聚氨酯—胶原复合外耳支架的制造及基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外耳重建是外科整形手术中最具挑战性的手术之一。其关键在于耳廓支架的构建。目前主要采用自体软骨手工雕刻和进口的高密度多孔聚乙烯材料组装而成。两者都不能满足患者的要求。本论文采用熔融挤压快速成形技术来完成外耳支架的构建,获得外形逼真的个性化外耳支架。并在此基础上结合传统的工艺,设计了聚氨酯—胶原复合外耳支架,改善其生物相容性。
     论文的研究工作包括两部分:外耳支架的快速成形制造研究和改善外耳支架的生物相容性的基础研究。外耳支架的快速成形制造研究包括外耳支架的三维重构设计、快速成形系统开发、快速成形工艺参数的优化的研究。本文在改善外耳支架生物相容性的基础研究中分别进行了低温等离子表面改性的研究和聚氨酯—胶原复合外耳支架的结构设计和成形工艺的研究。主要研究结果有:
     (1)在外耳的反求过程中,提出了包含耳廓软骨、耳廓肌肉和耳垂的外耳模型。获得的外耳形状更逼真、强度更高,可减少耳垂转位、耳甲腔及耳屏再造的手术。并首次提出了包含外耳道软骨的外耳三维重构,所获得的外耳形状逼真,并有利于外耳支架的固定,可防止外耳道再次闭锁。
     (2)外耳支架植入体内培养的动物实验结果表明,开始有炎症出现,随后炎症逐渐消失,轮廓逐渐清晰,与正常耳外形相似。可见,聚氨酯外耳支架的组织相容性好,且可以很好地保持外耳的形状,证明外耳支架的力学性能能满足要求。
     (3)聚氨酯支架经低温等离子表面改性后,表面变粗糙,在材料表面引入了大量的氧元素和氮元素,形成了大量的羰基和氨基等活性官能团,大大提高聚氨酯材料的表面亲水性,细胞培养实验证明这些表面性能的变化都有助于改善细胞在支架表面的粘附和生长。这种表面改性的方法,对于其它医用高分子材料植入物有一定的参考应用价值。
     (4)本文首先提出了将快速成形技术与传统的工艺相结合的方法,实现了聚氨酯-胶原复合支架的构建,并将支架设计成由聚氨酯材料形成大孔结构、胶原形成微孔结构的分级结构,不仅能满足外耳支架的力学性能,且由细胞实验证明其生物相容性得到很大提高。
In plastic reconstruction surgeries, total auricular reconstruction for microtia is a challenge. The key point is the construction of a perfect framework. Presently autogenous costal sculpted cartilage and assembled MEDPOR are used widely. None of them can satisfy the need of patients. In this study an auricle framework is formed using fused deposition modeling method. A real like individuation human ear was obtained. On this basis, a polyurethane-collagen composite auricle framework was designed to improve its biocompatibility by combined with traditional method.
     The study includes two parts: research on rapid prototyping of auricle scaffold and fundamental research on improving biocompatibility of auricle scaffold. Research on rapid prototyping of auricle scaffold includes design of three-dimension reconstruction of auricle scaffold, develop of rapid prototyping system and optimize the process parameters of rapid prototyping. In fundamental research on improving biocompatibility of auricle scaffold, low temperature plasma on polyurethane surface, configuration design and forming technology of polyurethane-collagen composite auricle framework were performed. The main results of this study are as follows.
     In the course of ear reconstruction, a new ear model of auricle cartilage, auricle muscle and earlap was introduced. A more real and stronger ear was obtained. The operation of earlap transform and tragus reforger can be cut down. It is the first time to built ear model with external ear canal. This ear model forms a real like ear. This model is in favor of the scaffold fixation and can avoid the closure again of external ear canal.
     The result of animal experiment indicated that: in the start of ear scaffold implant, the inflammations appeared, in the following the inflammations disappeared gradually and contour of ear become clearly. It is similar to human ear. It shows that the polyurethane ear scaffold has a good histocompatibility. And the ear shape is not changed. It proved that the mechanics performances of ear scaffold are satisfied.
