass and stiffness will bring the frequency response functions large perturbation. This fact can not be indicated by the method of sensitivity of the determine model, and must also be considered in measurement.
    2. Dynamic response of nonlinear structures with uncertain physical parameters is studied by subsection linearization method. The numerical results show that the responses of the proposed approach are much close to the Monte Carlo solutions and that the time of calculation of subsection linearizaton method is much less than that of the Monte Carlo. The results of random structures and determinate structures show that when the ranmomicity of parameters is considered, response of displacement and velocity will occur large changes. In the same condition, there is great difference between response of nonlinear structure and that of linear structure. Thereby, during studying random structures, it is necessary to analyze the nonlinear chrarcteristics.
    3. It should be pointed out that the subsection linearization method is only suitable for the single degree of freedom system with random mass. When the stiffness and damp are both stochastic, on account of coming down to seek equivalent stiffness, equivalent damp, mean square deviation of equivalent stiffness and mean square deviation of equivalent damp, that method is not applicable. In nature, it is appropriate for the case that the randomicity and nonlinearization of parameters are not coupling. When the randomicity and nonlinearization of parameters are coupled, mass, stiffhess, and damp are stochastic, equivalent random systems method is adopted. In this paper, the formulates are deduced, the arithmetic is presented, and numerical iterative programs of nonlinear structures are compiled. The numerical results show that the responses of the proposed approach are much close to the Monte Carlo solutions and that the time of calculation of equivalent random systems method is much less than that of the Monte
     Carlo. The equivalent random systems method that is clear in principle, simple in plan, and high in precision of example, will be developed in the
    
    2
    
    
    
    disposal of dynamic response of structures with uncertain physical parameters.
    4. Developments of study on stochastic finite element method (SFEM) are introduced. For the linear elastic problem, the SEEM is to mature. But the work that analyses viscoelastic random structures is almost not covered heretofore. In this paper, by order expansion stochastic finite element method, a calculation model used in analyzing th
引文
1 Kline S J. The purposes of uncertainty analysis. J Fluids Eng 107(2) , 1985: 153-160
    2 Ashworth M J. Feedback design of systems with significant uncertainty. Research Studies Press. Wiley, Chichester, UK, 1982
    3 Skowronski J M. Adaptive identification of models stabilizing under uncertainty. In Lecture notes in biomathematics. Vol 40. Springer. Berlin. 1981, p 64-78
    4 Skowronski J M. Parameter and state identification in non-linearizable uncertain system. Int H Nonlinear Mech 19(5) , 1984: 421-429
    5 Sobczzyk K. Stochastic wave propagation. Fundamental studies in engineering 6. Elsevier. Amsterdam. 1985
    6 Srinivasan A V. Vibrations of bladed-disk assemblies-A selected survey. J Vib Acoust Stress Reliab Des. 106, 1984: 165-168
    7 Augusti G, Baratta A and Casciati F. Probabilistic methods in structural engineering. Chapman and Hall, London, 1984
    8 Ang A H-S and Tang W H. Probability concepts in engineering plumming and design. Volume 2: Decision, risk and reliability. Wiley, New York, 1984
    9 Frangopol D M. Computational experience gained in structural optimization under uncertainty. Proc of the 1st int conference on computational mechanics. Vol Ⅱ, G Yagawa and S N Atluri(Eds), Springer-Verlag, Tokyo. 1986, p X53-X58
    10 李杰,结构动力分析的若干发展趋势。世界地震工程,1993,(2) :1~8
    
    
