高性能补偿收缩混凝土碳化行为与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土碳化是引起钢筋混凝土结构中钢筋锈蚀的主要因素之一,可导致结构承载力和耐久性显著下降,严重影响结构使用性能。现代混凝土结构多使用含有粉煤灰、矿粉等矿物掺合料的高性能混凝土,以改善混凝土的力学性能、耐久性和经济性。但是,研究表明,大掺量矿物掺合料的使用由于改变了混凝土体系的碱度,将显著影响混凝土的抗碳化性能。并且,由于现代混凝土用水量偏低,混凝土收缩开裂风险大,而膨胀剂的水化可以产生体积膨胀势能,在一定程度上抵消收缩势能。因而,膨胀剂已经成为补偿现代混凝土体积收缩、防止结构开裂的重要技术途径,大量运用于桥梁、地铁、地下工程和轨道交通工程等重要建设工程中。
     高性能混凝土通常采用较低水胶比、较低用水量、大掺量矿物掺合料和高性能化学外加剂。由于用水量较小,并且高性能矿物掺合料的水化过程与水泥熟料也显著不同,因此高性能混凝土微观结构特征与时变特性与常规混凝土显著不同,而膨胀剂的加入将进一步改变高性能混凝土的微结构参数。虽然既有研究中有关高性能混凝土的碳化行为和微观机理的研究较多,但是针对补偿收缩高性能混凝土的碳化性能与机理的研究尚不多见,尤其是关于膨胀剂对混凝土孔结构和可碳化产物的数量与分布的影响规律认识不充分。因此,有必要系统开展针对高性能补偿收缩混凝土的碳化行为与机理的研究。
     本论文系统测试了粉煤灰用量、膨胀剂用量、养护条件、约束条件等因素对高性能混凝土碳化速率的影响,运用XRD、SEM、MIP、TG-DSC、FTIR和显微硬度分析等技术分析不同组分、不同养护条件试样的微结构特征,重点针对混凝土孔结构和Ca(OH)2含量参数,分析和测试了传输与碳化过程对混凝土微结构改变的规律,并利用合成C-S-H凝胶碳化的方法,研究不同组分C-S-H凝胶的碳化规律,为揭示胶凝组分碳化行为的微观机理提供直接依据。
     论文主要研究成果包括:
     (1)试验研究了高性能混凝土的碳化行为和微观机理,测试分析了碳化反应对高性能混凝土孔结构和胶凝组分的影响规律。结果表明:碳化反应降低了高性能混凝土内部连通孔隙的连通度,并减小其总孔隙率,从而提高了混凝土结构的密实度。混凝土内部Ca(OH)2含量和孔结构特征是影响混凝土抗碳化性能的两个主要因素。
     (2)测试和分析了大掺量粉煤灰高性能混凝土的碳化行为与微观机理,揭示了粉煤灰掺量与混凝土碳化速率、微结构特征变化之间的联系。大掺量条件下,掺入粉煤灰显著降低了高性能混凝土中Ca(OH)2的含量,增大了混凝土孔隙率,因此大掺量粉煤灰混凝土的碳化速率显著大于常规混凝土。对孔结构的影响是大掺量粉煤灰改变混凝土抗碳化能力的主要机理。
     (3)试验研究了膨胀剂对高性能混凝土碳化速率的影响,并分析了其微观机制。在含粉煤灰高性能混凝土中加入膨胀剂,可以显著减小其体积收缩率,并增加混凝土内部Ca(OH)2的含量。但是由于膨胀势能的作用和Ca(OH)2晶体取向生长分布的特征,自由变形条件下膨胀剂的使用劣化了混凝土的孔隙结构,提高了CO2的渗透能力,因此,加速了混凝土的碳化速率。
     (4)对比分析了养护过程中湿度和龄期对补偿收缩混凝土碳化速率的影响规律,针对补偿收缩混凝土和大掺量粉煤灰混凝土的碳化速率控制提出了养护制度优化原则,并运用微观分析结果进行了解释。
     (5)研究了约束条件对补偿收缩混凝土碳化速率的影响规律,并针对孔隙结构特征展开理论分析,研究结果表明:单向约束条件下,膨胀剂的水化产物可以填充混凝土部分孔隙,从而提高了混凝土的密实度,相比无约束条件显著降低了混凝土的碳化速度。
     (6)建立了一种基于显微硬度测试的混凝土碳化深度和进程表征新方法。运用显微硬度值与孔隙率之间的联系,基于碳化反应对混凝土孔隙结构的改变规律,提出一种运用显微硬度分析测试水泥基材料碳化深度和碳化前沿的新方法,相比常规酚酞指示剂法,客观性更强,并且可以定量化反应不同深度混凝土的碳化程度,有望发展成为一种表征混凝土碳化特性的新方法。
     (7)运用微观分析技术测试分析了不同Ca/Si比C-S-H凝胶的碳化行为,研究结果表明:Ca/Si比是影响C-S-H凝胶碳化速率的重要因素,低Ca/Si比C-S-H凝胶碳化速率更高,高活性矿物掺合料的使用降低了C-S-H凝胶的Ca/Si比,因此,大掺量条件下显著降低了混凝土的抗碳化能力。
The carbonation of covering concrete is an important cause of the corrosion of steel rebars in concrete structure, which degrades the load-bearing capacities and durability of the structure and affects the service performance. High performance concrete (HPC) is widely used in modern concrete structures, which is characterized by the use of mineral admixtures, such as fly ash and ground granulated blastfurnace slag, which can promote the mechanical properties and durability of concrete. But, researches have shown that the use of mineral admixtures affects greatly the carbonation resistance of concrete. Furthermore, modern concrete has a very low water content that increases the cracking risks. The hydration of expansive admixtures in concrete can generate expansive potential and thus, the use of expansive admixture has been an important technical solution of shrinkage prevention and crack migration. The expansive admixtures are widely used in bridge, underground structure, subway construction and railway projects. These structures are mostly designed with service life more than 100 years, which proposes high level of concrete durability.
