BNS小麦雄性不育性恢复基因遗传特性和QTL初步定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为研究BNS小麦雄性不育性恢复的遗传特性和挖掘BNS雄性不育性恢复基因,本试验以光温敏雄性不育小麦BNS和恢复系SN055525为材料,构建(BNS×SN055525)F2群体和BC1回交群体,连续两年调查(BNS×SN055525)F2群体和BC1回交群体的自交结实率,确定BNS雄性不育性恢复基因的遗传特点;利用SSR分子标记在父母本间进行多态性引物的筛选,以2009年(BNS×SN055525)F2的300单株为作图群体,进行SSR标记分析,利用Mapmaker3.0b软件进行连锁分析,构建了SSR分子标记遗传图谱。采用基于混合线性模型的QTLNetwork 2.0软件对BNS小麦雄性不育性恢复相关性状进行初步的QTL定位研究。主要试验结果如下:
     (1)BNS的雄性不育性恢复由2~3对显性主效基因控制,同时受微效基因的影响,表现为典型的主效+微效修饰基因控制的特点;BNS的雄性不育性恢复受温度影响显著,是典型的温光敏雄性不育小麦。
     (2)选用2180对不同来源的SSR引物对父母本进行多态性筛选,从中筛选出具有多态性的引物组合258对,经进一步筛选,利用120对扩增清晰、稳定的多态性引物检测F2群体中的分离情况,大多数位点在群体中的分布符合3:1的分离比例。
     (3)采用Mapmaker3.0b软件进行连锁分析,构建了(BNS×SN055525)F2的遗传连锁图谱,含90个标记定位,覆盖了小麦17条染色体上,总长度为1276cM,标记之间平均遗传距离为14.4cM。单个染色体的标记数在2~10个范围内变化。根据已公布的分子标记间的距离和顺序,用Mapchart 2.1软件绘制遗传连锁图谱。
     (4)采用QTLnetwork2.0进行QTL分析结果表明,LOD>3.0时,共检测到14个与光温敏雄性不育性恢复相关的QTL位点,分布于染色体1A、1B、4A、4B和7B,LOD值为3.0~6.4,贡献率为4.0%~11.6%,将贡献率大于10%的2个主效QTL初步定位于1B和4A。
BNS is a thermo-photo-sensitive male sterility line with stable genetic and sterility characteristics, which has broad use in research and production. To reveal the inheritance of male fertility of thermo-sensitive male sterile wheat lines and molecular characters of sterile gene for the breeding, the thermo-photo-sensitive male sterility line BNS and the restorer line SN055525 was used to construct the BC1 and F2 population in this study. The seed setting rate was investigated in two consecutive years to determine BNS fertility restoration gene genetic characteristics. SSR primers was screened the polymorphic between BNS and SN055525. The F2 population derived from BNS/SN055525 was constructed for mapping. molecular genetic linkage map was construct with Mapmaker3.0. QTL analyses were performed using the software of QTLNetwork 2.0 based on the mixed linear model approach according to the field experiment. The results are as follows:
     (1) Two years genetic study showed that BNS male sterility was controlled by 2~ 3 dominant genes and BNS had typical features of quantitative traits. Genetic analysis results indicated that the fertility distribution of F2 population was continuous, the difference of fertility distribution and segregation ration of (BNS×SN055525) F2 groups was significant. The reason was that the average temperature of 2010 in the thermo-sensitive stage of BNS from pistil and stamen differentiation stage to anther differentiation stage was 1~2℃lower than that in 2009 and improved the sterility of the population, which indicated ( BNS/SN055525 ) F2 fertility was affected by temperature and BNS was thermo-photo-sensitive male sterility line.
     (2) 300 plants of F2 population in 2009 for the construction of the genetic map. SSR primers was screened the polymorphic between BNS and SN055525. 2180 SSR primers had been screened the polymorphic between BNS and SN055525, among which 258 SSR primers had polymorphism, and detected the 300 plants of F2 segregation using polymorphic SSR markers. The result showed that the mapping population was suitable for map construction.