    11赵雷,随机参数结构动力分析方法及地震可靠度研究:[博士学位论文]。成都:西南交 通大学,1996
    12 李贤兴,强震作用下钢筋混凝土多层结构的空间随机响应分析及其损伤评估:[博士学位 论文]。成都:西南交通大学,1991
    13 Soong T T and Bogdanoff J. On the natural frequencies of a disordered linear chain of n degree of freedom, Int. J. Mech. Sci., 5, 1963: 237-265
    14 Boyce E W and Goodwin B E. Random transverse vibration of elastic beams, SIAM Journal, 12(3) , 1964:613-629
    15 Bucher C G and Shinozuka M. Structural response variability Ⅱ.ASCE J Eng Mech. 114(12) , 1988:2035-2054
    16 Karada A, Bucher C G, and Shinozuka M. Structural response variability Ⅲ. ASCE J Eng Mech. 115(8) , 1989: 1726-1747
    17 Spanos PD and Ghanem R. Stochastic finite element expansion for random media. ASCE J Eng Mech. 115(5) , 1989: 1035-1053
    18 Chang CC and Yang HTY. Random vibration of flexible uncertain beam element. ASCE J Eng Mech. 117(10) , 1991:2329-2349
    19 Manohar CS and lyengar RN. Free vibration analysis of stochastic strings, J Sound Vib 176(1) , 1994:35-48
    20 Yamazaki F and Shinozuka M and Dasgupta G. Neumann expansion for stochastic finite element analysis. ASCE J Eng Mech. 114(8) , 1988: 1335-1354
    21 Wall FJ and Deodatis G. Variability response function of stochastic plane stress/strain problems. ASCE J Eng Mech. 120(9) , 1994: 1963-1982
    22 Iwan WD and Jensen H. On the dynamic response of uncertain systems to stochastic excitation. ASCE J Appl Mech. 60, 1993: 484-490
    23 Grigoriu M. Applied non-Gaussian processes, Prentice Hall, Englewood Cliffs NJ,1995
    24 Yamazaki F and Shinozuka M. Digital generation of non-Gaussian stochastic fields. ASCE J Eng Mech. 114(7) , 1988: 1183-1197
    25 Der Kiureghian A and Liu PL. Structural reliability under incomplete probability information. ASCE J Eng Mech. 112(1) , 1986: 85-104
    26 Elishakoff Ⅰ, Ren Y J and Shinozuka M. Some exact solutions for the bending of beams with spatially stochastic properties. Int J Solids Struct 32(16) ,1995: 2315-2327
    27 Sobczyk K, Wedrychowicz S and Spencer BF. Dynamics of structural systems with spatial randomness. Int J Solids Struct 33(11) , 1996:1651-1669
    28 Udwadia FE. Response of uncertain dynamic systems: Ⅰ , Appl Math Comput 22, 1987a: 115-150
    29 Udwadia FE. Response of uncertain dynamic systems: Ⅱ, Appl Math Comput 22, 1987b: 151-187
    30 Shinozuka M and Yamazaki F. Stochastic finite element analysis: An introduction, Stochastic structural dynamics: Progress in Theory and Applications. Ariaratnam ST, Schueller GI and Elishakoff Ⅰ (eds). Elsevier Applied Science, London. 1988
    31 Cruse TA, Burnside OH, Wu YT, Polch EZ and Dias JB. Probabilistic structural analysis methods for select space propulsion system structural components (PSAM), Comp Struct. 29(5) , 1988: 891-901
    32 Jensen H and Iwan WD. Response variability in structural dynamics, Earthquake Eng Struct
    
    Dyn 20, 1991:949-959
    33 Steinwolf A. Bench dynamic test for vehicles suffering random vibrations with an asymmetrical probability distribution, Proc 26th Int Symp on Automotive Technology and Automation, Achen,711-718
    34 Lutus LD. Cumulants of stochastic response for linear systems. ASCE J Eng Mech. 112(10) , 1986: 1062-1075
    35 Lutes LD and Hu SU. Non-normal stochastic response of linear systems, ASCE J Eng Mech. 112(10) , 1986: 127-141
    36 Grigoriu M. White noise processes. ASCE J Eng Mech. 113(5) , 1987: 757-765
    37 Krenk S and Gluver H. An algorithm for moments of response from non-normal excitation of linear systems stochastic structural. Dynamics Progress in Theory and Applications, Elsevier, London, 1988:181-195
    38 Grigoriu M and Ariaratnam ST. Response of linear systems to polynomials of Gaussian processes. ASME J Appl Mech 55, 1988: 905-910
    39 Iyenger RN and Jaiswal OR. Anew model for non-gaussian random excitation. Prob Eng Mech 8, 1993:281-287