     The high-performance concrete is characterized by high workability, high mechanical properties and excellent durability. The main design consideration is the low w/c ratio, low water content, the use of large amount of mineral admixture and application of high performance chemical admixture. The time-dependent microstructural changes of HPC are remarkably different from that of conventional concrete due to the low water content and reactivity difference between mineral admixture and clinker. The use of expansive admixture modifies the composition and quantity of hydration products and further changes microstructural parameters of the concrete. The carbonation behavior of high performance concrete has been intensively researches in literatures jointly with the mechanism; however, researches on the carbonation behavior and mechanism of shrinkage-compensated HPC are scarce. The hydration of expansive admixture changes the pore structure and quantity of hydration products that are subjected to carbonation. Hence, systematic analysis and testing of carbonation behavior of concrete containing expansive admixtures and necessary, which helps revealing the carbonation process and the microstructural mechanisms.
     Te carbonation behavior and mechanism of shrinkage-compensated HPC is investigated in this thesis. The effects of factors including the replacement levels of fly ash, expansive admixtures, curing condition, restraint conditions are on the carbonation rate are tested. The microstructural changes of concrete are analyzed with X-ray diffraction, scanning electron microscope, mercury intrusion porosimetry, coupled thermogravimetry and differential scanning calorimetry, and Fourier transform infrared spectroscopy. The pore structure and quantities of Ca(OH)2 have been the main consideration. Carbonation of synthetic C-S-H gel is investigated, which is expected to provide direct evidence of carbonation behavior and microstructural mechanisms.
     The main research outputs of the thesis are concluded as:
     (1) The carbonation behavior and microstructural mechanisms of HPC are investigated. The effects of carbonation reaction on the pore structure and compositions of cementitious binders in HPC are explored. The results have shown that in general the carbonation reactions lowers the connectivity of pores in concrete and reduces the overall porosity thus densifies the structure. The quantity of Ca(OH)2 and pore structure are the two determinative parameters on the carbonation rate of concrete.
