不同小麦雄性不育类型AGPase活性及杂种光合特性的分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为进一步探寻小麦不育系的不育机制和籽粒不饱满的生理机制,以冀5418核基因为遗传背景,对同核异质K、V、T型不育系叶片、幼穗和籽粒中的腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,AGPase)活性和淀粉积累量进行了动态观测,并与各自的保持系进行了比较;为了探讨不同细胞质对其杂种光合生理特性的影响,以8个同核异质雄性不育系(K、V、T、CHA型不育系)及其恢复系758461-4配制的杂种F1为材料,在4个生育时期(抽穗期、开花期、灌浆中期、灌浆后期)测定了旗叶净光合速率(Pn)及相关生理参数(气孔导度Gs、蒸腾速率Tr、细胞间隙CO2浓度Ci、大气CO2浓度(Ca),并对水分利用率WUE和气孔限制值Ls进行了分析。主要研究结果如下:
     (1)雄性不育的可能原因是雌雄蕊原基分化期幼穗和叶片中AGPase活性高,幼穗发育所需能量供应不足;而四分体期幼穗AGPase活性低,影响了花粉中淀粉积累。在雌雄蕊原基分化期,不育系幼穗中AGPase活性较保持系高9.33~27.94μmol g?1 FW h?1,差异达极显著水平(F=133.81, P<0.0001);而在四分体期,不育系幼穗中该酶活性极显著低于保持系(F=13.97~75.20, P<0.0001),差异为4.27~7.44μmol g?1 FW h?1。雌雄蕊原基分化期至四分体时期,不育系叶片中AGPase活性较保持系高7.39~80.77μmol g?1 FW h?1,差异达极显著水平(F=135.76~5454.28, P<0.0001);
     (2)不育系对籽粒AGPase活性具有明显的不良胞质效应,降低了ADPG供应水平,影响淀粉的积累是籽粒不饱满的重要原因之一。不育系强、弱势粒中总淀粉、直链淀粉和支链淀粉积累量、AGPase平均活性、淀粉含量及直/支比均极显著低于保持系,且这些指标均表现为强势粒显著高于弱势粒。Logistic方程显示,不育系籽粒淀粉积累量的减少主要由淀粉积累速率降低引起;籽粒AGPase活性与淀粉积累速率显著或极显著正相关(r=0.4460~0.7150, P=0.0004~0.0487);灌浆期,叶片中AGPase活性与光合速率呈负相关(r=?0.28634, P=0.2823);
     (3)杂种F1的净光合速率和生理参数Ci、Gs、WUE的优势普遍存在,其中T型胞质杂种净光合速率的优势最强,超中亲(MP) 20.029%,K、V型杂种分别超MP 10.630%、7.099%;
     (4)杂种F1的净光合速率在一定程度上受气孔因素的限制。杂种F1及其亲本净光合速率、生理参数4个生育时期的变化趋势相同,从开花期到灌浆期,Pn与Ci、Gs的变化趋势相同,与Ls的相反;
     (5) K、V、T型细胞质对杂种F1的净光合速率、生理参数无不良影响。K型杂种的Pn较CHA型低0.077μmolCO2·m?2·s?1,V、T型杂种的Pn较CHA型分别高0.419μmolCO2·m?2·s?1、0.725μmolCO2·m?2·s?1,但差异不显著;
     (6)在配制杂种时,通过选择优良的基因型可以改善杂种F1的气孔导度。以太911289为母本配制的杂种的Gs比以冀5418为母本配制的杂种高29.127 mmolm?2·s?1,差异极显著。
Cytoplasmic male-sterile (CMS) lines, especially K (Aegilops kotchyi), V (Aegilops ventricosa), and T (Triticum timopheevi) types of cytoplasms, are of high value in heterosis utilization in wheat (Triticum aestivum L.). The sterile mechanisms of these CMS types have been focused in hybrid wheat research. As a key and rate-limiting starch biosynthetic enzyme, ADP-glucose pyrophosphorylase (AGPase) is considered to play an important role in the sterility of CMS lines. For gaining an insight into the physiological basis of the sterility in CMS lines of wheat, the activities of AGPase in leaves, young spikes, and grains were measured in K, V, and T types of isogenic CMS lines (Ji 5418 background) at different growth stages, and compared with those of their maintainer line. The dynamic accumulations of starch, amylose, and amylopectin were also investigated in both superior (the first and the second grains in a spikelet) and inferior (grains except for the first and the second grains in a spikelet) grains; In present work, 2 nuclear background male sterile lines including K, V, T, CHA-cytoplasm male-sterile lines, and restorer line and their hybrids, were employed to study the effect of different cytoplasmic types on the photosynthesis and physiological parameters: stomatal conductance (Gs), transpiration rate (Tr), CO2 concertration (Ci), atmospheric CO2 concentration (Ca), water use efficiency (WUE), intercellar stomatal limiting value (Ls) of hybrids at heading stage, anthesis stage, mid-filling stage and later-filling stage. The major results are as follows:
     (1)the male sterility is probably in relation to the insufficiency of energy in leaves and young pikes at floret primordium stage resulting from the high AGPase activity, and the low accumulation of starch in pollens at tetrad stage caused by low AGPase activity in young spikes. In young spikes, the AGPase activities of the three CMS lines were significantly higher (F = 133.81, P < 0.0001) with the differences of 9.33 ? 27.94μmol g?1 FW h?1 at floret primordium stage, and significantly lower (F = 13.97 ? 75.20, P < 0.0001) by 4.27 ? 7.44μmol g?1 FW h?1 at tetrad stage as compared with the maintainer line. From floret primordium to tetrad stage, the CMS lines had continuously higher level of AGPase activities in leaves than the maintainer line, with the differences ranged from 7.39 to 80.77μmol g?1 FW h?1 (F = 135.76 ? 5454.28, P < 0.0001).
     (2)the sterile cytoplasm has a negative effect on AGPase activity, resulting in decreases of ADPG level and starch accumulation in grains which may result in unfilled grains in CMS lines. Compared with the maintainer line, the three CMS lines all presented lower accumulations (P < 0.05) of starch, amylose and amylopectin in grain. The starch content and AGPase activity in superior grains were significantly higher than those in inferior grains for CMS lines. The dynamic accumulations of starch in superior and inferior grains fitted Logistic equations, and positively correlated with the starch accumulation rate (r = 0.4460 ? 0.7150, P = 0.0004 ? 0.0487). The AGPase activity in leaves had an insignificantly negative correlation with net photosynthetic rate.
     (3) The heterosis on photosynthesis and physiological parameters Ci, Gs and WUE of hybrid F1 was common. The photosynthesis of T-cytoplasm hybrid had the highest heterosis with 20.029%, K, V-cytoplasm were 10.630%,7.099% higher than those of Mid-parent, respectively.
     (4) The dynamic changes of Pn were restricted by the stomatal factors to some extent. The dynamic changes of hybrid F1 is the same as their parents at four stages. The dynamic changes of Pn were the same as Ci and Gs, and were different from Ls.
     (5) K, V, T-type cytoplasm had no negative effect on hybrid F1. Compared with CHA-cytoplasm, the Pn value of K-cytoplasm hybrid was lower, and decreased by 0.077μmolCO2·m?2·s?1, while these of V, T-cytoplasm hybrid were higher with increasing of 0.419μmolCO2·m?2·s?1, 0.725μmolCO2·m?2·s?1, respectively, but the difference was not significant.
     (6) The physiological parameter stomatal conductance of hybrid F1 could be improved with excellent genotype. The Gs value of hybrid F1 with tai911289 as female parent was higher than that whose female parent was ji5418 with increasing of 29.127 mmolm?2·s?1, with significantly difference.
