二氧化锡纳米结构的合成、表征与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米半导体材料以其新异的光学特性、电学特性、光电转换特性、光催化性能等引起了广泛的研究兴趣。合理设计纳米结构的合成,从材料的尺寸、形貌、维度、组成、晶体结构等方面进行调控,研究纳米结构与性能的关系,是纳米科技发展的重要组成部分,对实现按照人们的意愿设计合成功能材料具有重要的意义。本论文以SnO_2为研究对象,采用多种化学方法,以简单的无机盐为前驱体,在液相反应体系中通过引入聚合物做辅助剂、在SnO_2晶体中掺杂Zn、改变溶剂组成以及以天然棉花做模板等方法,得到了一些新的形貌和纳米结构,通过X射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)及高分辨透射电镜(HRTEM)、红外光谱(FT-IR)、拉曼光谱、紫外-可见吸收光谱(UV-Vis)、光致发光光谱(PL)、X射线光电子能谱(XPS)等手段对产物进行了表征,讨论了纳米结构的形成机理,并对其性能进行了研究。主要内容如下:
     (1)分别以聚丙烯酸(PAA)、聚乙二醇(PEG 200)、聚乙烯醇(PVA 1799)三种聚合物为辅助剂,制备了几种不同的SnO_2纳米结构:首先,在溶液中利用聚丙烯酸(PAA)的辅助作用,通过溶剂热过程得到了平均长度为1.0μm、底部直径为100-500nm的金红石型SnO_2纳米锥形结构以及由纳米锥自组装成的空心球结构,考察了溶液碱性、溶剂组成、聚合物的加入量等参数对形貌的影响,晶体的生长经历了PAA辅助下纳米颗粒的定向聚集过程,通过取向附生机制,得到了单晶纳米锥结构,由于纳米锥的顶部尺寸小以及其粗糙的凹凸不平的表面,使其更进一步组装成空心球结构。纳米锥的拉曼光谱结果显示,出现了由纳米材料微结构而产生的新的振动吸收;其次,采用高温加热的方法,以聚合物聚乙二醇(PEG 200)为溶剂和表面修饰剂,得到了长径比大、结晶较好的单晶SnO_2纳米棒,并且发现,晶体的生长方向为较少报道的[11?2]方向。反应温度、反应时间、溶液的碱度、反应物浓度等生长参数对产物的尺寸有较大的影响,纳米棒的形成机制为取向附生机制,其荧光光谱显示了较强的激子发光、缺陷能级发光;另外,以聚乙烯醇(PVA 1799)为基质,通过加热回流及氧化过程,首先得到了SnO_2纳米颗粒分散其中的复合物,高温培烧除去聚合物后,得到了由纳米颗粒组成的空心球结构等纳米结构。
     (2)通过在SnO_2晶体中掺杂Zn,有效的控制了晶体的形貌和尺寸。在乙醇-水溶液中,引入少量无机金属离子Zn~(2+)作掺杂,采用溶剂热法,得到了具有枝状结构的Zn掺杂的、具有金红石结构的SnO_2纳米棒团簇,而且随着产物中Zn含量的增加,纳米棒的直径减小,长度增加。考察了溶剂组成、溶液的碱度、摩尔比[Zn~(2+)]/[Sn~(4+)]、聚合物的引入等对产物形貌和晶相的影响。详细考察了晶体生长过程中的晶相转变和形貌的形成过程,提出了可能的晶体生长机理。产物的拉曼光谱显示,除了传统的SnO_2晶体的振动峰以及由SnO_2纳米结构所引起的振动峰,另外还出现了纯的SnO_2晶体没有出现的新振动峰。研究了该产物对乙醇、丙酮和苯蒸汽的气体敏感性。
     (3)研究了在两种或多种溶剂混合组成的均相体系中进行溶剂热过程时,SnO_2晶体的可控生长:首先,以乙二胺和蒸馏水为混合溶剂,通过调节其体积比、溶液的碱度和反应温度等,制备了多种不同形貌、尺寸以及聚集状态的SnO_2纳米颗粒、纳米棒、微米棒等结构,比如像花一样聚集的纳米棒团簇、纳米棒组成的弧形或环状结构、小尺寸的纳米棒及纳米颗粒、铅笔形状的微米级SnO_2棒等。所得到的纳米棒生长方向为[11?2],纳米棒中存在有高浓度的氧空位和明显的位错缺陷,讨论了纳米棒及其多级结构的形成机理。并对不同比例的溶剂组成时所得到的不同尺寸和形貌的产物进行了光学性能测试和分析,其FT-IR、UV-Vis以及PL均出现了强度或位移的变化;在以上结果的基础上,设计了多种溶剂组成,如乙二胺:乙醇:蒸馏水(1:1:1)、二乙烯三胺:蒸馏水(1:1)等进行了实验和比较,通过调节溶剂的组成可进一步调控纳米SnO_2晶体的形貌和尺寸,溶剂固有的性质以及溶剂分子所含有的功能基团在晶体生长过程中起了关键作用。
     (4)以天然棉纤维为模板,通过化学方法,得到了具有多孔结构的棉花状SnO_2,此纤维状SnO_2由直径约14nm的SnO_2纳米颗粒相互连接而成。所得产物除了尺寸有一些缩小外,从宏观到纳米尺寸上几乎完全复制了天然棉纤维的结构。纤维状SnO_2的多孔结构有利于被测气体的扩散,对乙醇气体有非常高的敏感性,是一种优良的气敏材料。
     最后,对本论文的实验结果和创新之处进行了总结,提出了相关的工作展望。
Owing to their unique optical, electric, photoelectric transition, and photocatalytic properties, semiconductor nanomaterials have drawn wide research attentions. Designing reasonable synthetic routes of nanostructures, controlling their sizes, morphologies, dimensions, components, and crystal structures as well as studying the relationship between nanostructures and their properties are the important sections of nanoscience and nanotechnology. They are also of great significance in realizing the manipulated synthesis of functional materials to our will. In this dissertation, semiconductor SnO_2 was chosen as the target and several kinds of chemistry methods were conducted to prepare new morphologies and nanostructures. The main strategies were involved in using ordinary tin salts as the precursors to synthesize SnO_2 nanocrystals in solution-based reaction system by introducing polymers, doping Zn in the SnO_2 nanocrystals, tuning the components of solvents, and using natural cotton as templates. The obtained products were characterized by XRD, FESEM, TEM, HRTEM, FT-IR, UV-Vis, Raman spectra, PL, XPS, et al. The formation mechanisms of the obtained nanostructures were discussed and their properties were also investigated. The main work is summarized as follows:
     1. Sevaral kinds of SnO_2 nanostructures were prepared assisted by polymers Poly(acrylic acid) (PAA), polyethlene glycol (PEG) 200, and polyvinyl alcohol (PVA) 1799: Firstly, single-crystalline SnO_2 nanocones with average 1.0μm in length and 100-500nm in root size and their self-assembly morphologies of hollow spheres were obtained through a solvothermal process assisted by PAA. The influence of crystal growth parameters such as alkalinity of the solution, components of the solvents, dosage of PAA on the morphologies and sizes were investigated. The crystal growth process experienced a self-assembly of nanoparticles directed by PAA and oriented attachment mechanism to form the single-crystalline nanocones. With nanometer-sized tips and rugged surfaces, the nanocones have high surface free energy and further assemble into hollowspheres. The Raman spectrum of the nanocones shows new group of shifts related to the crystal microstructures; Secondly, single-crystalline SnO_2 nanorods were obtained in hot PEG 