淀粉降解塑料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塑料废弃物的严重污染日益威胁人类赖以生存的环境,研究“绿色高分子”已经得到广泛重视。淀粉作为一种天然高分子化合物,其来源广泛,成本低廉,且能在各种自然环境下完全降解。淀粉基降解塑料已经部分替代了传统石油基塑料,更拓展了淀粉的非食物用途,成为国内外研究开发最多、应用前景最为广阔的一类生物降解塑料。
     本文采用硬脂酸铁(FeSt3)为光敏剂,丙烯酸丁酯接枝改性淀粉,制备出一类降解性能好的光/生物双降解聚乙烯薄膜。采用红外光谱、粘度法、DSC热分析和力学性能测试、人工紫外光老化和土埋生物降解等方法,对老化后的LDPE薄膜进行了结构表征和性能测试,并对降解机理进行了初步研究。结果表明:光敏剂FeSt3对LDPE薄膜的光降解具有双重作用,添加量为0.2%为宜;薄膜的羰基指数随着光照时间的延长先降低后增加;随着光照时间的延长,其降解程度增大,结晶度增加。LDPE薄膜的失重率随着淀粉含量的增加而增加;当淀粉含量25%时,薄膜失重率随着土埋时间的延长先上升,然后基本保持不变。
     本文将玉米淀粉分别进行了塑化改性、偶联剂改性(硅烷偶联剂KH560和钛酸酯偶联剂NDZ-102)和丙烯酸丁酯接枝改性,并以MDI做为扩链剂,制备出了一类淀粉/聚乳(PLA)酸全降解材料,结果表明以BA-g-Starch的改性方法效果最好,并且能够改善淀粉/PLA共混体系的吸水性。在制备BA-g-Starch/PLA降解材料的基础上,考察了乙烯醋酸乙烯酯共聚物接枝马来酸酐(EVA-g-MAH)加入量对材料的力学性能的影响,研究表明EVA-g-MAH的添加量定为10%左右时材料的综合性能最好。在BA-g-Starch/PLA为10/90的体系中,EOMMT的加入有利于提高体系的热变形温度;通过TGA分析结果表明,淀粉/PLA/EOMMT体系的热稳定性提高,起始分解温度由未添加前250℃上升到275℃。土埋试验表明:组分TPS/PLA为20/80的共混材料在降解初期淀粉首先发生降解,中后期主要是PLA的降解。SEM分析结果表明:对淀粉进行接枝改性后,淀粉粒径和空洞密度明显减小,BA-g-Starch和PLA的相容性得到了很大改善。
The pollution of plastic waste threats human survival environment and the research of "Green Polymers" has received wide attention. Starch is a natural polymer, its wide variety of sources, low cost, and can completely degrade in the natural environment. Starch-based degradable plastics have partially replaced the traditional oil-based plastics and have been studied extensively.
     In this paper, a serial of photo/biodegradable LDPE films were prepared by adding ferric stearate (FeSt3), butyl acrylate grafted starch into the LDPE matrix. and film aging artificial UV light and soil Buried biodegradation. Based on the artificial acceleration ultraviolet photo-degradation, biodegradation of soil burial test, the mechanical propertie, FT-IR spectrum, viscosity average molecular weigh and DSC propertie were measured and the degradation mechanism is preliminarily discussed. The results showed that photo sensitizer FeSt3 has a dual role in the LDPE film and the suitable dosage is 0.2%; when starch and photo-sensitizer contents ware fixed, the carbonyl index of LDPE film first induce, then increase, degradability and crystallinity also increase, with the exposure time prolonged. Weight loss of film first increased and then remained unchanged as the soil burial time extended.