     (3) Genetic linkage map had been constructed by Mapmaker3.0 software and drew by Mapchart 2.1 based on the distance between two markers and marker order.18 of the 20 linkage groups could be assigned to 17 chromosomes based on the information from previous mapping studies. The genetic map contains 90 loci and 1267 cM with a mean marker interval of 14.4cM, with each chromosome comprising 2 to 10 locis.
     (4) Based on the genetic map established from the F2 population, the QTLwere detected using the software QTLNetwork version 2.0 with the composite interval mapping of the mixture linear model. 14 QTL for fertility restoration were located on chromosome 1A、1B、4A、4B and 7B, accounting for 4.0-11.6% of the phenotypic variance with a LOD from 3.0 to 6.4. The major QTL with a phenotypic variance higher than 10% were located on chromosome 1B and 4A.
引文
曹双河,郭小丽,刘冬成.小麦光温敏核雄性不育基因的初步定位[J].遗传学报, 2004, 31(3):293-298
    曹双河,刘立科,刘冬成.小麦光温敏核雄性不育相关基因的G-box家族引物差式分析[J].遗传学报, 2003, 30 (3):56-61
    陈静,余撇,邓光兵.重庆温光型雄性不育小麦的染色体分析[J].遗传, 2002, 24(2):16-19
    程旭东,孙东发,荣德福.新型光温敏小麦不育系337S的组织结构研究[J].武汉植物学研究2004, 22(6): 495-499
    池慧芳.小麦光温敏雄性不育性及红叶耳的QTL分析[D].内蒙古农业大学硕士学位论文, 2008.9
    高东迎,李正玮,管健.温敏雄性不育小麦C49S不育性表达研究[J].西南农业学报,1998,11(3):31-35
    何蓓如,董普辉,宋喜悦.小麦温度敏感不育系A3314温敏特性研究[J].麦类作物学报, 2003, 23(1):1-6
    何觉民,戴君惕,邹应斌.生态遗传雄性不育理论与两系杂交植物.Ⅱ生态遗传雄性不育理论[J].湖南农学院学报, 1994, 20(1): 1-4
    何觉民等.两系杂交小麦研究:I型生态雄性不育小麦的发现、培育及其利用价值[J].湖南农业科学, 1992,(5): 1-3
    李红燕,周琳璘,何蓓如.小麦温敏雄性不育系YM3314育性转换相关基因分析[J].西北植物学报, 2009, 29(11):2181-2188
    李罗江,姬俊华,茹振钢.小麦温敏雄性不育系BNY的花粉育性及自交结实性研究.麦类作物学报, 2004,24(2):24-26.
    李罗江,茹振刚,高庆荣. BNS小麦的雄性不育性及其温光特性[J].中国农业科学, 2009,42(9):3019-3027
    李巍,马翎健,何蓓如.两类小麦温敏雄性不育系育性敏感时期生理生化指标的变化[J]. 麦类作物学报, 2009, 29(1):89-92
    李友勇,李晓琳,赵祥生.一种新型小麦雄性不育系研究初报[J].河南农业科学, 2009(1):21-24
    刘东涛,张改生,刘宏伟.小麦雄性不育的育性基因定位研究进展[J].麦类作物, 1999, 19(4), 6-11
    刘良式.植物分子遗传学[M].北京:科学出版社,1998: 112-115