     (2) The carbonation behavior and microstructural mechanism of fly ash blend HPC are tested and analyzed. Correlation between the quantities of fly ash in concrete and the carbonation rate as well as the microstructural parameters is established. The use of large volume fly ash in HPC reduces remarkably the Ca(OH)2 content in HPC and pore structure at early ages is greatly coarsened due to the relatively low reactivity of fly ash. Therefore, the carbonation rate of large volume fly ash HPC is obviously greater than that of conventional concrete. The main mechanism that changes the carbonation rate is the modification of pore structure.
     (3) The effects of expansive admixture on the carbonation of HPC are experimentally studied and the microstructural mechanisms are analyzed. The use of expansive admixture in fly ash blended HPC can reduce the shrinkage of concrete and increases the amount of Ca(OH)2, but degrades the pore structure of concrete due to the expansive potential and preferential growth of Ca(OH)2 crystals in the restraint free condition. Thus, the permeation of CO2 gas in concrete is accelerated and carbonation process is enhanced.
     (4) The carbonation of shrinkage-compensated concrete in different curing regimes are tested and analyzed. Optimized curing regimes are established specially for the HPC containing expansive admixture or large volume of fly ash. The mechanisms are explained via microstructural analysis results.
     (5) The carbonation rate of shrinkage-compensated concrete in different restraint conditions is investigated, based on which the pore structure is analyzed. The results have shown that in the one-dimensional restraint condition, the hydration products of expansive admixtures fill the pores and hence densify the microstructure. The carbonation rate is consequently lowered, compared to the restraint free condition.
     (6) A new method for testing the carbonation depth and process of HPC is established with the microhardness tests. The method is based on the relation between the microhardness and porosity and concrete. The presence of carbonation front is proved and the carbonation profile is established. Compared to the conventional phenolphthalein indicator method, the new method is more precise and less arbitrary. The carbonation degree of concrete in different location can be quantitatively determined.
     (7) Carbonation of the C-S-H gel with different Ca/Si ratios are studied with microstructural analysis. The results have shown that the Ca/Si ratio is an important parameter on the carbonation rate. C-S-H gels with low Ca/Si ratios carbonates much faster than those with high Ca/Si ratios. Thus, the use of highly reactive mineral admixtures can not only reduce the amount of Ca(OH)2, but lower the Ca/Si ratio of C-S-H gel, which degrades the carbonation resistance of HPC.
引文
[1]P.K.Mehta, P.J.M.Meteiro. Concrete Microstructure, Properties and Materials[M]. The McGraw-Hill companies,2006.
    [2]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1997.
    [3]洪定海.混凝土中钢筋的腐蚀与防护[M].北京:中国铁道出版社,1998.
    [4]M.N.Haque. Fly ash reduces harmful chloride ions in concrete[J]. ACI Materials Journal,1992(3):238-241.
    [5]杨静.混凝土的碳化机理及其影响因素[J].混凝土,1995(6):23-28
    [6]C.Andrade, D.Izquierdo. Benchmarking through an algorithm of repair methods of reinforcement corrosion:The repair index method[J]. Cement & Concrete Composites,2005,27(6):723-733.
    [7]方景.影响混凝土碳化主要因素及钢锈因素实验研究[J].混凝土1993(3):35-43
    [8]申爱琴.水泥与水泥混凝土[M].人民交通出版社,2004.
    [9]胡曙光.先进水泥基复合材料[M].北京:科学出版社,2009.
    [10]阎培渝,覃肖.大体积补偿收缩混凝土与延迟钙矾石生成[J].混凝土,2000(6):18-21
    [11]游宝坤.建筑结构裂渗控制新技术[M].北京:中国建材工业出版社,1998.
    [12]吴中伟.补偿收缩混凝土[M].北京:中国建筑工业出版社,1979.
    [13]汪澜.水泥混凝土——组成性能应用[M].北京:中国建材工业出版社,2004.
    [14]王军.补偿收缩混凝土的研究与应用前景[J].城市建设,2009(28):107-108.
    [15]X.Wang, H.Lee. A model for predicting the carbonation depth of concrete containing low-calcium fly ash[J]. Construction and Building Materials 23(2009):725-733.
    [16]RILEM Committee. CPC-18 Measurement of hardened concrete carbonation depth[J]. Materials and Structures,1988,18:453-455.