200. PEG 200 was crucial in this anisotropic growth process and believed to act both as a solvent and a surfactant. The preferred growth direction of the nanorods was along [11-2] which has seldom reported by now. In this reaction system, the growth parameters such as temperature, time, alkalinity of the solution, and concentration of initial ion were all important to the size of nanorods. The growth process experienced an oriented attachment process. The photoluminescence spectrum displayed strong excitonic PL and defects PL; Finally, PVA 1799 was used as the substrate and PVA-SnO_2 nanocomposite was firstly obtained by fluxing at high temperature and oxidation process. When this nanocomposite was subjected to calcination, the polymer was removed and the pure SnO_2 crystals were obtained. Nanostructures such as SnO_2 hollow spheres composed of nanoparticles were obtained.
     2. The morphologies and sizes were well controlled by Zn doped into SnO_2 crystals. Branched Zn-doped SnO_2 nanorods clusters were prepared through a facile solvothermal process in ethanol-water media. The introduction of a small quantity of Zn2+ was used as dopant and the obtained products exhibited pure SnO_2 rutile structures. With the content of Zn in the products, the diameters of the nanorods were decreased while length increased. The growth parameters such as component of solvent, alkalinity of the solution, molar ratio [Zn~(2+)]:[Sn~(4+)], and the introduction of polymer PAA can greatly influence the crystal phase and morphologies. The possible growth mechanism has been proposed by investigating the transition of crystal phase and formation of the nanorods during the growth process. These Zn-doped SnO_2 nanorods exhibited unique Raman spectra in contrast with the undoped SnO_2 nanostructures and some new shifts were observed. The gas sensing properties of these nanorods to ethanol gas, acetone gas, and benzene gas were also investigated.
     3. Controlled growth of SnO_2 crystals was investigated in homogenous solutions composed of two or several kinds of solvents through sovlothermal processes: At first, SnO_2 nanostructrues such as flower-like nanorod clusters, nanorod microrings, and individual nanorods were obtained via a solvothermal approach in a mixed solution of ethylenediamine and distilled water. By just simply adjusting the volume ratio of the above two solvents, alkalinity of the solution, and temperature, the size and hierarchical structures of SnO_2 nanocrystals could be easily varied. The preferential growth direction of the nanorods was [11- 2] and there were high concentration of oxygen vacancy and lattice defects in the nanorods. The formation mechanism of the nanorods and their hierarchical structures were also discussed. The optical spectra including FT-IR spectra, UV-vis absorption spectra, and photoluminescence spectra of the samples prepared in different volume ratios of ethylenediamine and distilled water all showed changes of intensities and shifts. On the base of the above results, other solvent component such as ethylenediamine:ethanol:distilled water(1:1:1), diethenetriamine: distilled water (1:1), et al. were also used as reaction media to control the sizes and morphologies of SnO_2 nanocrystals. A conclusion can be drawn that the inherent properties and functional groups of the solvent molecules are vital for the crystal growth during the solvothermal process.
     4. A novel chemistry strategy was conducted to prepare cotton-like SnO_2 using natural cotton as templates. The obtained fiber-like SnO_2 were composed of nanoparticles with the average size of 14nm which interconnected each other and formed porous microstructures. The original morphology of cotton fibers was found to be replicated by the SnO_2 crystals from nanometer to micrometer regimes. However, the size of the obtained cotton-like SnO_2 became smaller. Because the porous microstructures were in favor of the diffusion of the target gases, these fiber-like SnO_2 showed high sensitivities to ethanol gas and were good candidates to gas sensing materials.
     Finally, the main experimental results and innovations in this dissertation were summarized and the following expectations were proposed.
引文
[1]张立德,牟季美.纳米材料和纳米结构.第一版,北京:科学出版社,2001.
    [2]白春礼.纳米科技现在与未来.成都:四川教育出版社,2001.
    [3]王占国,陈涌海,叶小玲等.纳米半导体技术.化学工业出版社. 2006.