    马翎健,何蓓如,宋喜悦.小麦光敏雄性不育基因的遗传分析及RAPD标记[J].作物学报, 2004, 30(9): 912-915
    马翎健,宋喜悦,胡银岗.光敏小麦雄性不育系A31的育性变异及遗传研究[J].西北农林科技大学学报(自然科学版), 2004, 32(4):5-8
    马欣荣,邓光兵,陈静.重庆温光型小麦雄性核不育系C49s小孢子发生和发育的细胞学研究[J].四川大学学报(自然科学版) 2002, 39(4): 63-67
    权威,孙辉,赵昌平.小麦光温敏雄性不育转换规律研究进展[J].安徽农业科学,2007,35(21):6349-6350
    荣德福,李少华,郭拥军.两极光温敏感型小麦雄性不育系337S的选育[J].湖北农业科学, 2001, 5: 13-16
    桑伟,韩新年,田笑明.小麦杂种优势的利用途径及研究进展[J].种子,2005,24(5):34-38
    宋国琦,胡银岗,林凡云. YS型小麦温敏雄性不育系A3017育性相关基因的SSH分析[J]. 西北植物学报,2006,26(7):1301-1308
    宋国琦,胡银岗,林凡云. YS型小麦温敏不育系育性转换基因的cDNA-AFLP分析[J]. 西北植物学报, 2006, 26(4):0661-0666
    宋喜悦,胡银岗,马翎健. YS型小麦温敏不育系A3314育性转换中脯氨酸和丙二醛含量的变化[J].中国农业大学学报. 2008,13(4):1-4
    宋亚珍,陈天佑,雷国材.普通小麦PTS光温敏雄性不育的遗传分析[J].西北农林科技大学学报(自然科学版), 2003, 31(3):47-50
    谭昌华,余国东,李伯群. C49S温光敏核不育小麦杂种F1代的育性恢复[J].西南农业学报, 1999, 12(3): 26-29
    谭昌华,余国东,杨沛丰.重庆温光型核不育小麦的不育性研究初报[J].西南农学报, 1992, 5(1): 1-4
    谭昌华,余国东,杨沛丰.两系杂交小麦新组合选育研究—重庆温光型核不育小麦[Z]. 国家科技成果, 1992
    王艳,张爱民,国风利.小麦D2型胞质光敏雄性不育器官同源异型转变的研究[J].中国农业科学, 2001, 34(3):240-243
    王艳,张爱民.小麦D2型细胞质光敏雄性不育的研究进展[J].中国农学通报, 1998,14(4):162-181
    王永军,张改生,孙苏阳.遗传型与生理型雄性不育小麦花药和旗叶蛋白质的比较研究[J].麦类作物学报, 2007, 27(6):965-968
    吴秋云,何觉民,罗红兵.生态雄性不育小麦ES-50育性转换机制的研究[J].湖南农业大学学报:自然科学版, 2001, 27(2):89-91
    薛勇彪,王道文,段子渊.分子设计育种研究进展[J].中国科学院院报, 2007, 6(5):486-490
    杨海燕,宗学凤,余国东.温光敏核不育小麦育性转换与激素间关系的研究[J].西南农业大学学报, 2006, 28(3):369-372
    杨木军,顾坚,刘琨.小麦温光敏雄性核不育系K78S在云南的生态适应性研究[J].作物学报, 2006, 32(11): 1618-1624
    杨万年,何之常.光敏胞质雄性不育小麦NAD激酶和NADP磷酸酶对光周期的反映[J]. 武汉大学学报, 1998, 44(6):737-741
    姚雅琴,张改生,刘宏伟.小麦雄性不育系和保持系花粉ATP酶细胞色素氧化酶细胞定位[J].作物学报, 2001, 27(1):43-48
    杨友才,何觉民,罗红兵.生态雄性不育小麦的育性遗传研究湖[J].南京农业大学学报, 2000, 26(5):23-27
    余国东.小麦核不育两用系育性转换的光温模式研究[C]//黄铁成.张爱民.第一届国际杂种小麦研讨会论文集.北京:中国农业大学出版社,1998:176-178.
    张爱民,王艳,刘冬成.小麦D2型细胞质长日光敏雄性不育可能分子机理研究初报[J]. 农业生物技术学报, 2001,9(13):223-225
    张建奎,董静,宗学凤.温光敏核不育小麦C412S的育性转换及其APRT基因的表达[J]. 作物学报, 2009, 35(4):662-671
    张建奎,何立人,冯丽.日长和温度对雄性核不育小麦C49S育性转换的影响[J].西南农业大学学报,1999,21(6):518-521.