引文
[1]白成科,王百群,张希彪,等.土壤养分对小偃22叶片光合特性影响的初步研究[J].麦类作物学报, 2001, 21(4): 56?60
    [2]北京大学生物系植物遗传育种专业.雄性不育和雄性可育小麦花药和花粉发育的细胞形态学观察[J].植物学报, 1976, 18(2): 141?149
    [3]陈蕊红,叶景秀,张改生,等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析[J].生物化学与生物物理进展, 2009, 36(4): 431?440
    [4]陈贤丰,梁承邺.水稻细胞质雄性不育性与组织抗氰呼吸关系的研究[J].中国水稻科学, 1990, 4(2): 92?94
    [5]丁勤,马翎健,余玲,等.瓦维洛夫山羊草细胞质小麦核代换系超氧化物歧化酶和过氧化氢酶活性研究[J].湖北农学院学报, 2003, 23(6): 405?407
    [6]杜启艳,徐乃瑜,孙富丛.小麦不同细胞质雄性不育系过氧化物酶同工酶的比较研究[J].河南师范大学学报(自然科学版) , 1999, 27(2): 61?64
    [7]杜伟莉,张改生,刘宏伟,等.粘类小麦雄性不育系研究进展[J].陕西农业科学, 2002(4): 16?20
    [8]范宝莉,王振英,陈宏,等.小麦T型细胞质雄性不育系、保持系蛋白质双向电泳比较分析[J].实验生物学报, 2004, 37(1): 45?49
    [9]高庆荣,刘保申,孙兰珍,等. K、V型杂种小麦优势的研究[J].华北农学报, 1997, 12(2): 17?22
    [10]高庆荣,刘保申,孙兰珍,等. K、V、A型杂种小麦细胞质效应的比较研究[J].麦类作物, 1998, 18(4): 1?4
    [11]高庆荣,张爱民,王瑞霞,等. K、V、T、CHA型杂种小麦品质性状的细胞质效应[J].作物学报, 2005, 31(1): 43?47
    [12]高忠,张荣铣,赵寅槐.提莫菲维小麦和偏凸山羊草不育细胞质对小麦旗叶光合功能的影响[J].中国农业科学, 1996, 29(6): 29?37
    [13]龚宏伟,马翎健,何蓓如,等. K型小麦雄性不育系育性敏感时期核糖核酸酶活性及可溶性蛋白质含量的变化[J].麦类作物学报, 2008, 28(1): 31?34
    [14]关正军,杨学举.小麦杂种优势利用研究进展[J].河北农业科学, 2002(4): 30?34
    [15]郭瑞星,邵仁学.小麦杂种优势利用研究进展[J].湖北农业科学, 1996(6): 25?28
    [16]郭天财,王之杰,胡廷积,等.不同穗型小麦品种群体光合特性及产量性状的研究[J].作物学报, 2001, 27(5): 633?639
    [17]何照范.粮油籽粒品质及其分析技术[M].北京:农业出版社, 1985: 144?294
    [18]胡东维,姚雅琴,蒋选利.几种小麦胞质不育花粉形态研究[J].华南农业大学学报, 1992(增刊): 49?50
    [19]胡适宜,王模善,徐丽云.小麦雄性不育系与保持系的小孢子发育的电子显微镜研究[J].植物学报, 1977, 19(3): 167?171
    [20]黄铁城,张爱民主编.杂种小麦研究进展[M].北京:中国农业出版社, 1993
    [21]姜东,于振文,李永庚,等.施氮水平对高产小麦蔗糖含量和光合产物分配及籽粒淀粉积累的影响[J].中国农业科学, 2002, 35(2): 157?162
    [22]江红梅,师光开.小麦雄性不育研究进展[J].生物技术通报, 2009(10): 30?33
    [23]蒋培东.棉花细胞质雄性不育机理的研究[D],浙江大学博士学位论文,2007
    [24]焦健,高庆荣,王大伟,等.不同小麦雄性不育类型光合速率的影响因子分析[J].中国农业科学, 2008, 41(6): 1622?1629
    [25]李传友,孙兰珍.普通小麦T型、V型和K型细胞质雄性不育系花粉败育机理的细胞学研究[J].华北农学报. 1996, 11(2): 1?8
    [26]李传友,王斌.小麦K型和V型细胞质雄性不育系线粒体DNA的比较分析[J].植物生理学报, 1998, 24(2): 153?158
    [27]李传友,谢纬武,孙兰珍,等.普通小麦三种细胞质雄性不育线粒体DNA的比较研究[J].遗传学报, 1995, (4): 272?279
    [28]李鹏,牟秋焕,石运庆,等.不同核背景对小麦V-CMS coxIII基因转录本编辑的影响[J].生物技术通报, 2006, 4: 86?90
    [29]李巍,马翎健.非1B/lR小麦雄性不育系花药发育的细胞学研究[J].现代农业科学, 2009, 16(3): 7?9
    [30]李文强.几类小麦细胞质雄性不育系线粒体DNA的分子标记及变异性研究[D],西北农林科技大学硕士学位论文, 2007
    [31]李文阳,尹燕枰,闫素辉,等.小麦花后弱光对籽粒淀粉积累和相关酶活性的影响[J].作物学报, 2008, 34(4): 632?640