    [4] Rajeshwar, K.; Tacconi, N. R.; Chenthamarakshan C. R. Semiconductor-based composite materials: preparation, properties, and performance. Chem. Mater. , 2001, 13(9): 2765-2782
    [5] Manna, L.; Milliron, D. j.; Meisel, A. et al. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. , 2003, 2(6): 382-385
    [6] Peng, X.; Manna, L.; Yang W. D. et al. Shape control of CdSe nanocrystals. Nature, 2000, 404(6773): 59-61
    [7] Hu, J.; Li, L.; Yang, W. et al. Linearly polarized emission from colloidal semiconductor quantum rods, Science, 2001, 292(5549): 2060-2063
    [8] Huang, Y.; Duan, X. F.; Cui, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science, 2001, 294(5545): 1313-1317
    [9] Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for intergrated multicolor nanophotonics. Small, 2005, 1(1): 142-147
    [10] Cui, Y.; Wei, Q. Q.; Park, H. K. et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289-1292
    [11] Xia, Y.; Yang, P.; Sun, Y. et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv. Mater., 2003, 15(5): 353-389
    [12] Pan, Z. W.; Dai, R. Z.; Wang, Z. L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949
    [13] Shi, W. S.; Peng, H. Y.; Wang, N. et al. Free-standing single crystal siliconnanoribbons. J. Am. Chem. Soc., 2001, 123(44): 11095-11096
    [14] Bae, S. Y.; Seo, H. W.; Park, J. et al. Single-crystalline gallium nitride nanobelts. Appl. Phys. Lett., 2002, 81(1): 126-128
    [15] Ge, J. P.; Li, Y. D. Selective atomospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater., 2004, 14(2): 157-162
    [16] Ge, J. P.; Li, Y. D. Controllable CVD route to CoS and MnS single-crystal nanowires. Chem. Commun., 2003, 19: 2498-2499
    [17] Huang, M. H.; Wu, Y. Y.; Feick, H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater. 2001, 13(2): 113-116
    [18] Wang, X.; Li, Y. D. Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires. J. Am. Chem. Soc., 2002, 124(12): 2880-2881
    [19] Talapin, D.V.; Shevchenko, E. V.; Murray, C. B. et al. CdSe and CdSe/CdS Nanorod Solids. J. Am. Chem. Soc., 2004, 126(4): 12984-12988
    [20] Liu, B.; Zeng, H. C. Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc., 2003, 125(15): 4430-4431
    [21] Chopra, N. G.; Luyren, R. J.; Cherry, K. et al. Boron-Nitride nanotubes. Science, 1995, 269(5226): 966-967
    [22] Wu, J.; Liu, S.; Wu, C. et al. Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett., 2002, 81(7): 1312-1314
    [23] Dlboczik, L.; Engelhardt, R.; Ernst, K. et al. Hexagonal nanotubes of ZnS by chemical conversion of monocrystalline ZnO columns. Appl. Phys. Lett., 2001,78(23): 3687-3689
    [24] Ma, Y.; Qi, L.; Ma, J. et al. star-shaped PbS crystals formed by a simple solution route. Cryst. Growth Des., 2004, 4(2): 351-354
    [25] Houtepen, A. J.; Koole, R.; Vanmaekelbergh, D. et al. The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis. J. Am. Chem. Soc., 2006, 128(21): 6792-6793
    [26] Zhang, X.; Zhao, Q.; Tian, Y. et al. Fabrication of CdS Micropatterns: Effects of Intermolecular Hydrogen Bonding and Decreasing Capping Ligand. Crystal Growth & Design, 2004, 4(2): 355-359
    [27] Zhou, G.; Lu, M.; Xiu, Z. et al. Controlled Synthesis of High-Quality PbS Star-Shaped Dendrites, Multipods, Truncated Nanocubes, and Nanocubes and Their Shape Evolution Process. J. Phys. Chem. B, 2006, 110(13): 6543-6548
    [28] Wang, Q.; Xu, G.; Han, G. et al. Synthesis and Characterization of Large-Scale Hierarchical Dendrites of Single-Crystal CdS. Cryst. Growth Des., 2006, 6(8): 1776-1780
    [29] Li, L.; Walda, J.; Manna, L. Semiconductor Nanorod Liquid Crystals. Nano. Lett., 2002, 2(6): 557-560
    [30] Duan, X.; Huang, Y.; Cui, Y. et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66-69
    [31] Cushing, B. L.; Kolesnichenko, V. L.; Connor, C. J. Rencent advance in the liguid-phase synthesis of inorganic nanoparticles. Chem. Rev., 2004, 104(9): 3893-3946
    [32] Burda, C.; Chen, X.; Narayanan, R. et al. Chemistry and properties of nanocrystals of different shapes. Chem. Rev., 2005, 105(4): 1025-1102
    [33] Mo, M.; Yu, J. C.; Zhang, L. et al. Self-assembly of ZnO nanorods and nanosheets into hollow microhemispheres and microspheres. Adv. Mater., 2005, 17(6): 756-760
    [34] Gao, S.; Zhang, H.; Wang, X. et al. ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods. J. Phys. Chem. B, 2006, 110(32): 15847-15852
    [35] Zhang, T.; Dong, W.; Keeter-Brewer, M. et al. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc., 2006, 128(33): 10960-10968
    [36] Tang, Z.; Kotov, N. A. One-dimensional assemblies of nanoparticles: preparation, properties, and promise. Adv. Mater., 2005, 17(8): 951-962
    [37] Elangovan, E.; Ramamurthi, K.; Optoelectron, J. Optoelectronic properties of spray deposited SnO2:F thin films for window materials in solar cells. Adv. Mater., 2003, 5(1): 45-54
    [38] Law, M.; Kind, H.; Messer, B. et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed., 2002, 41(13): 2405-2408
    [39] Park, N.; Kang, M. G.; Ryu, K. S. et al. Photovoltaic characteristics of dye-sensitized surface-modified nanocrystalline SnO2 solar cells. J. Photochem. Photobiol. A, 2004, 161(2-3): 105-110
    [40] Ferrere, S.; Zaban, A.; Gregg, B.A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem. B, 1997, 101(23): 4490-4493
    [41] Ball, P.; Garwin, L. Science at the Atomic Scale. Nature, 1992, 355: 761-766