     In this study, the surface of polyurethane was modified by low temperature plasma with ammonia. The surface becomes roughness. Much oxygen elements and nitrogen elements are introduced in the scaffold surface, and some functional groups such as carbonyl groups and amidogen groups were exposed on the surface, which enhanced hydrophilic property of polyurethane. The cell culture experiments proved that the structure and the properties of the modified materials enhanced the cell adhesion and growth. This modified method can be spread to other polymeric biomaterials.
     A new forming process including of rapid prototyping and traditional method was designed to build polyurethane-collagen composite auricle framework. In this auricle framework, polyurethane forms macro-porous structures and collagen forms micro-porous structures. This composite auricle framework not only has a satisfied mechanics performance, but also its biocompatibility is improved greatly through cell culture experiments.
引文
[1]R.Langer,J.P.Vacanti,Tissue engineering,[J].Science 260(1993):920-926.
    [2]LiMa G.Grifpth1 and Gall Naughton2.Tissue Engineering -Current Challenges and Expanding Oportunities[J].Science 295(2002):1009-1016.
    [3]Wai-Yee Yeong,Chee-Kai Chua,Kah-Fai Leong.Rapid prototyping in tissue engineering:challenges and potential.[J].Trends in Biotechnology.2004,22(12):643-662.
    [4]黄选兆主编,耳鼻咽喉科学(第4版)[M].北京:人民卫生出版社,1979,187-188.
    [5]李福耀主编,医学美容解剖学[M].北京:人民卫生出版社,1999,240-241
    [6]翟所强主编,耳病学[M].北京:北京科学技术出版社,2003,11-17.
    [7]David A.Staffenberg,,Microtia repair.[J]The Journal of Craniofacial Surgery 2003,24(7):481-486.
    [8]Osomo G.Microtia reconstruction,[J].Eur J Plast Stag,2001,24:107-113
    [9]王积恩主编。耳鼻部美容外科手术学.[M].北京:北京出版社,1994:261-266.
    [10]Brent B.Technical advances in ear reconstruction with autogenous rib cartilage grafts:personal experience with 1200 cases.[J].Plast Reconstr Surg,1999,104:319-334
    [11]Nagata S.Modification of the stages in total reconstruction of the auricle.[J].Plast Reconstr Surg,1994,93:231-253
    [12]Gabriel Osomo,Microtia reconstructinon,[J],Eur J Plast Surg,2001;24:107-113
    [13]冀航.胡志奇.高建华.先天性小耳畸形的耳廓再造.[J]中国美容医学.2003.12(1):92-94
    [14]龙海珊编译.先天性小耳小耳畸形的耳廓重建.[J].国外医学耳鼻咽喉科学分册,2003,27(3):137-140.
    [15]吴建明,郭静,林子豪,全耳廓再造术进展.[J]中华医学美学美容杂志.2003,9(1):52-54.
    [16]Jones C,Wellisz T.External ear reconstruction using a MEDPOR porous polyethylene framework.[J]AORN Journal 1994;59:411-415
    [17].Sevin K,Askar I,Saray A,et al.Exposure of high-desity poros polyethylene Medpor used for contour restoration and treatment.[J]Oral Maxiloofac Surg,2000,38:44-49.
    [18]张本寿,林子豪,赵跃中等.Medpor支架Ⅰ期耳廓再造.[J].中国美容医学.2004,8(9):232-233
    [19]郑永生,孙强,马涛,杜岩.应用多孔高密度聚乙烯为支架的一期全耳廓再造.[J]中国耳鼻咽喉.头颈外科 2003,10(6):337-338.
    [20]邹丽剑,岳伟,祁佐良等,全耳廓缺失的种植赝复体修复.[J].中华整形外科杂志.2003,19(5):337-339。
    [21]黄雪梅,张文强,叶铭等,基于快速成型技术的人耳赝复体的设计与制造.[J].上海交通大学学报.2003,37(5):733-736.