    [32]李艳红,肖兴国,赵广荣,等.新的人工雄性不育基因导入小麦栽培种的研究初报[J]. 1999, 7(3): 255?258
    [33]李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花药组织内源激素的关系[J].农业生物技术学报, 1996, 4(4): 307?313
    [34]李英贤,张爱民,梁振兴.小麦雄性不育的发生与花药组织内激素平衡的关系[J].农业生物技术学报, 1998, 6(1): 71?75
    [35]李英贤,张爱民.小麦雄性不育与叶片中内源激素含量的关系[J].农业生物技术学报, 1998, 6(2): 185?190
    [36]李玉红,郭蔼光,杨天章.小麦不同细胞质雄性不育系及其保持系ATP酶同工酶比较[J].西北农业大学学报, 2002, 11(1): 28?30
    [37]刘立科.小麦K型细胞质雄性不育育性相关基因片段及TaLonl基因的分离与克隆[D].北京:中国农业大学出版社, 2003
    [38]刘曙东.小麦不育系杂种研究应用中的几个问题的探讨.国外农学-麦类作物[J]. 1996(6): 2?4
    [39]刘卫,陈蕊红,张改生,等.小麦遗传型与生理型雄性不育花药蛋白质双向电泳分析[J].遗传, 2008, 30(8): 1063?1068
    [40]刘一农,李继耕.叶绿体DNA(cpDNA)与细胞质雄性不育性[J].遗传学报, 1983, 10(2): 114?122
    [41]刘植义,沈银柱,黄占景,等.普通小麦(Tr.Aetivum)T型细胞质雄性不育(CMS)与线粒体关系的研究[J].云南大学学报(自然科学学报), 1999, 21: 117?118
    [42]刘志勇.作物雄性不育及杂种优势研究进展[M].北京:中国农业出版社, 1996: 94?100
    [43]刘忠松,官春云,陈社员.植物雄性不育机理的研究及应用[M].北京:中国农业出版社. 2001
    [44]刘祚昌.小麦离体叶绿体翻译产物与的研究[J].植物学通报, 1984, 2(5): 34?36
    [45]马翎健,龚宏伟,何蓓如,等. Triticum spelta 1BS染色体对K型小麦不育系花粉发育的影响[J].作物学报, 2007, 33(4): 689?692
    [46]马翎健,李嘨,宋喜悦.等.两类小麦雄性不育系花粉发育中丙二醛含量及膜透性变化研究[J].中国农学通报, 2006, 22(5): 203?205
    [47]孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca2+分布的影响[J].植物学报:英文版, 2000, 42(1): 15?22
    [48]孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca2+-ATPase分布的影响[J].植物学报:英文版, 2000, 42(5): 446?454
    [49]孟祥红,王建波,利容千.光敏胞质不育小麦花药发育过程中ATP酶的定位研究[J].作物学报, 2006, 26(6): 851?860
    [50]牟秋焕,李鹏,石运庆,等. V型小麦细胞质雄性不育“三系”及杂交种线粒体DNA的比较研究[J].农业生物技术科学, 2006, 22(5): 38?42
    [51]聂明建,王国魁,陈光尧.几个甘蓝型油菜雄性不育花药败育过程中核糖核酸酶的变化[J].作物学报, 2006, 32(07): 1101?1103
    [52]牛芝霞,杨天章,柴守诚.两种小麦细胞质雄性不育体系mtDNA的RAPD分析[J].西北农业大学学报, 1998, 26 (3): 1?5
    [53]乔利仙,张改生,刘宏伟,等.粘、易、偏和二角型小麦雄性不育系杂种籽粒品质的研究[J].中国农业科学, 2001, 34(6: ) 587?591
    [54]乔晓琳,高庆荣,张爱民,等.小麦K、V、T、CHA细胞质雄性不育类型的光合特性分析[J].作物学报, 2006, 32(9): 1323?1328
    [55]仇艳光,沈银柱,黄占景,等.普通小麦T型细胞质雄性不育系及其保持系线粒体DNA的比较研究[J].遗传学报研究, 2001, 28(2): 166?170
    [56]曲志才,粟翼玫.普通小麦T型和V型雄性不育系同工酶的比较研究[J].遗传, 1994, 16(6): 20?23
    [57]史红梅,胡德文,何之常,等.不同细胞质雄性不育小麦中谷胱甘肽过氧化物酶活性比较[J].武汉大学学报(理学版), 2001, 47(6): 771?774
    [58]司智海,刘植义.普通小麦T型细胞质雄性不育系及其保持系线粒体多肽的电泳比较研究[J].遗传学报, 1991, 18(1): 44?50
    [59]孙兰珍,姚方印,李传友,等.小麦T、K、V型胞质不育系和杂种mtDNA的RAPD分析及育性相关片段的克隆[J].作物学报, 2001, 27(2): 144?148
    [60]藤晓月,陈雪晖.小麦T型细胞质雄性不育系和保持系蛋白质的比较研究[J].作物学报, 1996, 22(3): 264?270