     In this paper, with starch deal with glycerol, coupling agent (silane coupling agent KH560 and coupling agent NDZ-102) and grafted by butyl acrylate (BA-g-Starch),a class of starch/polylactic acid biodegradable materials hve been prepared, the Mechanical properties also been tested. The results show that it works best when BA-g-Starch is added to PLA matrix and decrease water absorption. SEM analysis showed that the starch particle size and void density was significantly reduced, compatibility has been greatly improved although the starch/PLA blends shows brittle fracture as the BA-g-Starch has been added. EVA-g-MAH could be improved elongation and toughness,its suitable amount is 10%. TGA analysis showed the initial thermal decomposition temperature increased observably by adding EOMMT to the starch/PLA(10/90)system, it increases from 250℃to 275℃with the EOMMT contents changing from 0 to 7 Phr. Soil burial test showed that when component TPS / PLA blends was 20/80,The component mainly eroded by bacteria is starch in the early, then is PLA in the mid-late time. starch; biodegradation
引文
[1]王琳霞.生物降解高分子材料[J].塑料科技, 2002, (1): 37-41.
    [2]王兴云,王雨民.可光降解聚乙烯薄膜的研究[J].中国纺织大学学报, 1998, (24): 34-36.
    [3]贾芳.低密度聚乙烯的光降解特性的研究[D].广东工业大学硕士学位论文. 2008.
    [4]钟世云,许乾慰,王宫善.聚合物降解与稳定化[M].北京:化学工业出版社, 2002: 40-41.
    [5]王继虎.淀粉与铁盐对聚乙烯降解特性的影响研究[D].广西:广西大学, 2003.
    [6]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社, 2002, 9-11.
    [7] Huang M F, Yu J G, Ma X F, Peng J. High performance biodegradable thermoplastic starch/EMMT Nanoplastics. Polymer. 2005, 46: 3157-3162.
    [8] Park H M, Li X C. Chang Z J, Park C Y. Preparation and Properties of Biodegradable Thermoplastic Starch/Clay Hybrids[J]. Macromolecular Materials and Engineering. 2002, 287: 553-558.
    [9] Arroyo O H, Huneault M A, Favis B D. Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite Nanocomposites[J]. Polymer composities. 2010, 31: 114-127.
    [10] Ke T Y, Sun X Z. Physical Properties of Poly(Lactic Acid) and Starch Composites with Various Blending Ratios[J]. Cereal Chemistry. 2000, 77(6): 761-768.
    [11] Ke T Y, Sun X Z. Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends[J]. Journal of Applied Polymer Science. 2001, 81(12): 3069-3082.
    [12] Ke T Y, Sun X Z. Thermal and Mechanical Properties of Poly(Lactic Acid) and Starch Blends with Various Plasticizers[J]. American Society of Agricultural Engineers. 2001, 44(4): 945-953.
    [13]李申,周晔,任天斌.聚乳酸/淀粉复合材料的制备及性能研究[J].塑料, 2006, 33(4): 7-11.
    [14] Sun X S, Paul S, Hua W. High strength plastic from reactive blending of starch and polylactic acids[P]. US: 6211325, 2001.
    [15]周达飞.钛酸四丁酯增韧改性聚乳酸/淀粉共混材料.功能高分子学报. 2007, 19(3):304-308.
    [16] Carlson D , Dubois P , Nie L, etal. Free radical branching of polylactide by reactive extrusion[J]. Polymer Engineering and Science, 1998, 38(2): 311-314.
    [17] Carlson Denise, Nie Li, Narayan R, etal. Maleation of polylactide ( PLA) by reactive extrusion[J]. Journal of Applied Polymer Science. 1998, 72(4): 477-479.
    [18] Ke T Y, Sun X Z. Effects of Moisture Content and Heat Treatment on the Physical Properties of Starch and Poly (lactic acid) Blends [J]. Journal of Applied Polymer Science, 2001, 81(12): 3069-3082.
    [19] Ke, T Y; Sun X Z. Thermal and Mechanical Properties of Poly(Lactic Acid) and Starch Blendswith Various Plasticizers[J]. American Society of Agricultural Engineers, 2001, 44(4): 945-953.
    [20] Ajioka M, Enomoto K, Suzuki K, etal. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid[J]. Bulletin of the Chemical Society of Japan, 1995, 68(8): 2125-2131.
    [21] Wise D L, Fellmann T D, Sanderson J E, Wentuorth R L. Lactic/glycolic acid polymers, in: Drug Carriers in Biology and Medicine[M]. London, New York: Academic Press.1979.
    [22]李亚军.可降解聚乳酸材料的研究[D].长沙:中南大学, 2004
    [23] Schroeter J, Hobelsberger M. On the mechanical properties of native starch granules[J]. Starch. 1992, 44(7): 247-252.