    [42] Merray, C. B.; Norris, D. J.; Bawendi, M. G. et al. Synthesis and characterization of nearly monodisperse CdE (E=S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc., 1993, 115(19): 8706-8715
    [43] Brus, L. Squeezing light from silicon. Nature, 1991, 351: 301-302
    [44] Carp, O.;Huisman, C. L.;Reller, A. et al. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chem. 2004, 32(1-2): 33-77
    [45] Wang, G.; Lu, W.; Li, J. et al. V-Shaped Tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. Small, 2006, 2(12): 1436-1439
    [46] Yin, L.W.; Bando, Y.; Li, M.S. et al. Unique single-crystalline beta carbon nitride nanorods. Adv. Mater., 2003, 15(21): 1840-1844
    [47] Wang, W. Z. C.; Xu, K.; Wang, H. et al. Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater., 2002, 14(11): 837-840
    [48] Wang, W. Z.; Xu, C. K.; Wang, X. S. et al. Preparation of SnO2 nanorods by annealing SnO2 powder in NaCI flux. J. Mater. Chem., 2002, 12(6): 1922-1925
    [49] Wang, W.; Zhan, Y.; Wang, G. et al. One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant. Chem. Commun., 2001, 8: 727-728
    [50] Park, W. I.; Yi, G. C.; Kim, M. et al. ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv. Mater., 2002, 14(24): 1841-1843
    [51] Liu, Y.; Liu, M. Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater., 2005, 15(1): 57-62
    [52] Zhang, Y. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled. J. Cryst. Growth, 2004, 264(1-3): 363-368
    [53] Gong, J.; Yang, S.; Duan, J. et al. Rapid synthesis and visible photoluminescence of ZnS nanobelts. Chem. Commun., 2005, 3: 351-353
    [54] Barrelet, C. J.; Wu, Y.; Bell, D.C. et al. Synthesis of CdS and ZnS nanowires using single-source molecular precursors. J. Am. Chem. Soc., 2003, 125(38): 11498-11499
    [55] Jian, J. K.; Chen, X. L.; Tu, Q. Y. et al. Preparation and optical properties of prism-shaped GaN nanorods. J. Phys. Chem. B, 2004, 108(32): 12024-12026
    [56] Davidson, F. M.; Wiacek, R.; Korgel, B. A. Supercritical fluid-liquid-solid synthesis of gallium phosphide nanowires. Chem. Mater., 2005, 17(2): 230-233
    [57] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of semiconducting oxides. Science, 2001, 291(5537): 1947-1949
    [58] Kong, X. Y.; Ding, Y.; Yang, R. et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348-1351
    [59] Wu, Y. Y.; Yang, P. D. Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc., 2001, 123(13): 3165-3166
    [60] Huang, M. H.; Wu, Y. Y.; Feick, H. et al. Catalytic growth of zinc oxide nanowires by vapor transport. Adv. Mater., 2001, 13(2): 113-116
    [61]郑忠.胶体科学导论.北京:高等教育出版社,1989
    [62] Lee, S. M.; Cho, S. N. Anisotropic shape control of colloidal inorganic nanocrystals. Adv. Mater., 2003, 15(5): 441-444
    [63] Jun, Y.; Jung, Y.; Cheon, J. Architectural Control of Magnetic Semiconductor Nanocrystals. J. Am. Chem. Soc., 2002, 124(4): 615-619
    [64] Jun, Y.; Lee, S. M.; Kang, N. J. et al. Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System. J. Am. Chem. Soc., 2001, 123(21): 5150-5151
    [65] Lee, S. M.; Jun, Y.; Cho, S. N. et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks. J. Am. Chem. Soc., 2002, 124(38): 11244-11245
    [66] Peng, X. G. Mechanisms for the Shape-control and Shape-Evolution of Colloidal Semiconductor Nanocrystals. Adv. Mater., 2003, 15(5): 459-463
    [67] Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop- and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc., 2000, 122(51): 12700-12706
    [68] Rahman, S.; Yang, H. Nanopillar Arrays of Glassy Carbon by Anodic Aluminum Oxide Nanoporous Templates. Nano Lett., 2003, 3(4): 439-442
    [69] Gates, B.; Wu, Y.; Yin, Y. et al. Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se. J. Am. Chem. Soc., 2001, 123(46): 11500-11501
    [70] Whitney, T. M.; Jiang, J. S.; Searson, P .C. et al. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science, 1993, 261(5126): 1316-1319
    [71] Zheng, M. J.; Zhang, L. D.; Zhang, X. Y. et al. Fabrication and Optical Absorption of Ordered Indium Oxide Nanowires Arrays Embedded in Anodic AluminaMembranes. Chem. Phys. Lett., 2001, 334(4-6): 298-302
    [72] Li, Y.; Xu, D. S.; Zhang, Q. M. et al. Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Alumium Oxide Templates. Chem. Mater., 1999, 11(12): 3433-3438
    [73] Brumlik, C. J.; Martin, C. R. Template Synthesis of Metal Microtubules. J. Am. Chem. Soc., 1991, 113(8): 3174-3175
    [74] Cepak, V. M. ; Hulteen, J. C. ; Che, G. L. et al. Chemical Strategies for Template Syntheses of Composite Micro and Nanostructures. Chem. Mater., 1997, 9(5): 1065-1069
    [75] Rao, C. N.; Govindaraj, A.; Deepak, F. L. et al, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys. Lett., 2001, 78(13): 1853-1855
    [76] Prasanta, K. D.; Arabinda, C.; Satyen, S. First Simultaneous Estimates of the Water Pool Core Size and the Interfacial Thickness of a Cationic Water-in-Oil Microemulsion by Combined Use of Chemical Trapping and Time-Resolved Fluorescence Quenching. Langmuir, 1999, 15(14): 4765-4772
    [77] Lisiecki, I.; Pileni, M. P. Copper Metallic Particles Synthesized "in Situ" in Reverse Micelles: Influence of Various Parameters on the Size of the Particles. J. Phys. Chem., 1995, 99(14): 5077-5082
    [78] Lisiecki, I.; Pileni, M. P. Synthesis of copper metallic clusters using reverse micelles as microreactors. J. Am. Chem. Soc., 1993, 115(10): 3887-3896