    [17]RILEM Draft Recommendation. CPC-18 Measurement of Hardened Concrete Carbonation Depth[J]. Materials and Structures,1984,17:437-440.
    [18]V.G.Smolczyk. Testing of Concrete[J]. Proceeding of RILEM Symposium, 1962:485-489.
    [19]柳俊哲.混凝土碳化研究与进展(1)——碳化机理及碳化程度评价[J].混凝 土.2005(11):10-13
    [20]C.D.Atis. Accelerated carbonation and testing of concrete made with fly ash[J]. Construction and Building Materials,17(2003):147-152.
    [21]M.F.Bertos, S.J.R.Simons, C.D.Hills and P.J.Carey. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2[J]. Journal of Hazardous Materials,2004,112(3):193-205
    [22]蒋利学,张誉.混凝土部分碳化区长度的分析与计算[J].工业建筑,1999,29(1):17-20.
    [23]徐文冰,水中和,马军涛,陈伟.基于显微硬度分析的粉煤灰混凝土碳化性能研究[J].硅酸盐通报,2010,30(1):7-12.
    [24]水中和,屠柳青,马军涛,陈伟,徐文冰.膨胀剂对粉煤灰混凝土显微结构及抗碳化性能的影响[J].混凝土,2011(7):62-68.
    [25]屠柳青,水中和,马军涛,陈伟,徐文冰.约束条件对补偿收缩混凝土碳化速率的影响[J].混凝土,2011(4):13-16.
    [26]马军涛,水中和,陈伟,徐文冰.养护湿度对补偿收缩混凝土碳化速率的影响[J].混凝土,2011(1):24-27.
    [27]徐文冰.补偿收缩混凝土的碳化性能与微结构研究[D].武汉理工大学硕士论文.2011.
    [28]季锡贤,潘钢华,杨岭,李琍.通用硅酸盐水泥抗碳化性能测试方法的研究[J].硅酸盐通报.2010,29(1):224-229.
    [29]柳俊哲.混凝土碳化研究与进展(3)——腐蚀因子的迁移[J].混凝土,2006(1):51-54
    [30]L.J.Parrott. Carbonation in a 36 year old in-situ concrete[J]. Cement and Concrete Research,1989(19):649-656.
    [31]叶铭勋.混凝土碳化反应的热力学计算[J].硅酸盐通报,1989,8(2):27-31.
    [32]Y.Li, G.Wang. The mechanism of carbonation of mortar and the dependence of carbonation on pore structure[J]. Int Conf on Concrete Durability, Atlanta,1987: 1915-1943.
    [33]Y.F.Houst, F.H.Wittmann. Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste [J]. Cement and Concrete Research,1994(24):1165-1176.
    [34]柳俊哲.混凝土碳化研究与进展(2)——碳化速度的影响因素及碳化对混凝土品质的影响[J].混凝土.2005(12):10-14.
    [35]J.H.Xiao, J.Li, et al. Experimental study on strength and ductility of carbonated concrete elements[J]. Construction and Building Materials.2002,16(3):187-192.
    [36]J.J.Chang, W.C.Yeih, et al. Suitability of several current used concrete durability indices on evaluating the corrosion hazard for carbonated concrete[J]. Materials Chemistry and Physics,2004,84(1):71-78.
    [37]陈伟,田亚坡,周紫晨.粉煤灰混凝土抗碳化性能及显微硬度分析[J].武汉理工大学学报,2006,31(11):14-18.
    [38]连丽,印海春,廖卫东.混凝土界面区的显微硬度研究[J].国外建材科技.2005年,26(2):59-64.
    [39]王玉琳.混凝土碳化影响因素研究综述[J].连云港化工高等专科学校学报.2002(2):22-25.
    [40]龚洛书,柳春圃.混凝土的耐久性及其修补[M].北京:中国建筑工业出版社,1990.
    [41]谢东升.高性能混凝土碳化特性及相关性能的研究[D].河海大学硕士论文,2005.
    [42]颜承越.水灰比-碳化方程与抗压强度-碳化方程的比较[J].混凝土.1994(3):46.