    [61]滕晓月,王秀珍,阎隆飞,等.作物雄性不育和肌动蛋白的关系[J]. 1986, 12(1): 15?17
    [62]王晨阳,马冬云,朱云集,等.小麦不同水氮运筹对面条煮制品质的影响[J].中国农业科, 2004, 37(2): 256?262
    [63]汪堃仁主编.细胞生物学[M],北京:北京师范大学出版社, 1998: 188?191
    [64]王小利,张改生,刘宏伟,等.粘类小麦细胞质雄性不育系的RAPD分析[J].西北植物学报, 2005, 25(4): 681?685
    [65]王永飞,马三梅,张鲁刚,等.植物细胞质雄性不育的分子机理研究进展[J].自然科学进展, 2002, 12(10): 1009?1014
    [66]王永军,张改生,王军卫,等.小麦遗传型与生理型雄性不育花药同工酶的比较研究[J].麦类作物学报, 2005, 25(4): 44?49
    [67]王永军,张改生,孙苏阳,等.遗传型与生理型雄性不育小麦花药和旗叶蛋白质的比较研究[J].麦类作物学报, 2007, 27(6): 965?968
    [68]武晗,马翎健,何蓓如,等.几类小麦雄性不育系育性敏感时期蛋白质含量的变化[J].西北农业学报, 2009, 18(3): 94?96
    [69]吴敏生,刘大钧,谢纬武,等.普通小麦(Triticumaestivum L.) T型细胞质雄性不育系及其保持系的线粒体DNA比较研究[J].作物学报, 1995, 21(5): 551?555
    [70]吴世文,张淑英,高庆荣,等.不同细胞质小麦雄性不育系杂种F1光合生理参数的分析[J].麦类作物学报, 2009, 29(2): 217?221
    [71]谢潮添,魏冬梅,田惠桥.高等植物雄性不育的细胞生物学研究进展[J],植物生理与分子生物学报, 2006, 32(1): 17?23
    [72]徐克章,张美善,武志海,等.人参不同生育期叶片光合作用变化的研究[J].作物学报, 2006, 32(10): 1519?1524
    [73]徐乃瑜,王许莲.不同细胞质对小麦花药游离氨基酸含量影响的初步研究[J].武汉大学学报, 1984, (2): 76?84
    [74]徐祖元,徐乃瑜. (无芒山羊草)中国春等小麦雄性不育系小孢子败育及育性恢复的初步研究[J].武汉大学学报(自然科学版), 1995, 41(2): 223?227
    [75]徐祖元,陈中义.小麦细胞质雄性不育性研究进展[J].荆州师专学报(自然科学版), 1996, 19(5): 85?90
    [76]徐祖元,李再高,殷建明.小麦细胞质雄性不育系过氧化物酶活性的研究[J].荆州师范学院学报(自然科学版), 2000, 25(5): 87?89
    [77]徐祖元,周玲革,姜金波,等.新型小麦胞质不育系花粉败育的细胞学观察[J].武汉植物学研究, 1998, 16(3): 193?196
    [78]杨靖,张改生,牛娜,等.小麦粘类雄性不育系生化标记及小孢子细胞色素氧化酶同工酶研究[J].西北植物学报, 2005, 25(8): 1547?1552
    [79]杨景成,于元杰,齐延芳,等.小麦D型细胞质雄性不育系与保持系叶绿体DNA的RAPD分析[J].核农学报, 2000, 14(5): 264?267
    [80]杨巧凤,江华,许大全.小麦旗叶发育过程中光合效率的变化[J].植物生理通讯, 1999, 25(4): 408?412
    [81]杨毅,滕晓月,阎隆飞. V型细胞质雄性不育小麦线粒体蛋白质的研究[J].作物学报, 2001, 27(2): 212?215
    [82]姚方印,孙兰珍,李传友,等. 3种小麦细胞质雄性不育系及其杂种线粒体DNA的RFLP分析[J].西北植物学报, 2000, 20(5): 707?714
    [83]姚鸿,谢纬武,李传友,等. D2型小麦细胞质雄性不育系及其保持系和恢复系线粒体DNA的比较研究[J].遗传学报, 1998, 25(1): 1?7
    [84]姚雅琴,李蓓,张英利,等.细胞骨架与小麦雄性不育关系研究初报[J].西北农林科技大学学报(自然科学版), 2005, 33(12): 39?42
    [85]姚雅琴,张改生. K型小麦雄性不育系及其保持系花药小孢子不同发育期ATP酶活性变化[J].中国农业科学, 2000, 33(3): 97?99
    [86]姚雅琴,张改生,刘宏伟,等.小麦雄性不育系和保持系花药ATP酶细胞色素氧化酶细胞化学定位[J].作物学报, 2001, 27(1): 43?49
    [87]姚雅琴,张改生,刘宏伟,等. K型小麦花粉粒内壁及ATP酶活性与雄性不育的相关性[J].西北植物学报, 2002, 22(2): 333?337
    [88]伊永俏.现代植物育种[C].北京农业出版社, 1991: 164?185
    [89]易自力,徐乃瑜.异源细胞质对普通小麦光合特性的影响[J].长沙水电师院自然科学学报, 1993, 8(1): 82?87