    40 Moshchuk NK and Ibrahim RA. Response statistics of ocean structures to nonlinear hydrodynamic loading: Part 2 Non-Gaussian ocean waves. J Sound Vib 191(1) , 1996: 107-128
    41 Lyon RH. Statistical energy analysis of dynamical systems: Theory and applications, MIT Press, 1975
    42 Lyon RH and DeJong RJ. Theory and application of statistical energy analysis. Butterworth-Heinmann, Boston, 1995
    43 Hodges CH and Woodhouse H. Theories of noise and vibration transmission in complex structures, Rep Prog Phys 49, 1986: 107-170
    44 Fahy FJ. Statistical energy analysis: a critical overview, Philosophical, Trans Royal Soc of London A346, 1994: 431-447
    45 Shinozuka M and Deodatis G. Response variability of stochastic finite element systems, ASCE J Eng Mech. 114(3) , 1988: 499-519
    46 Zhu wq, Ren YJ and Wu WQ. Stochastic FEM based on local averages of random vector fields. ASCE J Eng Mech. 118(3) , 1992: 496-511
    47 Anantha Ramu S and Ganesan R. Stability analysis of a stochastic column subjected to stochastically distributed loadings using the finite element method. FE Anal Des ll,1992a: 105-115
    48 Anantha Ramu S and Ganesan R. Stability of stochastic Leipholz column with stochastic loading. Arch Appl Mech 62, 1992b: 363-375
    49 Der Kiureghian A and Ke JB. The stochastic finite element method in structural reliability. Prob Eng Mech 3(2) , 1988: 83-91
    50 Liu PL and Der Kiureghian A. Finite element reliability of geometrically nonlinear uncertain structures. ASCE J Eng Mech. 117(8) , 1991: 1806-1825
    51 Vanmarcke E and Shinozuka M. Random fields and stochastic finite element method. Struct. Safety, 3, 1986: 143-146
    52 Vanmarcke E. Probabilistic madeling of soil profiles. J Geotech Engng. ASCE, 103(11) , 1977: 1035-1053
    
    
    53 Vanmarcke E. Reliability of earth slopes. J Geotech Engng. ASCE, 103(11) , 1977:1247-1265
    54 Vanmarcke E. Ramdom fields: Analysis and synthesis. MIT Press, Cambridge, 1983
    55 Vanmarcke E. Stochastic finite element analysis in probabilistic methods in structural engen. (Ed Masanmobu) New York, 1981: 278-294
    56 Vanmarcke E and Grigoriu M. Stochastic finite element analysis of simple beams. J EngNg Mech ASCE, 109(5) , 1983: 1203-1214
    57 Vanmarcke E. random fields: New concepts and engng. Applications. Structural Safety Studies (Ed Jame, Yao T P.) ASCE, New York, 1985: 7-17
    58 朱位秋,任永坚。随机场的局部平均与随机有限元。航空学报,7(6) ,1986:604-611
    59 朱位秋,任永坚。基于随机场局部平均的随机有限元法。固体力学学报。4,1988:261-271
    60 Zhu W Q, Wu W Q. On the local average of random field in stochastic finite element analysis. Acta Mechanica Solida, China, 3(1) , 1990: 27-42
    61 Der Kiureghian A. Finite element methods in structural safety studies. Structural Safety Studies (Ed James, Yao T P), 1986: 40-52
    62 Phcon K K, Quek S T and Chow Y K. Reliability analysis of pile settlement. J Geotech Engng, ASCE, 118(11) , 1990: 1717-1735
    63 Liu P L and Liu K G. Selection of random field mesh in finite element reliability analysis. J Wngng Mech. ASCE, 119(4) , 1993: 667-680
    64 Liu WK, Belytschko T and Mani A. Random field finite elements. Int J Numer Methods Eng 23, 1986:1831-1845
    65 Liu WK, Belytschko T and Mani. Probabilistic finite element methods in nonlinear dynamics. Computer Methods in Applied Mech. and Engng., 57, 1986: 61-81
    66 刘先斌。随机有限元法的误差估计及基于随机场规范展开的有限元法。西南交通大学硕 士学位论文,1991
    67 Takada T and Shinozuka M. Local integration method in stochastic finite element analysis. Proc. Int. Conf. Struct. Safety and Reliability, 1989: 1072-1080
    68 Deodatis G. Bounds on response variability stochastic finite element systems. J. Engng. Mech., ASCE, 116(3) , 1989: 565-585
    69 Bucher CG and Brenner CE. Stochastic response of uncertain systems. Arch App Mech 62, 1992:507-516
    70 Lawrence MA. Basis random variables in finite element analysis. Int J Numer Methods Eng 24, 1987:1849-1863
    71 Zhang J and Ellingwood B. Orthogonal expansion of random fields in first order reliability analysis. ASCE J Eng Mech 121(12) , 1994: 2660-2667