    [22]Cao Y,Vacanti JP,Paige KT,Upton J,Vacanti CA.Transplantation of chondrocytes utilizing a polymer-cell construct to producea tissue-engineered cartilage in the shape of a human ear.[J].Plast Reconstr Surg 1997;10:297-304.
    [23]刘彦春,王炜,曹谊林等,软骨细胞-支架复合物修复兔耳廓软骨缺损,[J].中华整形外科杂志.1999,15(3):180-183
    [24]夏万尧,曹谊林,商庆新,等.应用可注射型生物材料再生自体组织工程化软骨组织的试验研究.[J].中华显微外科杂志,2001,9,17(5):302-305
    [25]俞耀庭主编,生物医用材料.[M].天津:天津大学出版社,2000.
    [26]卢清萍.快速原型制造技术.[M]北京:清华大学出版社,1999
    [27]K.F.Leong,C.M.Cheah,C.K.Chua,Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,[J].Biomaterials 24(2003) 2363-2378..
    [28]Yang,K.F.Leong,Z.Du,C.K.Chua,The design of scaffolds for use in tissue engineering:Part Ⅱ.Rapid prototyping techniques,[J].Tissue Eng.8(2002) 1-11
    [29]Hermann Seitza,Carsten Tille,Rapid Prototyping models for surgical planning with hard and soft tissue representation,[C],International Congress Series 1268(2004):567-572
    [30]Vladimir Mironov,Thomas Boland,Organ printing:computer-aided jet-based 3D tissue engineering,[J],Trends in Biotechnology,2003,21(4):157-161
    [31]何创龙、王远亮、杨立华、夏烈文,人工器官的快速成形制造[J].山东生物医学工程,2003,22(2):46-51
    [32]邹波,快速成型的医学应用现状与趋势,[J].机电产品开发与创新,2005,6:173-175
    [33]葛夏文,曾文,颜永年,基于技术的医学内植物制造,[J],机械设计与制造,2006,5:99-102
    [34]李祥,王成焘,快速成形技术制造组织工程支架研究进展,[J].生物工程学报,2008,24(8):1321-1327
    [35]Zein I,Hutmacher DW,Tan KC,Teoh SH.Fused deposition modeling of novel scaffold architectures for tissue engineering applications.[J].Biomaterials 2002;23(4):1169-85.
    [36]Cornejo IA,McNulty TF,Lee S,Bianchi E,Danforth SC,Safari A.Development of bioceramic tissue scaffolds via fused deposition of ceramics.[M].In:George L,editor.Bioceramics:materials and applications Ⅲ.Westerville,OH:American Ceramic Society,2000.p.183-195
    [37]Lee GH,Barlow JW.Selective laser sintering of bioceramic materials for implants.[C].Proceedings of the Solid Freeform Fabrication Symposium,Austin,TX,1993.p.376-380
    [38]Zeltinger J,Sheerwood JK,Graham DM,Mueller R,Griffith LG.Effects of pore size and void fraction on cellular adhesion,proliferation,and matrix deposition.[J].Tissue Eng 2001;7(5):557-72.
    [39]Lam CXF,Mo XM,Teoh SH,Hutmacher DW.Scaffold development using 3D printing with a starch-based polymer.[J].Mater Sci Eng C 2002;20(1-2):49-56.
    [40]田捷,包尚联,周明全等编著,医学影像处理与分析.[M].北京:电子工业出版社,2003
    [41]安新伟,张晓兵,尹涵春,医学图像三维重建的研究,[J].电子器件,2001,24(3):207-212.