    [90]袁建国,郑跃进,袁爱梅.作物杂种优势的利用和小麦再高产育种的有效途径[J].麦类作物, 1998(5): 1?7
    [91]张爱民,黄铁城.小麦杂种优势利用途径与研究进展[J].作物杂志, 1997(5): 16?20
    [92]张爱民,刘冬成,聂秀玲,等.杂种小麦育种的战略[J].中国农业科技导报, 2002, 4(5): 42?48
    [93]张改生,杨天章.偏型、粘型和易型小麦雄性不育系的初步研究[J].麦类作物学报, 1989, 15(1): 1?9
    [94]张花,何之常,徐乃瑜.不同细胞质雄性不育小麦阳离子过氧化物酶和IAA-氧化酶活性的研究[J].武汉大学学报(自然科学版), 1996, 42(6): 728?732
    [95]张孔湉,黄菲,李京京.高粱热激蛋白(HSPs)的电泳分析与雄性不育性[J].遗传学报, 1986, 13(4): 266?276
    [96]张龙雨,李红霞,张改生,等.黏类小麦细胞质雄性不育相关基因cMDH的克隆与表达分析[J].作物学报, 2009, 35(9): 1620?1627
    [97]张维佳,王艳,李雪梅,等.由不同细胞核背景引起的小麦细胞质雄性不育系(CMS)叶绿体蛋白质组的变化(简报)[J].分子细胞生物学报, 2007, 40(1): 84?89
    [98]张晓科,张改生,王军卫.小麦细胞质雄性不育机理的研究进展[J].麦类作物, 1997, 17(2): 4?6
    [99]赵宝存,葛荣朝,沈银柱,等.小麦T型细胞质雄性不育保持系线粒体DNA片段转化不育系的初步研究[J].华北农学报, 2004, 19(4): 21?23
    [100]赵宝存,沈银柱,黄占景,等.普通小麦细胞质雄性不育系及其保持系线粒体DNA的RAPD分析[J].西北植物学报, 1998, 18(1): 19?23
    [101]朱广廉,孙超,曹宗巽,等.太谷核不育小麦可育花药内游离脯氨酸的来源、利用及与不育花药败育的关系[J].植物生理学报, 1985, 11(2): 122?129
    [102]朱列层,马翎建,宋喜悦,等.单芒与粘果山羊草细胞质小麦雄性不育系比较II.农艺性状效应[J].西北农业大学学报, 1999, 27(1): 6?9
    [103]张天真主编,作物育种学总论[M],北京:中国农业出版社出版, 2005: 170?171
    [104] Bush DS. Calcium regulation in plant cells and its role in signaling [J]. Annu Rev Plant Physiol Plant Mol Biol, 1995, 46: 95?122
    [105] Cai G, Moscatelli A, Cresti M. Cytoskeletal organizationand pollen tube growth. Trends [J]. Plant Sci, 1997, 2: 86?91
    [106] Cui XQ, Wise R, Schnable PS. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize [J]. Science, 1996, 272: 1334?1336
    [107] Douglas A. Smyth and Henry E. Prescott Jr. Sugar content and activity of sucrose metabolism enzymes in milled rice grain [J]. Plant Physiol, 1989, 89: 893?896
    [108] Foissner H, Grolig F, Obermeyer G. Reversible protein phosphorylation regulates the dynamic organization of thepollen tube cytoskeleton: effects of calyculin acid and okdadaic acid [J]. Protoplasma, 2002, 220: 1?15
    [109] Fukasawa H. Studies on restoration and substitution of nucleus (genome) inAegilotricum [J]. Cytologa, 1953, 18: 167?175
    [110] Gorska-Brylass A, Butowt R, Rodriguez-Grarcia MI. Distribution of loosely-bound calcium in the vegetative and generative cells of the pollen grains in Chlorophytum elatum [J]. Biol Plant, 1997/1998, 40: 169?181