    72 Mirfendereski D. On series representation of random fields. CE 299 Report Dept. of Civ. Engng., University of California, Berkeley, California, 1990
    73 Deodatis G. weighted integral method Ⅰ : stochastic stiffness matrix, ASCE J Eng Mech 117(7) , 1991: 1851-1864
    74 Chenea P F and Bogdanoff J L. Impedance of some disordered systems. ASME colloquium on mechanical impedance methods for mechanical vibration. ASME. New York 1958: 125-128
    75 Bogdanoff J L and Chenea P F. Dynamics of some disordered linear systems Int J Mech Sci 3, 1961:157-169
    76 Kozin F. On the probability densities of the output of some random systems. A J Appl Mech
    
    28, 1961:161-165
    77 Soong T T. Random differential equations in science and engineering Academic. New York, 1973
    78 Chen P C and Soroka W W. Impulse response of a dynamic system with statistical properties. J Sound Vib 31,1973: 309-314
    79 Soong T T and Bogdanoff J L. On the natural frequencies of a disordered linear chain of N degrees of freedom. Int J Mech Sci 5(3) , 1963:237-265
    80 Soong T T and Bogdanoff J L. On the impulsive admittance and frequency response of a disordered linear chain of N degrees of freedom. Int J Mech Sci. 6(3) , 1964: 225-237
    81 Chen P C and Soroka W W. Multi-degree dynamic response of a systems with statistical properties. J Sound Vib 37(4) , 1974: 547-556
    82 Prasthofer P H. and Beadle C W. Dynamic response of structures with statistical uncertainties in their stiffness. J Sound Vib 42(4) , 1975: 477-493
    83 Caravani P and Thomson. W T. Frequency response of a dynamic system with statistical damping. AIAA J 11(2) , 1973:170-173
    84 Whitehead D S. Effect of mistuning on vibrations of turbemachine blades induced by wakes. J Mech Eng Sci 8(1) , 1966: 15-21
    85 Ewins D J. The effects of dentuning upon the forced vibrations of bladed disks. J Sound Vib. 9, 1969:65-79
    86 Stange W A and MacBain J C. An investigation of dual mode phenomena in a mistuned bladed disk. J Vib Acoust Stress Reliab Des. 105(3) , 1983: 402-407
    87 Tobias S A and Arnold R N. The influence of dynamical imperfection on the vibration of rotating disk. Proc Inst Mech Eng, 171, 1957: 669-690
    88 Jay R L and Burns D W. Characteristics of the diametral resonant response of a shrouded fan under a prescribed distortion. J Vib Acoust Stress Reliab Des. 108, 1986: 125-131
    89 Griffin J H and Hoosae T M. Model development and statistical investigation of turbine blade mistuning. J Vib Acoust Stress Reliab Des. 106, 1984: 204-210
    90 Dye R C F and Henry T A. Vibration of compressor blades resulting from scatter in blade natural frequencies. J Eng Power 91, 1969: 182
    91 Ewins D J. Vibration characteristics of bladed disk assemblies. H Mech Eng Sci. 15(3) , 1973: 165-186
    92 EI-Bayoumy. L E and Srinivasan A V. The effect of mistuning on rotor blade vibration. AIAA J 13(4) , 1975: 460-464
    93 Huang Wen Hu. Vibration of some structures with periodic random parameters. AIAA J, 20(7) , 1982: 1001-1008
    94 Sogliero G and Srinivasan A V. Fatigue life estimate of mistuned blades via a stochastic approach. AIAA J. 18(3) , 1980: 318-323
    95 Kaza K R V and Kielb R E. Effects of mistuning on bending torsion flutter and response of a cascade in incompressible flow. AIAA J. 20(8) , 1982: 1120-1129
    96 Muszynaka A, Jones D I G, Lagnes T and Whitford L. On nonlinear response of multiple bladed systems. Shock Vib Bull. 51(3) . 1981: 88-110
    97 Basu P and Griffin J H. The effect of limiting aerodynamic and structural coupling in models of mistuned bladed disk vibration. H Vib Acoust Stress Reliab Des 108, 1986: 132-139
    98 Wall FJ. Influence of the uncertainties of the involved parameters on the exceedance rate of a
    
    sdof system under earthquake loading. Report 11-87, 1987, Univ of Innsbruck.