    [79] Guo, L.; Wu, Z. H.; Liu, T. et al. Synthesis of novel Sb2O3 and Sb2O5 nanorods. Chem. Phys. Lett., 2000, 318(1-3): 49-52
    [80] Moran, P. D.; Bartlett, J. R., Bowmaker, G. A. et al. Formation of TiO2 sols, gels and nanopowders from hydrolysis of Ti(OiPr)4 in AOT reverse micelles. J. Sol-Gel Sci. Technol., 1999, 15(3): 251-262
    [81] Agostiano, A.; Catalano, M.; Curri, M. L. et al. Synthesis and structuralcharacterisation of CdS nanoparticles prepared in a four-components“water-in-oil”microemulsion. Micron, 2000, 31(3): 253-258
    [82] Zhang, X, H.; Xie, S. Y.; Jiang, Z. Y. et al. Starlike nanostructures of polyoxometalates K3[PMo12O40].nH2O synthesized and assembled by an inverse microemulsion method. Chem. Commun., 2002, 18: 2032-2033
    [83] YU, S. H.; Colfen, H.; Tauer, K. et al. Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature Mater., 2005, 4(1): 51–55
    [84] Gao, P.; Zhan, C. L.; Liu, L. Z. et al. Inter- and intra-molecular H-bonds induced different nanostructures from a multi-H-bonding (MHB) amphiphile: nanofibers and nanodisks. Chem. Commun., 2004, 10: 1174-1175
    [85] Leren, K.; Krueger, M.; Gilad, R. et al. Sequence-Specific Molecular Lithography on Single DNA Molecules. Science, 2002, 297(5578): 72-75
    [86] Banfield, J. F.; Welch, S. A.; Zhang, H. et al. Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products. Science, 2000, 289(5480): 751-754
    [87] Penn, R. L.; Banfield, J. F. Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals. Science, 1998, 281(5379): 969-971
    [88] Li, Y. D.; Liao, H. W.; Ding, Y. et al. Nonaqueous Synthesis of CdS Nanorod Semiconductor. Chem. Mater., 1998, 10(9): 2301-2303
    [89] Yu, S. H.; Wu, Y. S.; Yang, J. et al. A Novel Solventothermal Synthetic Route to Nanocrystalline CdE (E = S, Se, Te) and Morphological Control. Chem. Mater., 1998, 10(9): 2309-2312
    [90] Zhan, J.; Yang, X.; Wang, D. et al. Polymer-Controlled Growth of CdS Nanowires. Adv. Mater., 2000, 12(18): 1348-1352
    [91] Wang, W. ; Geng, Y. ; Yan, P. et al. Synthesis and Characterization of MSe (M = S, Se) nanorods by a new solvothermal method. Inorg.Chem.Commun.,1999, 2(3):83-85
    [92] Lu, Q.; Hu, J.; Tang, K. et al. Growth of SiC nanorods at low temperature. Appl. Phys. Lett., 1999, 75(4): 507-509
    [93] Zhang, P.; Gao, L. Synthesis and characterization of CdS nanorods via hydrothermal microemulsion. Langmuir, 2003, 19(1): 208-210
    [94] Zhang, J.; Sun, L. D.; Jiang. X. C. et al. Shape Evolution of One-Dimensional Single-Crystalline ZnO Nanostructures in a Microemulsion System. Crystal Growth & Design, 2004, 4(2): 309-313
    [95] Mo, M.; Yu, J. C.; Zhang, L. et al. Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres. Adv. Mater., 2005, 17(6): 756-760
    [96] Pastoriza-Santos, I.; Liz-Marian, L. M.. Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir, 2002, 18(7): 2888-2894
    [97] Abu, M. Q. R.; Gedanken, A. Sonochemical synthesis of stable hydrosol of Fe3O4 nanoparticles. J. Colloid. Interf. Sci., 2005, 284(2): 489-494
    [98] Zhu, S. M.; Zhou, H. A.; Hibino, M. et al. Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Func. Mater., 2005, 15(3): 381-386
    [99] Xie, R.; Li, D.; Zhang, H. et al. Low-Temperature Growth of Uniform ZnO Particles with Controllable Ellipsoidal Morphologies and Characteristic Luminescence Patterns. J. Phys. Chem. B, 2006, 110(39): 19147-19153
    [100] Leite, E. R.; Weber, I. T.; Longo, E. et al. A New Method to Control Particle Size and Particle Size Distribution of SnO2 Nanoparticles for Gas Sensor Applications. Adv. Mater., 2000, 12(13): 965-968
    [101] Fujihara, S.; Maeda, T.; Ohgi, H. et al. Hydrothermal Routes To Prepare Nanocrystalline Mesoporous SnO2 Having High Thermal Stability. Langmuir, 2004, 20(15): 6476-6481
    [102] Pang, G.; Chen, S.; Koltypin, Y. et al. Controlling the particle size of calcined SnO2 nanocrystals. Nano Lett., 2001, 1(12): 723-726
    [103] Jiang, L.; Sun, G.; Zhou, Z.; et al. Microrheology of Wormlike Micellar Fluids from the Diffusion of Colloidal Probes. J. Phys. Chem. B, 2005, 109(18): 8744-8748
    [104] Ohgi, H.; Maeda, T.; Hosono, E. et al. Evolution of Nanoscale SnO2 Grains, Flakes, and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions. Cryst. Growth Des., 2005, 5(3): 1079-1083
    [105] Leen, S. C.; Lee, J. H.; Oh, T. S.; et al. Fabrication of tin oxide film by sol–gel method for photovoltaic solar cell system. Solar Energy Materials & Solar Cells, 2003, 75: 481–487
    [106] Karapatnitski, I. A.; Mit, K. A.; Mukhamedshina, D. M. et al. Optical, structural and electrical properties of tin oxide films prepared by magnetron sputtering. Surface and Coatings Technology, 2002, 151–152: 76-81
    [107] Dai, Z. R.; Pan, Z. W.; Wang, Z. L. Tin Oxide Nanowires, Nanoribbons, and Nanotubes. J. Phys. Chem. B, 2002, 106(6): 1274-1279
    [108] Chen, Y.; Cui, X.; Zhang, K. et al. Bulk-quantity synthesis and self-catalytic VLS growth of SnO2 nanowires by lower-temperature evaporation. Chem. Phys. Lett., 2003, 369(1,2): 16-20
    [109] Hu, J.; Bando, Y.; Liu, Q. et al. Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater., 2003, 13(6): 493-496
    [110] Liu, Z. Q.; Zhang, D. H.; Han, S. et al. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater., 2003, 15(20): 1754-1757