    [43]P.Sulapha, S.F.Wong, T.H.Wee and S.Swaddiwudhipong. Carbonation of Concrete Containing Mineral Admixtures[J]. Journal of materials in civil engineering,1994 (3):32-35.
    [44]L.Stevula, J.Madej, J.Kozankova and J.Madejova. Hydration products at the blast furnace slag aggregate-cement paste interface [J]. Cement and Concrete Research,1994 (24):413-423.
    [45]J.Liu, Y.Li, L.Lv. Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars[J]. Wuhan University of Technology-Mater,2005(2):55-59.
    [46]刘祖华,梁发云.混凝土碳化研究现状评述[J].四川建筑科学研究.2000.9(26):52-54.
    [47]崔鹏飞.南水北调中线工程高性能混凝土抗碳化性能研究[D].河海大学硕士论文,2003.
    [48]M.Radhouane, T.Michele, B.Brahim. Flexural behavior of Concrete Beams Reinforced with Deformed Fiber-Reinforced Plastic Rods[J]. ACI Structure Journal, 1998:664-676.
    [49]T.Michele and B.Brahim. Effects of FRP reinforcement ratio and concrete strength on flexural behavior concrete beams[J]. Journal of Composites For Construction,1998,2 (1):7-15.
    [50]邱晓霞.控制混凝土碳化的施工措施[J].交通世界,2009(3-4):119-120.
    [51]何智海,刘运华,白轲,刘江红.混凝土碳化研究进展[J].材料导报,2008(22):353-356.
    [52]Y.Lo, H.M.Lee. Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy[J]. Build. Environ,2002 (37):507.
    [53]J.Bai, S.Wild, B.B. Sabir. Sorptivity and strength of air-cured and water-cured PC-PFA-MK concrete and the influence of binder composition on carbonation depth[J]. Cement and Concrete Research,2002(32):1813-1821.
    [54]M.D.A.Thomas, J.D.Matthews. Carbonation of fly ash concrete[J]. Magaz Concr Res,1992,44(160):217
    [55]N.I.Fattuhi. Concrete carbonation as influenced by curing regime[J]. Cement and Concrete Research,1988,18(3):426-430.
    [56]T.Turgay, Z.Polat, H.O.Koksal, B. Doran, C. Karakoc. Compressive behavior of large-scale square reinforced concrete columns confined with carbon fiber reinforced polymer jackets [J]. Materials and Design,2010(31):357-364.
    [57]S.K.Roy, D.O. Northwood and K.B. Poh. Effect of plastering on the carbonation of a 19 year old reinforced concrete building[J]. Construction and Building Materials, 1996 (104):267-272.
    [58]董文辰,康德君,王立久.粉煤灰混凝土中粉煤灰的火山灰效应综述[J].国外建材科技,2004,25(3):17-23
    [59]F.J.Huertas, A.Hidalgo, M.L.Rozalen, S.Pellicione, C.Domingo, C.A.Garcia-Gonzalez, C.Andrade and C.Alonso. Interaction of bentonite with supercritically carbonated concrete[J]. Applied Clay Science,2009(42):488-496.
    [60]W. Sha, GB.Pereira. Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag[J]. Cement and Concrete Research,2001(31):327-329.
    [61]J.Liu, Y.Li, L.Lv. Effect of Anti-freezing Admixtures on Alkali-silica Reaction in Mortars[J]. Journal of Wuhan University of Technology(Materials Science Edition).2005,20(2):80-82
    [62]L.C.Lange, C.D.Hills and A.B.Poole. The influence of mix parameters and binder choice on the carbonation of cement solidified wastes[J]. Waste Manage, 1996 (16):749.
    [63]陈迅捷,张燕驰,欧阳幼玲.活性掺合料对混凝土抗碳化耐久性的影响[J].混凝土与水泥制品.2002(3):7-9.
    [64]M.D.A.Thomas, J.D.Matthews. The permeability of fly ash concrete[J]. Materials and Structures,1992(25):388-396.