    [111] Gott J M, Emeson R B, Functions and mechanisms of RNA editing [J]. Annu Rev Genet, 2000, 34: 499?531
    [112] Greene T W, Hannah L C. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is grained through mutants that alter subunit interactions [J]. Proc Natl Acad Science, 1998, 95: 13342?13347
    [113] Guo J M, Jermyn W A, Turnbull M H. Diurnal and seasonal photosynthesis in two Asparagus cultivars with contrasting yield [J]. Crop Science, 2002, 42: 399?405
    [114] Gutierres S, Sabar M,Lelandais C, et al. Lack of mitochondrial and nuclear?encoded subunits of complexI and alteration of the respiratory chain in Nicotiana aylvestris mitochondrial deletion mutants [J]. Proc Natl Acad Sci, 1997, 94: 3436?3441
    [115] He S, Abad A R. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco [J]. Proc Natl Acad Sci, 1996, 93: 11763?11768
    [116] Hernould M, et al. Male sterility induction in transgenetic tobacco plants with an unedited apt 9 mitochondrial gene from wheat [J]. Proc Natl Acad Sci, 1993, 90: 2370
    [117] Heslop-Harrison J, Heslop-Harrison Y. Intracellular motility, the actin cytoskeleton and germen ability in the pollen of wheat (Triticum aestivum L) [J]. Sex Plant Reprod, 1992, 5: 247?255
    [118] Kihara H. Substitution of nucleus and its effects on genome manifestations [J]. Cytologia, 1951, 6: 177?193
    [119] Leavings C S 3rd, Pring D R. Restriction endonuclease analysis of mitochondrial DNA from normal and Texas male sterile maize [J]. Science, 1976, 193: 158?160
    [120] Li Ji Geng, Liu Yi Nong. Chloroplast DNA and cytoplasmic male sterility [J]. Theor Appl Genet, 1983, 64: 231?238
    [121] Li Wenqiang, Zhang Gaisheng, Niu Na, et al. RAPD analysis on variation of mitochondrial DNA for cytoplasmic-nuclear male sterile lines in wheat [J]. Molecular Plant Breeding, 2009, 7(3): 490?496
    [122] Mariani C, Beuckeleer M D. Induction of male sterility in plants by a chimaeric ribouncleases gene [J]. Nature, 1990, 347: 737?741
    [123] Mccormick K M, Panozzo J F, Hong S H. A swelling power test for selecting potential noodle quality wheats [J]. Aust J Agric Res, 1991, 42: 317?323
    [124] Miguel A. Ballicora1, Alberto A. Iglesias and Jack Preiss. ADP-glucose pyrophosphorylase: a regulatory enzyme for plant starch synthesis [J]. Photosynthesis Research, 2004, 79: 1–24