    [24] David S R , Stephen P M, Richard A G. Effects of substitution on acetyl amylose biodegradablility by amylase enzymes [J]. Micromoleculars. 1996, 29(1): 1-9.
    [25]张国栋,杨纪元,冯新德等.聚乳酸的研究进展[J].化学进展. 2000, 12(1): 89-102.
    [26] Nakajima T. Biodegradable polymer compositions with good physical properties. JP: 04202566, 1992.
    [27] Nakajima T. Biodegradable polymer compositions with good physical properties. JP: 04202567, 1992.
    [28]朱常英,由英才,寇小娣.含淀粉生物降解塑料[J].离子交换与吸附, 2000, 16(2): 182~187.
    [29]邱威杨,邱贤华,王飞镝.淀粉塑料-降解塑料研究与应用[M].北京:化学工业出版社, 2002, 100-126.
    [30]付秀娟,李庆新,黄进.可完全生物降解淀粉基塑料片的研制[J].合成树脂与塑料工业, 2003, 31(4): 36-37.
    [31]林宜超.含淀粉与光敏剂的LDPE膜可控光生物降解[J].合成树脂及塑料, 2000, 17(1): 10-13.
    [32] Williams S F, Peoples O P. Biodegradable plastics from plants[J]. Journal of Chemical Technology & Biotechnology, 1996, 26: 38-44.
    [33]陈可猛.淀粉基降解塑料技术现状及发展趋[J].广西化工, 1999, 28(3): 32~34
    [34]黄身岐,林本农,唐健玲.可控光-生物降解塑料薄膜工业化生产及应用研究[J].福建轻纺, 2003, 15: 173-174.
    [35] Griffin G J L. EP: 1489050, 1973.
    [36] Gaylord N G.. Copolymer, polyblends and compositions[J]. Advances in Chemistry Series. 1975, 142: 54-58.
    [37]韩昌泰.非淀粉型可控光,生物降解地膜研究与应用[J].塑料, 1997, 26: 7-14.
    [38]李铁骑,齐昆.淀粉填充塑料研究的进展,1994 (4) :241~246。
    [39]邱威扬,邱贤华,喻继文.国内生物降解淀粉塑料研究现状与展望, 2003, 31(4): 1~3.
    [40]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社, 2003.
    [41] Xu, Q. An ionic liquid as reaction media in the ring opening graft polymerization ofε-caprolactone onto starch granules[J].Carbohydrate Polymers. 2008, 72(1):113-121.
    [42]卢峰,胡小峰,邓桂兰.淀粉基生物降解塑料的研究进展[J].广州化工. 2004, 32(3): 1-4.
    [43] Ogasawara H, Takahashi K, Iitsuka K, Ishikawu I, Contribution of the micellulase in Shochu koji to the Resolution of Barler in the Shochu Mash[J]. Journal Brewing Society of Japan, 1991, 86(4): 304-307.
    [44] Viikari, L., Ranua, M., Kantelinen, A., Linko, M., Sundquist, J. Bleaching with enzymes. In: Biotechnology in the Pulp and Paper Industry[J]. The proceedings of 3rd International Conference, 1986: 67- 69.
    [45]戴李宗,周善康,李万利等.淀粉基可环境降解塑料研究[J].厦门大学学报, 2000, 39(3): 358-364.
    [46] Abdul Khalil H P S, Chow W C, Rozman H D. The effect of anhydride modification of sago starch on the tensile and water absorption properties of sago-filled linear low-density polyethylene. Polymer-Plastics Technology and Engineering, 2001, 40(3): 249–263.
    [47] Thakorea I. M., Sarawade B. D. Studies on biodegradability, morphology andthermo-mechanical properties of LDPE/modified starch blends. European Polymer Journal. 2001, 37(1): 151-160.
    [48]刘再满,丁生龙,柳明珠.淀粉改性与聚乙烯共混.合成橡胶工业, 2006, 29(3): 204-207.
    [49]吴俊,谢笔钧,熊汉国.超细淀粉在生物降解食品包装膜中的应用[J].食品科学, 2002, 23(10): 99-103.