    [65]方憬,梅国兴,陆采荣.影响混凝土碳化主要因素及钢筋锈蚀因素试验研究[J].混凝土.1993(2):35-43.
    [66]张德成,张云飞,程新.硫铝酸盐水泥基混凝土抗碳化性能的研究[J].硅酸盐通报,2008,27(2):56-58.
    [67]刘蓝萍,王玉庆,张东宁.混凝土碳化深度随时间和水灰比变化规律的试验研究[J].工业技术,2009(11):48-51.
    [68]H.Shi, B.Xu, X.Zhou. Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete[J]. Construction and Building Materials,2009(23):1980-1985.
    [69]J.P.Balayssac, H.Detriche, J.Grandet. Effect of curing upon carbonation of concrete[J]. Construction and Building Materials 92(1995):91-95.
    [70]蔡传国.混凝土养护方式对碳化深度影响的试验研究[J].市政技术,2008,2(26):26-30.
    [71]D.Chen, E.Sakai, M.Daimon, Y.Ohba. Carbonation of low heat Portland cement paste procured in water for different time[J]. Journal of University of Science and Technology Beijing,2007,14(2):78-184.
    [72]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土[M].中国建材工业出版社,2005.
    [73]王栋民,左彦峰,欧阳世翕.氯离子在掺不同矿物质掺合料高性能混凝土中的扩散性能[J].硅酸盐学报,2010,32(7):26-29.
    [74]王栋民.高性能膨胀混凝土[M].清华大学土木工程系组编.2006年.
    [75]游宝坤,席耀忠.钙矾石的物理化学性能与混凝土的耐久性[J].中国建材科技,2002(3):13-18.
    [76]M.Collepardi, A.Borsoi, et al. Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions[J]. Cement & Concrete Composites,2005,27(6):704-708.
    [77]S.Tsivilis. A study on the parameters affecting the properties of Portland limestone cements[J]. Cement and Concrete Composites,1999,21(2):107-116.
    [78]S.Tsivilis, et al. The permeability of Portland limestone cement concrete[J]. Cement and Concrete Research,2003,33(9):1465-1471.
    [79]S.Tsivilis, et al. Properties and behavior of limestone cement concrete and mortar[J]. Cement and Concrete Research,2000,30(10):1679-1683.
    [80]阎培渝,廉慧珍,覃肖.使用膨胀剂配制补偿收缩混凝土时需要注意的几个问题[J].硅酸盐学报,2000.SI:42-45.
    [81]王强,陈志城,阎培渝.等强度条件下水胶比和粉煤灰掺量对混凝土自收缩的影响[J].混凝土,2006(12):1-3.
    [82]阎培渝,陈广智.养护温度和胶凝材料组成对膨胀剂限制膨胀率的影响[J].建筑技术,2001(1):22-23.
    [83]阎培渝,徐志全.水胶比和组成对补偿收缩胶凝材料的水化反应的影响[J].硅酸盐学报,2003(8):790-794.
    [84]阎培渝,韩建国,徐志全.水胶比和组成对补偿收缩胶凝材料水化程度与水化产物的影响[J].铁道科学与工程学报,2004(2):1-5.
    [85]S.Nagataki, H.Gomi. Expansive admixtures (mainly ettringite) [J]. Cement and Concrete Composites,1998,20(2-3):163-170.
    [86]W.Sun, et al. The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete[J]. Cement and Concrete Research, 2001,31(4):595-601.
    [87]Zh.Shui, et al. Effects of mineral admixtures on the thermal expansion properties of hardened cement paste[J]. Construction and Building Materials,2010, 24(9):1761-1767.
    [88]S.Hu, Y.Li. Research on the hydration, hardening mechanism, and microstructure of high performance expansive concrete[J]. Cement and Concrete Research,1999,29(7):1013-1017.
    [89]S.Tsivilis, et al. A study on the parameters affecting the properties of Portland limestone cements[J]. Cement and Concrete Composites,1999,21(2):107-116.
    [90]V.Lilkov, et al. Properties and hydration products of lightweight and expansive cements Part Ⅰ:Physical and mechanical properties [J]. Cement and Concrete Research,1999,29(10):1635-1640.