    [111] Ferrere, S.; Zaban, A.; Gregg, B. A. Dye Sensitization of Nanocrystalline Tin Oxide by Perylene Derivatives. J. Phys. Chem. B, 1997, 101(23): 4490-4493
    [112] Duan, J.; Yang, S.; Liu, H. et al. Single Crystal SnO2 Zigzag Nanobelts. J. Am. Chem. Soc., 2005, 127(17): 6180-6181
    [113] Hu, J. Q.; Ma, X. L.; Shang, N. G. et al. Large-Scale Rapid Oxidation Synthesis ofSnO2 Nanoribbons. J. Phys. Chem. B 2002, 106(15): 3823-3826
    [114] Ling, C.; Qian, W.; Wei, F. Gas-flow assisted bulk synthesis of V-type SnO2 nanowires. J. Crystal. Growth., 2005, 285: 49–53
    [115] Wang, Y.; Lee, J. Y.; Deivaraj, T. C. Controlled Synthesis of V-shaped SnO2 Nanorods. J. Phys. Chem. B, 2004, 108(36): 13589-13593
    [116] Liu, Y. K.; Zheng, C. L.; Wang, W. Z. et al. Production of SnO2 nanorods by redox reaction. J. Crystal. Growth, 2001, 233(1-2): 8-12
    [117] Zhang, D. F.; Sun, L. D.; Yin, J. L. et al. Low-temperature fabrication of highly crystalline SnO2 nanorods. Adv. Mater., 2003, 15(12): 1022-1025
    [118] Cheng, B.; Russell, J. M.; Shi, W. S. et al. Large-scale, solution-phase growth of single-crystalline SnO2 nanorods. J. Am. Chem. Soc., 2004, 126(19): 5972-5973
    [119] Chen, D.; Gao, L. Facile synthesis of single-crystal tin oxide nanorods with tunable dimensions via hydrothermal process. Chem. Phys. Lett., 2004, 398(1-3): 201-206
    [120] Leite, E. R.; Weber, I. T.; Longo, E. et al. A new method to control particle size and particle size distribution of SnO2 nanoparticles for gas sensor application. Adv. Mater., 2000, 12(13): 965-968
    [121] Law, M.; Kind, H.; Messer, B. et al. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angew. Chem. Int. Ed., 2002, 41(13): 2405-2408
    [122] Kolmakov, A.; Zhang, Y. X.; Cheng, G. S. et al. Detecting of CO and O2 using tin oxide nanowires sensors. Adv. Mater., 2003, 15(12): 997-1000
    [123] Wang, Y. L.; Jiang, X. C.; Xia, Y. N. Asolution-phase route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J. Am. Chem. Soc., 2003, 125(52): 16176-16177
    [124] Diéguez, A.; Romano-Rodríguez, A.; VilΧ, A. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys., 2001, 90(3): 1550-1557
    [125] Yu, K. N.; Xiong, Y.; Liu, Y. et al. Microstructural change of nano-SnO2 grainassemblages with the annealing temperature. Phys. Rev. B, 1997, 55(4): 2666-2671
    [126] Abello, L.; Bochu, B.; Gaskov, A. et al. Structural Characterization of Nanocrystalline SnO2 by X-Ray and Raman Spectroscopy. J. Solid State Chem., 1998, 135(1): 78-85
    [127] Zuo, J.; Xu, C.; Liu, X. et al. Study of the Raman spectrum of nanometer SnO2. J. Appl. Phys., 1994, 75(3): 1835-1836
    [128] Rumyantseva, M. N.; Gaskov, A. M.; Rosman, N. et al. Raman Surface Vibration Modes in Nanocrystalline SnO2: Correlation with Gas Sensor Performances. Chem. Mater., 2005, 17(4): 893-901
    [129] Lou, X. W.; Wang, Y.; Yuan, C. et al. Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity. Adv. Mater., 2006, 18(17): 2325-2329
    [130] Zhao, Q.; Zhang, Z.; Dong, T. et al. Facile Synthesis and Catalytic Property of Porous Tin Dioxide Nanostructures. J. Phys. Chem. B, 2006, 110(31): 15152-15156
    [131] Leite, E. R.; Giraldi, T. R.; Pontes, F. M. et al. Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Appl. Phys. Lett., 2003, 83(8): 1566-1568
    [132] Shi, H.; Qi, L.; Ma, J. et al. Polymer-directed synthesis of penniform BaWO4 nanostructures in reverse micelles. J. Am. Chem. Soc., 2003, 125(12): 3450-3451
    [133] Yu, S.; Colfen, H.; Antenietti, M. et al. The combination of colloid-controlled heterogeneous nucleation and polymer-controlled crystallization: facile synthesis of separated, uniform high-aspect-ratio single-crystalline BaCrO4 nanofibers. Adv. Mater., 2003, 15(2): 133-135
    [134] Zhang, D.; Qi, L.; Ma, J. et al. Synthesis of submicrometer-sized hollow silver spheres in mixed polymer-surfactant solutions. Adv. Mater., 2002, 14(20): 1499-1502
    [135] Zhou, X.; Zhang, D.; Zhu, Y. et al. Mechanistic investigations of PEG-directed assembly of one-dimensional ZnO nanostructures. J. Phys. Chem. B, 2006,110(51): 25734-25739
    [136] Sun, Y. G.; Yin, Y. D.; Mayers, B. T. et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinylpyrrolidone). Chem. Mater., 2002, 14(11): 4736-4745
    [137] Wang, Y. L.; Herricks, T.; Xia, Y. N. Single crystalline nanowires of Lead can be synthesized through thermal decomposition of lead acetate in ethylene glycol. Nano. Lett., 2003, 3(8): 1163-1166
    [138] Coelfen, H.; Mann, S. Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew. Chem. Int. Ed., 2003, 42(21): 2350-2365
    [139] Vayssieres, L.; Graetzel, M. Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angew. Chem. Int. Ed., 2004, 43(28): 3666-3670
    [140] Korgel, B. A.; Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater., 1998, 10(9): 661-665
    [141] Vanheusden, K.; Warren, W. L.; Seaeger, C. H. et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys., 1996, 79(10): 7983-7990
    [142] Liu, Y. J.; Claus, R. O. Blue light emitting nanosized TiO2 colloids. J. Am. Chem. Soc., 1997, 119(22): 5273-5274
    [143] Zhang, J.; Jiang, F. H. Catalytic growth of Ga2O3 nanowires by physical evaporation and their photoluminescence properties. Chem. Phys., 2003, 289(2-3): 243-249