    张建奎,董静,宗学凤.温光敏核雄性不育小麦雄性败育的细胞学观察[J].植物遗传资源学报, 2009, 10(3):411-418
    张建奎,冯丽,何立人.温光型核雄不育小麦育性转换的温度敏感期和临界温度研究[J]. 应用生态学报, 2003,14(1):57-60
    张健奎.重庆温光敏核雄不育小麦育性转换规律及不育机理研究[D].2006(5):65-70
    张立平,田再民,赵昌平.小麦光温敏核雄性不育性的系BS20育性QTL分析[J].农业生物技术, 2009(8): 35-38
    张立平,赵昌平,单福华.小麦光温敏雄性不育系BS210育性的主基因+多基因混合遗传分析[J].作物学报, 2007, 33(9):1553 - 1557
    张自国,曾汉来.再论光敏核不育水稻育性转换的光温作用模式[J].华中农业大学学报, 1992,11(1):1-6
    赵昌平,王新,张风廷.杂种小麦的研究现状与光温敏二系法[J].北京农业科学, 1999, 17(2): 3-5
    赵凤梧,李慧敏,李爱国.冬小麦温敏型雄性不育系LT-1-3A选育及育性转换与遗传研究[J].核农学报, 2001, 15(2):65-69
    周菊红,李轲,何蓓如. YM型小麦温敏雄性不育系不育基因的QTL定位[J].作物学报. 2010, 36(12):2045-2054
    周美兰,何觉民,唐启源.光周期对光温敏核不育小麦ES-8育性转换特性的影响[J].麦类作物,1997,17(2):9-l2
    周美兰,何觉民,邹应斌.光敏核不育小麦育性转换条件的研究[J].湖南农业大学学报,1996,22(3):231-235
    周美兰,程尧楚,邹应斌.光温敏核不育小麦ES-14花粉不育的细胞学研究[J].作物研究, 1996, 18(4):20-23
    朱军,运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报, 1999, 33(3):327-335.
    邹吉承.小麦杂种优势的研究现状及应用前景[J].辽宁农业科学, 2000, 34(1):33-38
    邹应斌,周美兰,何觉民.生态型雄性不育小麦育性转换机制[J].湖南农业科学, 1992, 40(6):5-7
    Apuya N. R., Frazier B. L., Keim P.. Restriction fragment length polymorphisms as genetic markers in soybean, Glycine max(L)Merrill[J]. Theor Appl Genet., 1988, 75:889-901
    B.C.Kang, S.H.Nahm, J.H.Huh.Aninterspecific(Capsicum annuum×C.chinese)F2 linkage maping pepper using RFLP and AFLP markers[J]. Theor Appl Genet, 2001,102:531-539
    Blanco A., Bellomo M. P., Cenci A. A genetic linkage map of durum wheat[J]. Theor. Appl. Genet. 1998, 97:721-728
    Botstein D. R., White R. L., Skolnick. Construction of a genetic linkage map in man using restriction fragment length polymorphisms.Hum[J]. Genet, 1980, 32:314-331
    Burr B, Burr F. A., Thompson K. H.. Gene mapping with recombinant inbreds in maize [J]. Genetics, 1988, 118:519-526
    Cao G., Zhu J., He C. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice[J].Theor Appl Genet, 2001, 103:153-160
    Causse M. A.,Fulton T. M.,Yong Gu Cho.Saturated molecular map of the rice genome based on an interspecific backcross population[J].Genetics, 1994, 138:1251-1274
    Changhu Wang, Peng Zhang, Zhenrong Ma. Development of a geneticmarker linked to a new thermo-sensitive male sterile gene in rice ( Oryza sativa L. ) [J]. Euphytica, 2004 ,140:217–222,
    Chao S., Sharp P. J., Worland A. J.. RFLP-based genetic maps of homoeologousgroup 7 chromosomes [J]. Theor Appl Genet., 1989,78:495-504
    Chauhan S. V., Singh S. P. Pollen abortion in male-sterile hexaploid wheat(Norin) having Aegilops ovata. L Cytoplasm[J].Crop Sci, 1996, 6(6):532-535
    Chittenden L. M.,Schertz K., F., Lin Y.. Paterson A H.RFLP mapping of a cross between Sorghum bicolor and S. propinquum,suitable for high density mapping, suggests ancestral duplication of Sorghum chromosomes[J].Theor Appl Genet, 1994,87:925-930
    Chunmei Wang, Yiping Zhang, Dejun Han. SSR and STS markers for wheat stripe rust resistance gene Yr26[J]. Euphytica, 2008,159:359–366
    Churchill G. A., Giovannoni J. J., Tanksley S. Pooled-sampling makes high resolution practical with DNA markers [J]. Proc Natl Acad Sci USA.1993, 93:16-20
    Daryl J. S, Peter I., Keith Edwards. A high-density microsatellite consensus map for bread wheat(Triticum aestivum L.)[J].Theor Appl Genet, 2004, 109:1105-1114
    Devos K. M., Gale M. D.. Comparative genetics in the grasses[J]. Plant Mol Biol, 1997, 35:3-15