    [50] Lee B, Jung H. Biodegradable plastic composition, method for preparing films[J]. Polymer Science & Technology, 2001, 4(3): 21-27.
    [51]叶斯奕.淀粉粒度对可生物降解聚乙烯膜性能的影响[J].中国塑料, 2000, 14(5): 82-86.
    [52]于九皋等.淀粉细化改性及其聚乙烯增容性的研究[J]化工进展, 1997, 3: 25-29.
    [53]杨明山.生物降解塑料的研究状况和发展趋势[J].中国塑料. 1992, (1): 79-82.
    [54]陈坚,堵国成.环境友好材料的生产与应用[M].北京:化学工业出版社, 2002, 65-72.
    [55]刘存之.淀粉降解塑料薄膜生产技术原理简介[J]. 1998, 12(4): 1310-1311.
    [56]申琴宇,吴磊.全球石油资源:稀缺还是充足[J].中国石油大学学报, 2006, 22: 1-7.
    [57]王佩璋,王澜,李田华.淀粉的热塑性研究[J].中国塑料, 2002, 16(4): 39-43;
    [58]刘娅,赵国华,陈宗道.改性淀粉在降解塑料中的应用[J].包装与食品机械, 2003, 21(2): 44-46.
    [59]封俊.可降解农用地膜的研究进展[J].现代加工, 1990, (2): 8-15.
    [60] Yuksel O,Hanife B. Enhancement of biodegradability of disposable polyethylene in controlled biological soil[J]. IntBiodeterior Biodegradation. 2000, 45: 49-54.
    [61] Edward D P. AreWe Running Out of Oil[M]. American Petroleum Institute, 1995, 38-39.
    [62]何小维,罗志刚.淀粉基生物降解塑料的研究进展[J].食品研究与开发[J], 2005, 26: 196-160.
    [63]陈庆,杨欣宇.生物降解塑料三大主流技术市场价值分析.新材料产业. 2008, 10: 45-51.
    [64]高建平,王为.淀粉基降解塑料材料[J].高分子材料科学与工程, 1998, 14(4): 16-23.
    [65] Usarat R, Aht-Ong D. Preparation and Characterization of Low-Density Polyethylene/Banana Starch Films Containing Compatibilizer and Photosensitizer[J].Journal of Applied Polymer Science. 2006, 100: 2717-2724.
    [66] Bagher R, Naimian F. Melt Flow Properties of Starch-Filled Linear Low Density Polyethylene: Effect of Photoinitiators[J]. Journal of Applied Polymer Science. 2007, 104: 178-182.
    [67] Liu H, Chen W, Cao C A. iodegradable plastic with high starch content for blown film comprises starch, trioleoyl isopropyl titanate coupling agent, phenolic resin, RECOOR3 photosensitizer, and low density polyethylene. CN: 101284922-A. 2009
    [68] Chen M, Gu F M, Bu H S. The effect of chain entanglements on heat transition behaviors of polymers[J]. Acta polymerica sinica, 1999, 3: 332-337.
    [69]邱威扬,邱贤华,喻继文等.我国的淀粉塑料宜慎重开发[J].现代化工, 1997, 12: 3-7.
    [70]戴李综,周善康,李万利等.淀粉基可环境降解塑料研究Ⅰ—淀粉的物理改性和填充PE塑料的相态结构.厦门大学学报. 2000, 39(3): 358-364.
    [71]林宝凤,李磊,梁兴泉等.铁盐对低密度聚乙烯光降解双重作用研究.塑料科技. 2007, 35(11): 66-71.
    [72]沙宝峰,杜美利,周安宁.聚乙烯薄膜光降解过程特性研究.现代塑料加工应用. 2004, 16(6): 4-6.
    [73]刘再满,丁生龙,柳明珠.光/生物降解聚乙烯薄膜的光降解性能.应用化学, 2006, 23(8): 875-880.
    [74] Ke T Y, Sun X Z. Thermal and mechanical properties of poly(Lactic Acid) and starch blends with various plasticizers[J]. American Society of Agricultural Engineers, 2001, 44(4): 945-953.