    [144] Acciarri, M.; Canevali, C.; Mari, C. M. et al. Nanocrystalline SnO2-based thin films obtained by sol-gel route: a morphological and structural investigation. Chem. Mater., 2003, 15(13): 2646-2650
    [145] Xu, G.; Zhang, Y. W.; Sun, X. et al. Synthesis, Structure, Texture, and CO Sensing Behavior of Nanocrystalline Tin Oxide Doped with Scandia. J. Phys. Chem. B, 2005, 109(8): 3269-3278
    [146] Morris, L.; Williams, D. E. Pt(II) as an Electronically Active Surface Site in the Room Temperature CO Response of Pt Modified Gas Sensitive Resistors. J. Phys. Chem. B, 2001, 105(30): 7272-7279
    [147] Tsang, S. C.; Bulpitt, C. D. A.; Mitchell, P. C. H. et al. Some New Insights into the Sensing Mechanism of Palladium Promoted Tin (IV) Oxide Sensor. J. Phys. Chem. B, 2001, 105(24): 5737-5742
    [148] Hidalgo, P.; Castro, R. H. R.; Coelho, A. C. V. et al. Surface Segregation and Consequent SO2 Sensor Response in SnO2-NiO. Chem. Mater., 2005, 17(16): 4149-4153
    [149] Santilli, C. V.; Pulcinelli, S. H.; Brito, G. E. S. et al. Sintering and Crystallite Growth of Nanocrystalline Copper Doped Tin Oxide. J. Phys. Chem. B, 1999, 103(14): 2660-2667
    [150] Nguyen, P.; Ng, H. T.; Kong, J. et al. Epitaxial Directional Growth of Indium-Doped Tin Oxide Nanowire Arrays. Nano Lett., 2003, 3(7): 925-928
    [151] Kuang, Q.; Jiang, Z. Y.; Xie, Z. X. et al. Tailoring the Optical Property by a Three-Dimensional Epitaxial Heterostructure: A Case of ZnO/SnO2. J. Am. Chem. Soc., 2005, 127(33): 11777-11784
    [152] Yu, W.; Li, X.; Gao, X. et al. Large-Scale Synthesis and Microstructure of SnO2 Nanowires Coated with Quantum-Sized ZnO Nanocrystals on a Mesh Substrate. J. Phys. Chem. B, 2005, 109(36): 17078-17081
    [153] Kar, S.; Chaudhuri, S. Shape Selective Growth of CdS One-Dimensional Nanostructures by a Thermal Evaporation Process. J. Phys. Chem. B, 2006, 110(10): 45424547
    [154] Wang, J. X.; Xie, S. S.; Yuan, H. J. et al. Synthesis, structure, andphotoluminescence of Zn2SnO4 singlecrystal nanobelts and nanorings. Solid State Commun., 2004, 131(7): 435-440
    [155] Chen, Y. J.; Xue, X. Y.; Wang, Y. G. et al. Synthesis and ethanol sensing characteristics of single crystalline SnO2 nanorods. Appl. Phys. Lett., 2005, 87(23): 233503/1-233503/3
    [156] Yamazoe, N.; Fuchigami, J.; Kishikawa, M. et al. Interactions of tin oxide surface with oxygen, water, and hydrogen. Surf. Sci., 1979, 86: 335–344
    [157] Chang, S. C. Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. J. Vac. Sci. Technol., 1980, 17: 366-369
    [158] Ge, J. P.; Wang, J.; Zhang, H. X. et al. High ethanol sensitive SnO2 microspheres. Sensors and Actuators B, 2006, 113(2): 937–943
    [159] Ayudhya, S. K. N.; Tonto, P.; Mekasuwandumrong, O. et al. Solvothermal Synthesis of ZnO with Various Aspect Ratios Using Organic Solvents. Crystal Growth & Design, 2006, 6(11): 2446-2450
    [160] Xie, X.; Qian, Y. T. et al. Coexistence of wurtzite GaN with zinc blende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy. Appl. Phys. Lett., 1996, 69(3): 334-336
    [161] Xie, Y.; Qian, Y. T.; Wang, W. Z. et al. A benzene-thermal synthetic route to nanocrystalline GaN. Science, 1996, 272(5270): 1926-1927
    [162] Li, Y. D.; Qian, Y. T.; Liao, H. W. et al. A reduction-pyrolysis-catalysis synthesis of diamond. Science, 1998, 281(5374): 246-247
    [163] Li, Y. D.; Ding, Y.; Qian, Y T. et al. A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe. Inorg. Chem. 1998, 37(12): 2844-2845
    [164] Li, Y.D.; Ding, Y.; Wang, Z.Y. et al. A novel chemical route to ZnTe semiconductor nanorods. Adv. Mater., 1999, 11(10): 847-850
    [165] Holmes, J. D.; Johnston, K. P. R.; Doty, C. Control of thickness and orientation of solution-grown silicon nanowires. Science, 2000, 287(5457): 1471-1473
    [166] Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science, 2001, 291(5505): 851-853
    [167] Hu, J.; Li, L. S.; Yang, W. Linearly polarized emission from colloidal semiconductor quantum rods. Science, 2001, 292(5524): 2060-2063
    [168] Yao, W. T.; Yu, S. H.; Pan, L. et al. Flexible wurtzite-type ZnS nanobelts with quantum-size effects: a diethylenetriamine-assisted solvothermal approach. Small, 2005, 1(3): 320-325
    [169] Yao, W. T.; Yu, S. H.; Jiang, J. et al. Complex wurtzite ZnSe microspheres with high hierarchy and their optical properties. Chem. Eur. J., 2006, 12(7): 2066-2072
    [170] Yao, W. T.; Yu, S. H.; Huang, X. Y. Nanocrystals of an inorganic-organic hybrid semiconductor: Formation of uniform nanobelts of [ZnSe](diethylenetriamine)0.5 in a ternary solution. Adv. Mater., 2005, 17(23): 2799-2802
    [171] Yao, W. T.; Yu, S. H.; Liu, S. J. et al. Architectural control synthesis of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic. J. Phys. Chem. B, 2006, 110(24): 11704-11710
    [172] Chu, H.; Li, X.; Chen, G. et al. Shape-controlled synthesis of CdS nanocrystals in mixed solvents. Crystal Growth & Design, 2005, 5(5): 1801-1806
    [173] Li, Y. D.; Liao, H. W.; Ding, Y. et al. Solvothermal Elemental Direct Reaction to CdE (E = S, Se, Te) Semiconductor Nanorod. Inorg. Chem., 1999, 38(7): 1382-1387
    [174] Yang, J.; Zeng, J. H.; Yu, S. H. et al. Formation Process of CdS Nanorods via Solvothermal Route. Chem. Mater., 2000, 12(11): 3259-3263
    [175] Zhang, Z.; Blom, D. A.; Gai, Z. et al. High-Yield Solvothermal Formation of Magnetic CoPt Alloy Nanowires. J. Am. Chem. Soc., 2003, 125(25): 7528-7529