    [42]黄绍辉,王博亮,黄晓阳.基于表面与基于体素的医学图像三维重建方法研究[J].厦门大学学报,2002,41(6):744-746
    [43]何晖光,田捷,赵明昌等.基于分割的三维医学图像表面重建算法[J].软件学报,2002,13(2):219-222
    [44]孙亦博,基于CT数据的三维重构相关技术的研究与应用:硕士学位论文[D].陕西:西北大学,2007
    [45]廖胜辉,许端清,董金祥.颌骨重建中的图像分割和轮廓对应及分支问题[J].计算机辅助设计图形学学报,2004,16(9):1225-1230
    [46]韩博闻,田捷,王岩,医学图像软组织分层显示的设计与实现.[J].计算机应用研究,2001,1:1-3.
    [47]张威,惰天中,赵卫,CT图像表面重建技术中的边缘轮廓提取方法.[J].机械科学技术,2002,21(11):91-92.
    [48]吕俊白,基于Laplacian算子的一种新的边缘检测方法.[J].小型微型计算机系统,2000,23(9):1133-1135.
    [49]鲍苏苏,外边界跟踪算法在医学断面图像的应用研究.[J].计算机工程与应用,2003,24:54-55.
    [50]郑卫国,颜永年,卢清萍,基于CT图像的快速成形数据建模方法.[J].中国机械工程,2002,13(20):1734-1736.
    [51]张艳君,叶伯生,曾理湛,基于医学图像序列轮廓线重建三维表面的改进算法.[J].计算机工程与应用,2004,13:215-218.
    [52]李将云,杨勋年,汪国昭,分割图像插值的一种局部算法.[J].浙江大学学报(理学版),2002,29(1):55-62.
    [53]陈琪,基于轮廓线的可视化研究:硕士学位论文[D].湖北:华中科技大学,2006
    [54]陈燕萍,李萍等,先天性外耳道闭锁的CT分析.[J].第一军医大学学报,2001,21(1):44-46.
    [55]李兵,吕孟新,周建荣,外耳道成形术后外耳道再狭窄的原因分析.[J].临床耳鼻咽喉科杂志,2002,16(10):526-527.
    [56]苏法仁,丁静华,张亚楠,耳廓再造及外耳道成形术.[J].山东医药,2004,44(5):9-10.
    [57]任国成,王广春等,基于CT图像快速成形数据的构建方法.[J].山东机械,2004,1:33-35.
    [58]李江峰,钟约先,李电生,STL文件缺陷分析及修补算法研究.[J].机械设计与制造,2002,2:40-43.
    [59]Holy CE,Shoichet MS,Davies JE.Engineering three-dimensional bone tissue in vitro using biodegradable scaffolds:investigating initial cell-seeding density and culture period.[J].Biomaterial Research 2000;51(3):376-382.
    [60]H.Seitz et al.Rapid Prototyping models for surgical planning with hard and soft tissue representation.[C]International Congress Series 2004:1268:567
    [61]潘宁,傅荣,高玉,三种耳廓支架材料再造耳,[J].中国修复外耳重建外科杂志,1997,11(4):208-209.
    [62]吴建明,吴包金,林子豪.四种耳郭支架材料全耳再造的临床应用评估.[J].中国实用美容整形外科杂志,2004,15(6):297-299.
    [63]张道行,胡宝华,舒畅,Medpor与膨体聚四氟乙烯在耳廓和外耳道一期重建术中的应用.[J].临床耳鼻咽喉科杂志,2003,17(1):27-29.
    [64]王重庆主编,人工器官与材料,[M].天津:天津科学技术出版社,1981.
    [65]王东青,李伟,医用聚氨酯弹性体的应用研究进展,[J],现代化工,2006,7:100-102.
    [66]郁为民,医用新型聚氨酯弹性体.[J],中国橡胶,2001,17(6):21-22.
    [67]张承焱,漫谈医用聚氨酯,[J].世界橡胶工业,2003,30(5):45-48.
    [68]山西省化工研究所编,聚氨酯弹性体.[M].北京:化学工业出版社,1985.