    99 Kotulski Z and Sobczyk K. effects of parameter uncertainty on the response of vibratory systems to random excitation. J Sound Vib 119(1) , 1987: 159-171
    100 Branstetter LJ. Time discretized moments of a randomly excited uncertain linear oscillator. PhD Thesis, Purdue Univ, 1988
    101 KoyluogluHU, Nielsen SRK and Cakmak AS. Solution of random structural system subject to nonstationary excitation: transforming the equation with random coefficients to one with deterministic coefficients and random initial conditions, Soil Dyn Earthquake Eng 14, 1995a: 219-228
    102 Ibrahim RA. Parametric random vibration, John Wiley and Sons, New York, 1985
    103 Singh R and Lee C. Frequency response of linear systems with parameter uncertainties, J Sound Vib 168(1) , 1993: 71-92
    104 Lee C and Singh R. Analysis of discrete vibratory systems with parameter uncertainties, part I : Eigensolution. J Sound Vib 174(3) , 1994a: 379-394
    105 Kleiber M and Hien TD. The stochastic finite element method, John Wiley.Chichester, 1992
    106 Igusa T and Der Kiureghian A. Response of uncertain systems to stochastic excitation. ASCE J Eng Mech 114(5) , 1988: 812-832
    107 Liu WK, Belytschko T and Lua YJ. Stochastic computational mechanics for aerospace structures. Progress Aeronaut Astronaut. AIAA, 1992
    108 Katafygiotis LS and Beck JL. Avery efficient moment calculation method for uncertain linear dynamic systems, Prob Eng MECH 10(2) , 1995: 117-128
    109 Chen SH, Liu ZS and Zhang ZF. Random vibration analysis for large structures with random parameters, Comp Struct. 43(4) , 1992: 681-685
    110 Chang TP. Dynamic finite element analysis of a beam on random foundation. Comp Struct 48(4) , 1993: 583-589
    111 Chang TP and Chang HC. Stochastic dynamic finite element analysis of a nonuniform beam. Int J Solids Struct. 31(5) , 1994: 587-597
    112 Fryba L, Nakagiri S and Yoshikawa N. Stochastic finite elements for a beam on a random foundation with uncertain damping under a moving force, J Sound Vib. 163(1) , 1993: 31-45
    113 Jensen H and Iwan WD. Response of systems with uncertain parameters to stochastic excitation. ASCE J Eng Mech. 118(5) , 1992: 1012-1025
    114 Mahadevan S and Mehta S. Dynamic reliability of large frames. Comp Struct. 47(1) , 1993: 57-67
    115 Grigoriu M. Statistically equivalent solutions of stochastic mechanics problems. ASCE J Eng Mech 117(8) , 1991: 1906-1918
    116 Manohar CS. Dynamic stiffness matrix for axially vibrating rods using Stratonovich's averaging principle. Arch Appl Mech 67, 1997: 200-213
    117 Manohar CS and Shashirekha BR. Harmonic response analysis of stochastic rods using spatial stochastic averaging. Proc of IUTAM Symp on Nonlinear Stochastic Mechanics, Trondheim,Norwau, July 1995
    118 Lai ML and Soont TT. Statistical energy analysis of primary-secondary structural systems. ASCE J Eng Mech 116(11) , 1990:2400-2413