    [176] Gorai, S.; Ganguli, D.; Chaudhuri, S. Synthesis of Copper Sulfides of Varying Morphologies and Stoichiometries Controlled by Chelating and NonchelatingSolvents in a Solvothermal Process. Crystal Growth & Design, 2005, 5(3): 875-877
    [177] Zhang, W.; Xu, L.; Tang, K. et al. Solvothermal synthesis of NiS 3D nanostructures. Eur. J. Inorg. Chem., 2005, 4: 653-656
    [178] Zhao, P.; Wang, J.; Cheng, G. et al. Fabrication of Symmetric Hierarchical Hollow PbS Microcrystals via a Facile Solvothermal Process. J. Phys. Chem. B, 2006, 110(45): 22400-22406
    [179] Zhou, J. X.; Zhang, M. S.; Hong, J. M. et al. Raman spectroscopic and photoluminescence study of single-crystalline SnO2 nanowires. Solid State Communications, 2006, 138(5): 242-246
    [180] Nutz, T.; Haase, M.. Wet-Chemical Synthesis of Doped Nanoparticles: Optical Properties of Oxygen-Deficient and Antimony-Doped Colloidal SnO2. J. Phys. Chem. B, 2000, 104(35): 8430-8437
    [181] Kilic, C.; Zunger, A. Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett., 2002, 88(): 095501/1-095501/4
    [182] Dawar, A. L.; Joshi, J. C. Semiconducting Transparent Thin Films: Their Properties and Applications. J. Mater. Sci. 1984, 19(1): 1-23
    [183] Peng, X. S.; Meng, G. W.; Wang, X. F. et al. Synthesis of Oxygen-Deficient Indium-Tin-Oxide (ITO) Nanofibers. Chem. Mater., 2002, 14(11): 4490-4493
    [184] Giuntini, J. C.; Granier, W.; Zanchetta, J. V.; et al. Sol-gel preparation and transport properties of a tin oxide. J. Mater. Sci. Lett. 1990, 9: 1383-1388
    [185] Jing, L.; Qu, Y.; Wang, B. et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Sol. Energy Mater. Sol. Cells, 2006, 90(12): 1773-1787
    [186] Khanna, A.; Kumar, R.; Bhatti, S. S. CuO-doped SnO2 Thin Films as Hydrogen Sulfide Gas Sensor. Appl. Phys. Lett., 2003, 82(24): 4388-4390
    [187] Wang, Y.; Jiang X.; Xia, Y. A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions. J.Am. Chem. Soc., 2003, 125(52): 16176-16177
    [188] Comini, E.; Faglia, G.; Sberveglieri, G. et al. Stable and Highly Sensitive Gas Sensors Based on Semiconducting Oxide Nanobelts. Appl. Phys. Lett., 2002, 81(10): 1869-1871
    [189] Kolmakov, A.; Zhang, Y.; Cheng G.; et al. Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater., 2003, 15(12): 997-1000
    [190] Phani, A. R. X-ray photoelectron spectroscopy studies on Pd doped SnO2 liquid petroleum gas sensor. Appl. Phys. Lett., 1997, 71(16): 2358-2360
    [191] Manno, D.; Micocci, G.; Serra, A. and et al. Thermal deposition and characterization of Se-Sn mixed oxide thin films for NO gas sensing applications. J. Appl. Phys., 1998, 83(7): 3541-3546
    [192] Maiti, A.; Rodriguez, J. A.; Law, M. et al. SnO2 Nanoribbons as NO2 Sensors: Insights from First Principles Calculations. Nano Lett., 2003, 3(8): 1025-1028
    [193] Varghese, O. K.; Malhotra, L. K.; Sharma, G. L. High ethanol sensitivity in sol-gel derived SnO2 thin films. Sens. Actuators B, 1999, 55(1): 161-165
    [194] Ge, J. P.; Wang, J.; Zhang, H. X. et al. High ethanol sensitive SnO2 microspheres. Sensors and Actuators B, 2006, 113(2): 937-943
    [195] Sakai, G.; Matsunaga, N.; Shimanoe, K. et al. Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B, 2001, 80(2): 125-131
    [196] Huang, J.; Matsunaga, N.; Shimanoe, K. et al. Nanotubular SnO2 Templated by Cellulose Fibers: Synthesis and Gas Sensing. Chem. Mater., 2005, 17(13): 3513-3518
    [197] Zhao, Q. R.; Gao, Y.; Bai, X. et al. Facile Synthesis of SnO2 Nanospheres and Applications in Gas Sensors and Electrocatalysts. Eur. J. Inorg. Chem., 2006, 8: 1643-1648
    [198] Scott, R. W. J.; Yang, S. M.; Chabanis, G. et al. Tin Oxide Opals and InvertedOpals: Near-Ideal Microstructures for Gas Sensors. Adv. Mater., 2001, 13(19): 1468-1472
    [199] Martinez, C. J.; Hockey, B.; Montgomery, C. B. et al. Porous tin oxide nanostructured microspheres for sensor application. Langmuir, 2005, 21(17): 7937-7944
    [200] Zhang, W.; Zhang, D.; Fan, T. et al. Morphosynthesis of Hierarchical ZnO Replica Using Butterfly Wing Scales as Templates. Microporous and Mesoporous Materials, 2006, 92(1-3): 227-233
    [201] Yang, D.; Qi, L.; Ma, J. Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes. Adv. Mater., 2002, 14(21): 1543-1546
    [202] Chia, S.; Urano, J.; Tamanoi, F. et al. Patterned Hexagonal Arrays of Living Cells in Sol-Gel Silica Films. J. Am. Chem. Soc., 2000, 122(27): 6488-6489
    [203] Imai, H.; Iwaya, Y.; Shimizu, K. et al. Preparation of Hollow Fibers of Tin Oxide with and without Antimony Doping. Chem. Lett., 2000, 8: 906-907
    [204] Huang, J.; Kunitake, T. Nano-Precision Replication of Natural Cellulosic Substances by Metal Oxides. J. Am. Chem. Soc., 2003, 125(39): 11834-11835
    [205] Caruso, R. A. Micrometer-to-Nanometer Replication of Hierarchical Structures by Using a Surface Sol–Gel Process. Angew. Chem., Int. Ed., 2004, 43(21): 2746-2748
    [206] Vuong, D. D.; Sakai, G.; Shimanoe, K. et al. Preparation of Grain Size-Controlled Tin Oxide Sols by Hydrothermal Treatment for Thin Film Sensor Application. Sensors and Actuators B, 2004, 103(1-2): 386-391
    [207] Ogawa, H.; Nishikawa, M.; Abe, A. Hall measurement studies and an electrical conduction model of tin oxide ultrafine particle films. J. Appl. Phys., 1982, 53: 4448-4455
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.