    [69]颜永年主编,中国材料工程大典(第6篇)快速原型与快速制造,[M],北京:化学工业出版社,2006
    [70]姚康德,尹玉姬编著,组织工程相关生物材料,[M],北京:化学工业出版社,2003
    [71]竺亚斌,高分子材料表面化学改性的方法—提高材料的生物相容性,[J].宁波大学学报(理工版),2001,14(2):77-80.
    [72]冯祥芬,谢涵坤等,低温等离子体表面处理技术在生物医用材料中的应用,[J],物理,2002,31(1):27-30.
    [73]严志云,刘安华,贾德民,低温等离子体技术在聚合物材料表面改性中的应用,[J],高技术通讯,2004,4:107-110.
    [74]尤庆亮,甘立新,孟月东等,低温等离子体对聚合物表面改性的研究,[J],化工新型材料,2004,32(4):10-13.
    [75]尤庆亮,甘立新,孟月东等,低温等离子体对聚合物表面改性的研究(续),[J],化工新型材料,2004,32(6):30-32.
    [76]D.J.Wilson et al.Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system,[J],Biomaterials,2003,24:5069-5081,
    [77]Christian Oehr,Plasma surface modification of polymers for biomedical use,[J],Nuclear Instruments and Methods in Physics Research B 208(2003):40-47.
    [78]P.K.Chu,J.Y.Chen,L.P.Wang,N.Huan,Plasma-surface modification of biomaterials,[J],Materials Science and Engineering 36(2002):143-206
    [79]E.F.Castro Vidaurre,C.A.Achete,R.A.Simao,A.C.Haber,Surface modification of porouse polymeric membranes by RF-plasma treatment,Nuclear Instruments and Methods in Physics Research B 175-177(2001):732-736.
    [80]Ulrich Hersel,Claudia Dahmen,Horst Kessler,RGD modified polymers:biomaterials for stimulated cell adhesion and beyond,[J],Biomaterials,24(2003):4385-4415.
    [81]朱士尧主编,等离子体物理基础,[M].北京:科学出版社,1983
    [82]金佑民,樊友三编著,低温等离子体物理基础,[M].北京:清华大学出版社,1983
    [83]S.Mukherjee,et.al.Low and high-energy plasma immersion ion implantation for modification of material surfaces.[J].Surface and Coatings Technology 156(2002):103-109
    [84]Carmen M.Cepeda-Jimenez,et al.Surface modifications of EVA copolymers by using RF oxidizing and non-oxidizing plasmas.[J].Surface and Coatings Technology,174-175,(2003):94-99
    [85]Ki Dong Park,Young Soo Kim,Dong Keun,Han,,et al.Bacterial adhesion on PEG modified polyurethane surfaces,[J],Biomateriais 19(1998):851-859.
    [86]S.Mukherjee,J.Chakraborty,S.Gupta,et al.Low- and high-energy plasma immersion ion implantation for modification of material surfaces,[J],Surface and Coatings Technology,156(2002):103-109
    [87]李笃信,贾德民,等离子体对高分子材料的表面改性,[J].高分子材料科学与工程,1999,15(3):172-175
    [88]刘鹏,陈亚芍,张丽惠,.聚乙烯表面接枝聚合改性及抗凝血性的研究.[J].化学研究与应用 2004,16(2):211-221
    [89]蔡谨,等离子体技术与生物材料的表面改性,[J].杭州师范学院学报,1997,6:83-87.
    [90]李加深,盛京,XPS研究低温等离子体聚苯乙烯表面改性,[J].高分子学报,2001,2:182-185
    [91]万昌秀,李天全,聚氨酯抗菌材料表面等离子体改性研究,[J].四川联合大学学报(工程科学版),1997,1(5):14-17.
    [92]牛家嵘,顾振亚,利用低温空气等离子体改善聚酯和聚乙烯薄膜表面亲水性的研究,[J],天津工业大学学报,2004,23(4):40-43.
    [93]曾幸荣,高分子近代测试技术,[M],广州:华南理工大学出版社,2007.