    119 Hynna P , Klinge P and Vuoksinen J. Prediction of structure-borne sound transmission in large welded ship structures using statistical energy analysis. J Sound Vib. \bf 180(4) , 1995:
    
    583-607
    120 Langley RS. A general derivation of the statistical energy analysis equations for coupled dynamic systems. J Sound Vib. 135, 1989: 499-508
    121 Spanos PD and Ghanem R. Boundary element formulation for random vibration problems. ASCE J Eng Mech. 117(2) , 1991: 409-423
    122 Burczynski T. Stochastic boundary element method in soil dynamics. Computational Stochastic Mechanics. Cheng and Yang CY(eds), Comput Mech Publ, Southampton 1993
    123 Ettouney MM, Daddazio RP and Abboud NN. Probabilistic boundary element method in soil dynamics, in Computational Stochastic Mechanics. Cheng and Yang CY(eds), Comput Mech Publ, Southampton 1993
    124 Lafe O and Cheng AHD. Stochastic indirect boundary element method. Computational Stochastic Mechanics. Cheng and Yang CY(eds), Comput Mech Publ, Southampton 1993
    125 Deodatis G and Shionozuka M. Bounds on response variability of stochastic systems. ASCE J Eng Mech 115(1) , 1989: 2543-2563
    126 Chen SH, Qiu ZP and Liu ZS. A method for computing eigenvalue bounds in structural vibration systems with interval parameters, Comp Struct 51(3) , 1994: 309-313
    127 Dimarogonas AD. Interval analysis of vibrating systems. J Sound Vib. 183(4) , 1995: 739-749
    128 Qiu Z, Chen S and Elishakoff Ⅰ. Non-probabilistic eigenvalue problem for structures with uncertain parameters via interval analysis. Chaos Solitons Fractals 7(3) , 1996a: 303-308
    129 Qiu Z, Chen S and Elishakoff Ⅰ. Bounds of eigenvalues for structures with an interval description of uncertain-but-non-random parameter. Chaos Solitons Fractals 7(3) , 1996b:425-434
    130 KoyluogluHU, Nielsen SRK and Cakmak AS. Interval algebra to deal with pattern loading and structural uncertainties. ASCE J Eng Mech 121(11) , 1995d: 1149-1157
    131 Alefeld G and Herzberger J. Introduction to interval computations, Academic Press, New York.
    132 Sun T C. A finite element method for random differential equations with random coefficients. Int. J Numer Analysis, 16(6) , 1979: 1019-1035
    133 Jensen H. Dynamic response of structures with uncertain parameters. In: Report EERL 89-2. Earthquake Engrg Res Lab.Pasadena Ca: California Inst of Tech, 1989
    134 Ghanem R and Spanos PK. Spectral stochastic finite-element formulation for reliability analysis. ASCE J Eng Mech. 117(10) , 1991b: 2351-2372
    135 李杰。随机结构分析的扩阶系统方法(Ⅱ)结构动力分析。地震工程与工程振动,15(4) , 1995:27-35
    136 李杰。复合随机振动分析的扩阶系统方法。力学学报,28(1) ,1996:66-75
    137 李杰。随机结构动力分析的扩阶系统方法。工程力学。13(1) ,1996:93-102
    138 李杰,魏星。随机结构动力分析的递归聚缩算法。固体力学学报,17(3) ,1996:263-267
    139 Ibrahim RA. Nonlinear random vibration: experimental results. Appl Mech Rev. 44(10) , 1991: 423-446
    140 Ibrahim RA. Recent results in random vibrations of nonlinear mechanical systems. ASME Special 50 Anniversary Design Issue 117, 1995: 222-233
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.