    Devos K. M., Millan T., Gale M. D.. Comparative RFLP maps of homoeologous group 2 chromosomes of wheat, rye, and barley[J]. Theor Appl Genet, 1993, 85:784-792
    
    Dong N.V., Subudhi P. K., and Luong P. N. Molecular mapping of a rice thermosensitive genetic male sterile gene by AFLP, RFLP and SSR techniques[J]. Theor Appl Genet, 2000, 100:727-734 Donis-keller H., Green P., Helms C.. A genetic linkage map of human genome[J].Cell,1987,51:319-337
    E.Noli, M. S.Teriaca, M.C.Sanguineti, S.Conti. Utilization of SSR and AFLP markers for the assessment of distinctness in durum wheat[J]. Mol Breeding, 2008,22:301-313
    Ganal M W, Young N D, Tanksley S D. Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato[J].Mol Gen Genet, 1989, 215:395-400
    G.J.Bryan, A.J.Collins, and J.B.Smith. Isolation and characterisation of microsatellites from hexaploid bread wheat[J]. Theor Appl Genet(1997)94:557-563
    G.Li, C.F.Quiros. Sequence-related amplified polymorphism(SRAP),a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica[J]. Theor Appl Genet, 2001, 103:455-461
    Gong M., Yang Z. H., Tsao T. H. Initiating effects of calcium on pollen germination and its regulative role in pollentube growth[J].Acta Sci Nat Univ Peking, 1995,31:238-249
    Gupta P., Balyan H., Edwards K.. Genetic mapping of 66 new microsatellite(SSR)loci in bread wheat[J].Theor. Appl. Genet., 2002, 105:413-422
    H.Muylle1, J.Baert1, E.VanBockstaele1. Identification of molecular markers linked with crown rust(Pucciniacoronata f.sp.lolii)resistance in perennial ryegrass(Lolium perenne)using AFLP markers and a bulked segregant approach[J], Euphytica, 2005,143:135-144
    Haley C.S., S. A. Knott. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers[J]. Heredity, 1992, 69:315-324
    Hung Ting-you, Wang Zhi, HU Yun-gao. Genetic Analysis and Primary Mapping of pms4, a Genic Male Sterility Gene in Rice(Oryza sativa)[J]. Rice Science, 2008, 15(2):153-156
    Jia J.H, Li C.Y, Qu X.P. Construction of genetic linkage map and chromosome mapping of tms5 gene in rice[D]. Abstract Book of Plant Genomics in China. Dalian:Dlpress, 2000,37
    Jia JH, Zhang D.S, Li C.Y. Molecular mapping of the reverse thermosensitive genic male sterile gene(rtms1)in rice[J]. Theor Appl Genet, 2001, 103:607-612
    Joppa L. R. Pollen and anther development in cytoplasmic male-sterile wheat (T.aestivumL.)[J].CropScience,1996,6:296 -297
    Kohhj, Sonyh, and Heumh. Molecular mapping of a new genic male sterility gene causing chalky endosperm in rice(Oryza sativa L.)[J].Euphytica, 1999, 106:57-62
    Kojima T, Nagaoka T, Noda K.Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers[J].Theor.Appl.Genet.,1998,96:37-45
    Lander E.S, D. Botstein. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121:185-199
    Lee D.S, Chen L.J, Suh H.S. Genetic characterization and fine mapping of a novel thermosensitive genic male sterile gene tms6 in rice(Oryza sativa L.)[J]. Theor Appl Genet, 2005, 111(7):1271-1277
    Li J, Liang C. Y., Yang J. L., Xing Q. Cloning of the APRT gene from rice and analysis of its association with TGMS[J]. Acta Bot Sin, 2003,45:1319-1328
    Liang C. Y., Li J., Shu J., . Fertility alteration of male sterile rice line Annong S-1 and the expression of fertility related aprt gene. Acta Genet Sin[J],2004,31(5):513-517