    [125] Mott K A. Do stomata respond to CO2 concentrations other than intercellular? [J], Plant Physiology, 1988, 86: 200–203
    [126] Musgrave M E, Antanovices J, Siedow J N. Is male-sterility in plants related to lack of cyanide-resistant respiration in tissues? [J]. Plant Sci, 1986, 44: 7–11
    [127] Nakamura Y, Yuki K, Park S Y. Carbohydrate metabolism in the developing endosperm of rice grains [J]. Plant Cell Physiol, 1989, 56: 833–839
    [128] Pierson E S, Cresti M. Cytoskeleton and cytoplasmic organization of pollen and pollen tube [J]. Int Rev Cytol, 1992, 140: 73–125
    [129] Rathburn H B, Hedgcoth C. A chimeric open reading frame in the 5 banking region of COX I mitochondrial DNA from cytoplasmic male sterile wheat [J]. Plant Mol Bio, 1991, 16: 919–912
    [130] Sakamoto Sed. Proceedings of the International Wheat Genetics Symposium [M], Kyoto, Japan, 1983: 481–497
    [131] Smith H C, Gott J M, Hanson M R. A guide to RNA editing [J]. RNA, 1997, 3: 1105–1123
    [132] Song J, and Hedgcoth C, A chimeric gene (orf 256) is expressed as protein only in cytoplasmic male sterile lines of wheat [J]. Plant Mol. Biol, 1994, 26(1): 535–539
    [133] Song and Hedgcoth C. Influence of nuclear background on transcription of a chimeric gene (orf256) and coxI in fertile and cytoplasmic male sterile wheats [J]. Genome, 1994, 34: 203–209
    [134] Tsunewaki K. Genome-plasmon interactions in wheat [J]. T. Genet, 1993, 68: 1–34
    [135] Tsunewaki K, Yoshida T, Tsuji S. Genetic diversity of the cytoplasm in Triticum and Aegilops: IX. The effect of alien cytoplasms on seed germination of common wheat [J]. Jpn J Genet, 1983, 58: 33–41
    [136] Walbot V. RNA editing fixes problems in plant mitochondrial transcripts [J]. Trends Genet, 1991, 7: 37–39
    [137] Zee S Y, Ye X L. Changes in the pattern of organization of microtubules during microspore formation in rice (Oryza sativa L) [J]. Acta Bot Sin, 1998, 40: 585–590
    [138] Zhong Yi Li, Xiu Sheng Chu, Mouille G, et al. The localization and expression of the classII starch synthases of wheat [J]. Plant Physiology, 1999, 120: 1147–1155
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.