    [94]K.C.迪伊,D.A.普赖奥等编著,黄楠译,组织—生物材料相互作用导论,[M],北京:化学工业出版社,2005
    [95]贝建中,屈雪,王身国,生物材料与细胞的相互作用,[J],北京生物医学工程,2005,24(1):64-70.
    [96]郭圣荣编著,医药用生物降解性高分子材料,[M],北京:化学工业出版社,2004.
    [97]林建华,陈雷,组织工程软骨生物材料特征与研究现状,[J],中国临床康复,2004,8(8):1522-1523.
    [98]王彦平,石宗利,张国强,骨与软骨组织工程支架材料的现状与发展,[J],兰州铁道学院学报(自然科学版),2002,21(6):56-61.
    [99]仲维广,骨组织工程学支架材料研究进展,[J],口腔材料器械杂志,2003,12(4):195-197.
    [100]崔俊锋,尹玉姬,何淑兰,姚康德,骨组织工程支架材料研究进展,[J],化学进展,2004,16(2):299-306.
    [101]Guoping Chen,Takashi Ushida,Tetsuya Tateishi,Development of biodegradable porous scaffolds for tissue engineering,[J],Materials Science and Engineering C 17(2001):.63-69
    [102]Peter X,Ma,Scaffolds for tissue fabrication,,[J],Materialstoday,2004,5:30-39
    [103]Dietmar W.Hutmacher,Scaffolds in tissue engineering bone and cartilage,[J],Biomaterials 21(2000):2529-2543.
    [104]顾其胜,蒋丽霞主编,胶原蛋白与临床医学,[M].上海:第二军医大学出版社,2003.
    [105]Kimura T,Yasui N,Ohsawa S,et.al,Chondrocytes embedded in collagen gels maintain cartilage phenotype during long-term cultures,[J],Ciin Orthop,1984,186:231-239.
    [106]Wakitani S,Kimura T,Hirooka A,et.al.Rapair of rabbit articular surfaces with allograft chondrocyte embedded in Collagen gel,[J].J Bone Joint Surg 1989,71:74-80.
    [107]Wakitani S,Goto T,Prineda SJ,et,al,Mesenchymal cell-based repair of large full-tickness defects of articular.,[J].J Bone Joint Surg Am,1994,76(4):579-592.
    [108]Stone KR,Steadman JR,Rodkey WG,et,al,Regeneration of meniscal cartilage with use of a collagen scaffold.Analysis of preliminary data.[J].J Bone Joint Surg Am,1997,79(12):1770-1777.
    [109]吴志谷,黎君友,付小兵,胶原材料在组织修复中的应用,[J],中国临床康复,2003,7(17):2488-2489.
    [110]李斯明,唐毅,沈雁等,以Ⅱ型胶原为基质长期传代培养软骨细胞,[J],中国矫形外科杂志,2000,7(7):675-678.
    [111]但卫华,王坤余,曾睿等,胶原的医学应用及其发展前景,[J],生物医学工程与临床,2004,8(1):45-49.
    [112]Hendrickson DA,Nixon AJ,Erb HN,et,al,Phenotype and biological activity of neonatal equine chondrocytes cultured in a three-dimensional fibrin matrix,[J].Am J Vet Res,1994,55(3):410-414
    [113]Sims CD,Butler PE,Cao YL,et,al,Tissue engineering neocartilage using plasma derived polymer substrates and chondrocytes,[J],Plast Reconstr Surg,1998:101(6):1580-1585
    [114]Griffith L G,,Naughton G.Tissue engineering current challenges and expanding opportunities[J],Science,2002,295:1009-1014,
    [115]郑卫国,颜永年,熊卓.复合材料梯度结构组织工程支架建模方法.[J].材料导报,2002,16(11):58-61
    [116]熊卓,颜永年,陈立峰.骨组织工程细胞载体框架的两种快速成形新工艺.[J].中国机械工程,2001,12(5):515-519
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.