    M.Iruela, J.Rubio, J.I.Cubero, Gil·T.Millán. Phylogenetic analysis in the genus Cicer and cultivated chickpea using RAPD and ISSR markers[J]. Theor Appl Genet, 2002, 104:643-651.
    M.T.Lopez, S.S.Virmani. Development of TGMS lines for developing two-line rice hybrids for the tropics[J]. Euphytica ,114:211-215,2000
    Mei M. H., Dai X. K., Xu C. G.. Mapping and Genetic Analysis of the Genes for Photoperiod Sensitive Genic Male Sterility in Rice Using the Original Mutant Nongken 58S[J].Crop Sci 1999, 39:1711-1715
    Michelmore R. W., Paran I, Kesseli V, Identification of markers linked to disease resistance genes by bulked segregantanalysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci U S A ,1991, 88:9828-9832
    Michelmore R. W., Shaw D. V., Quantitative genetics: Characterdissection[J]. Nature, 1988, 335:672-673
    Moffatt B. A., Pthe C., Laloue M. Metabolism of benzyladenine is impaired in a mutant of Arabidopsis thaliana lacking adenine phosphoribosyl transferade activity[J]. Plant Physiol, 1991,95:900-908
    Moffatt B. A., Schnorr K. M., Gaillard C.. Nucleotide sequence of a wheat cDNA encoding adenine phosphoribosyl transferase[J]. Plant Physiol,1995,108:1748
    Murai K., Murai R., Ogihara Y. Wheat MADS box genes, multigene family dispersed throughout the genome [J]. Genes&Genetic Systems, 1997, 72:317-332
    Murai K, Tsunewaki K.. Photoperiod-sensitive cytoplasmic male sterility in wheat with aegilops crossa cytoplasm [J]. Euphytlca, 1993, 67:41-48
    Nelson A D, Treco, Schultes N P. Molecular mapping of wheat, Major genes and rearrangements in homeologous 4, 5 and 7[J].Genetics,1995, 141:721-731
    Reddy,E.A, N.P.SarmaJ. P. Nimmakayala, . Genetic analysis of temperature sensitive male sterilty in rice[J]. Theor Appl Genet(2000)100:794–801
    Ogihara Y. Clone of cDNA specially expressed in wheat spikelets at the heading stage [J]. Plant Science, 1998, 135:49-62
    O'Brien S J.Genetic Maps.Locus Maps of Complex Genomes.6th Ed[J]..Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y 1993
    Pestsova E, Ganal MW, Roder MS. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat[J]. Genome, 2000, 43:689-697
    Q. Lu, X. H. Li, D. Guo. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment[J]. Mole genet genomics, 2005, 273:507-511
    R.X.Guo, D.F.Dong, Z.B.Tan, et a1. Two recessive genes controlling thermo-photoperiod sensitivemale sterility in wheat[J].Theor Appl Genet, 2006, 112: 1271-1276
    Roder M. S, Korzun V., Wandehake K.. A microsatellite map of wheat[J]. Genetics, 1998,50149:2007-2023
    Sasakuma T., Ohtsuka. Cytoplasmic effects of Aegilops species having D genome in wheat, I. Cytoplasmic differentiation among five species regarding pistillody induction Seikenziho[J], 1979, 27- 28, 59- 65
    Satagopan J. M., Yandell B. S., Estimating the number of quantitative trait loci via Bayesian model determination Special Contributed Paper Session Genetic Analysis of Quantitative Traits and Complex Diseases, Biometric Section, Joint Statistical Meeting[C]. Chicago, 1996
    Sax K. The association of size difference with seed-coat pattern and pigmentation in phaseolus vulgaris[J]. Genetics 1923,8:552-560.