    [75] Ke T. Y, Sun X. Z. Physical properties of poly(lactic acid) and starch composites with various blending ratios [J]. Cereal Chemistry. 2000, 77(6): 761-768.
    [76] Wang X. L, Yang K. K, Wang Y. Z. Properties of starch blends with biodegradable polymers [J]. Journal of macromolecular science, Part C-Polymer reviews. 2003, C43(3): 385-409.
    [77] Ke. T. Y; Sun X. Z. Starch, Poly(lactic acid), and Poly(vinyl alcohol) Blends [J]. Journal of Polymers and the Environment, 2003, 11(1): 7-14.
    [78] Carlson D, Dubois P, Li N, etal. Free radical branching of polylactide by reactive extrusion [J]. Polymer Engineering and Science, 1998, 38(2): 311-314.
    [79] Carlson D, Li N, Narayan R, etal. Maleation of polylactide by reactive extrusion[J]. Journal of Applied Polymer Science. 1998, 72(4): 477-479.
    [80] Wang N, Yu J G, Ma X F. Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion [J]. Polymer International, 2007, 56(11): 1440-1447.
    [81] Orozco, V H; Brostow, W; Chonkaew, W, etal.Preparation and Characterization of Poly(Lactic Acid)-g-Maleic Anhydride plus Starch Blends[J]. Macromolecular symposia, 2009, 277: 69-80.
    [82] Park J W, Soon S, Kim S H, etal. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch [J]. Polymer Engineering and Science, 2000, 40(12): 2539-2550.
    [83] Schwach E, Averous L. Biodegradable Blends Based on Starch and Poly(Lactic Acid):Comparison of Different Strategies and Estimate of Compatibilization[J]. Journal of Polymers and the Environment, 2008, 16: 286–297.
    [84] Arroyo O H, Huneault M A. Processing and Properties of PLA/Thermoplastic Starch/Montmorillonite nanocomposites[J]. Polymer composites. 2010, 31: 114-127.
    [85] Shyh-Shin H, Peming P H. The mechanical/thermal properties of microcellular injection-molded polylactic-acid nanocomposites[J]. Polymer Composites. 2009, 30(11): 1625-1630.
    [86] Ren J, Liu Z, Ren T. Mechanical and thermal properties of poly(lactic acid)/starch/montmorillonite biodegradable blends[J]. Polymers & polymer composites, 2007, 15(8): 633-638.
    [87]谢松桂.一种高有机蒙脱土含量的母料及其制备方法. CN: 1462777A, 2003.
    [88]谢松桂,盛仲夷.一种纳米蒙脱土的固相插层制备方法及其制备的纳米蒙脱土母料. CN: 1556155A, 2004.
    [89]石锐,丁涛,刘全勇等.甘油含量对热塑性淀粉结构及性能的影响.塑料. 2006, 35(1): 44-49.
    [90] Jeroen J G. Hubertus Tournois, Dick W. Short-range structure in ( partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Reseach. 1995, 279:201-214.
    [91] Jun W P, Seung Soon IM. Biodegradable Polymer Blends of Poly( L-lactic acid) and Gelatinized Starch. Polymer engimeering and science, 2000, 40(12): 2539-2550.
    [92] Victor H. Orozco, Witold B, Wunpen C, Betty L L. Preparation and Characterization of Poly(Lactic Acid)-g-Maleic AnhydridetStarch Blends. Macromolecular Symposia. 2009, 277: 69-80.
    [93] Jacobsen S, Fritz H. G.. Filling of Poly(Lactic Acid) With Native Starch. PolymerEngineering and Science. 1996, 36(22): 2799-2804.
    [94]沈斌,张丽叶.聚乳酸/有机蒙脱土纳米复合材料的制备与性能.现代化工. 2009, 29(2): 120-125.
    [95] Ren J, Yu T, Li H. Studies on Morphologies and Thermal Properties of Poly(lactic acid)/Polycaprolactone/Organic-Modified Montmorillonite Nanocomposites. Polymer composites. 2008, 29(10): 1145-1151.
    [96]盛高铭,厦华.聚乳酸/有机蒙脱土纳米复合材料的制备及降解性能研究.塑料工业. 2009, 37: 18-21.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.