    [91]V.Lilkov, et al. Properties and hydration products of lightweight and expansive cements Part Ⅱ:Hydration products[J]. Cement and Concrete Research,1999, 29(10):1641-1646.
    [92]S.Nagataki, H.Gomi. Expansive admixtures (mainly ettringite) [J]. Cement and Concrete Composites,1998,20(2-3):163-170.
    [93]W.J. McCarter, D. Tran. Monitoring pozzolanic activity by direct activation with calcium hydroxide[J]. Construction and Building Materials,1996, 10(3):179-184.
    [94]S.Wild, J.M. Khatib. Portlandite consumption in metakaolin cement pastes and mortars[J]. Cement and Concrete Research,1997,27(1):137-146.
    [95]A.Durekovic, K.Popovic. The influence of silica fume on the mono/di silicate anion ratio during the hydration of CSF-containing cement paste[J]. Cement and Concrete Research,1987,17(1):108-114.
    [96]P.Yan, X.Qin. The effect of expansive agent and possibility of delayed ettringite formation in shrinkage-compensating massive concrete[J]. Cement and Concrete Research,2001,31(2):335-337.
    [97]S.H.Alsayed, M.A.Amjad. Effect of curing conditions on strength, porosity, absorptivity, and shrinkage of concrete in hot and dry climate[J]. Cement and Concrete Research,1994,24(7):1390-1398.
    [98]阎培渝,郑峰.温度对补偿收缩复合胶凝材料水化放热特性的影响[J].硅酸盐学报,2006(8):1006-1100.
    [99]陈恩义,廉慧珍.膨胀剂在高效能混凝土中的作用[J].混凝土与水泥制品,1994(3):8-12.
    [100]R.Mehta. Concrete carbonation[J]. Materials World,2008,16(10):18.
    [101]赵顺增,刘立.膨胀剂对粉煤灰混凝土碳化的影响及其机理研究[J].膨胀剂与膨胀剂混凝土.2008(2):17-21.
    [102]赵顺增.补偿收缩混凝土有效膨胀的研究[J].膨胀剂与膨胀混凝土2007(4):1-6.
    [103]赵顺增,刘立.轻集料对补偿收缩混凝土限制膨胀率的增益作用[J].膨胀剂与膨胀混凝土.2008(4):1-4.
    [104]刘江宁.膨胀水泥石的孔结构和约束条件对其影响[J].膨胀剂与膨胀混凝土.2008(2):11-16.
    [105]高培伟,吴胜兴,林萍华,吴中如.硫酸盐对碾压混凝土侵蚀开裂的机理微观分析[J].水力学报,2005,36(3):360-364.
    [106]J.Xiao, J.Li, B.Zhu,Z.Fan. Experimental Study on Strength and Ductility of Carbonated Concrete Elements[J]. Construction and Building Materials, 2002(16):187-192.
    [107]J.Chang, W.Yeih, R.Huang, Ch.Chen. Suitability of several current used concrete durability indices on evaluating the corrosion hazard for carbonation concrete [J]. Materials Chemistry and Physics,2004(84):71-78.
    [108]C.Chang, J.Chen. The Experimental Investigation of Concrete Carbonation Depth[J]. Cement and Concrete Research,2006(36):1760-1767.
    [109]N.Hyvert, et al. Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation[J]. Cement and Concrete Research,2010,40(11):1582-1589.
    [110]L.Black, K.Garbev, and I.Gee. Surface carbonation of synthetic C-S-H samples:A comparison between fresh and aged C-S-H using X-ray photoelectron spectroscopy[J]. Cement and Concrete Research,2008,38(6):745-750.
    [111]李纹纹.水化硅酸钙(CSH相)在碳化过程中的相变[J].上海硅酸盐,1992(3):44-49.
    [112]赵晓刚,吕林女.钙硅比对溶液法制备的水化硅酸钙形貌影响[J].建筑世界,2010,31(2):7-8.
    [113]孙抱真,苏尔达.水化硅酸钙的结晶度与碳化速度[J].硅酸盐学报,1984,9(12):281-287.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.