    Subudhipk, Borkatirp, Virmaniss. Molecular mapping of a thermosensitive genetic male sterility gene in rice using bulked segregant analysis[J]. Genome, 1997, 40:188-194.
    Tanksley S. D., GanalM W., Prince J. P., High density molecular linkage maps of thetomato and potato[J].Genetics,1992,132(4):1141-1160
    Thoday J. M. Location of polygene[J].Nature,1961,191:368-370
    Tian H. Q., kuang A., Musgrace M. E.. Calcium distributionin fertile and sterile anthers ofphotoperiod-sensitive genic male-sterile rice[J].Planta,1998,16:97-105
    W.Cao, G.Scoles, P.Hucl.The use of RAPD analysis to classify Triticum accessions[J],Theor Appl Genet, 1999, 98:602-607
    Wang D. L., Zhu J., Li Z.. A Mapping QTL with epistatic effects and QTL environment interactions by mixed liner model approaches [J]. Theor Appl Genet , 1999, 99:1255-1264
    Wang J. Z., Wang B., Xu W.. Tagging and mapping the rice photoperiod sensitive genic male sterile gene with molecular markers[J]. Theor Appl Genet, 1995, 91(3):1111-1114
    Wang Y. G., Xing Q.H., Deng Q.Y.. Fine mapping of the rice thermo- sensitive genic male-sterile gene tms5[J]. Theor Appl Genet, 2003, 107:917-921
    Williams J., Kubelik AR, Livak KJ. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res.1990,18:6531-6535
    Xing Q. H., Ru Z. G., Li J. Cloning a second form of adenine phosphoribosyl transferase gene(TaAPT2) from wheat and analysis of its association with thermo-sensitive genic male sterility(TGMS)[J]. Plant Sci,2005, 169:37-45
    Xing Q.H., Ru Z.G., Zhou C.J., et a1. Genetics analysis, molecular tagging and mapping of the thermosensitive geneic male sterile gene(wtms1) in wheat[J]. Theor Appl Genet, 2003, 107(8): 1500-1504
    Y.F.Li , C. P. Zhao, F.T. Zhang, et a.l The FertilityAlteration of Photo-Thermo Sensitive Genic Male Sterile Line BS20 in Whea(tTritieum aestivumL.)[J]. Euphytica, 2006, 151:207-213
    Yamaguchiy, Ikedar, and Hirasawah. Linkage analysis of the thermosensitive genic male sterility gene tms2 in rice(Oryza sativa L.)[J]. Breed Science, 1997, 47(3):371-377
    Zeng Z.B. Precision mapping of quantitative trait loci[J]. Genetics, 1994, 136(3):1457-1468
    Zhang Jian-Kui, Dong Jing, Zong Xue-Feng. Fertility alterna-tion of thermo-photo-sensitive genic male sterile(TGMS) wheat line C412S and its association with adenine phosphori-bosyltransferase gene expression[J].Acta Agronomica Sinica, 2009, 35(4):562-671
    Zhang Q., Shen B. Z., Dai X. K.. Using bulked extremes and recessive class to map genes for Photoperiod-sensitive genic male sterility in rice[J]. Proc Natl Acad Sei U S A,1994, 91:8675-8679
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.