稀土掺杂透明磷酸盐玻璃陶瓷的制备与发光特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Er~(3+)和Er~(3+)/Yb~(3+)掺杂磷酸盐玻璃具有对Er~(3+)离子溶解度较高、Er~(3+)离子在磷酸盐玻璃中受激发射截面较大、荧光寿命长、声子能量适中、不易发生荧光淬灭、Er~(3+)/Yb~(3+)间能量传递效率高、上转换强度较弱等优点,因而近年来,作为1.5μm微片激光器和光纤激光器与放大器的良好基质材料,而受到了极大地关注。这些器件在光纤通信、激光测距、相干光学传输等方面有重要的应用。
     但是,磷酸盐玻璃存在化学和机械稳定性稍差、热导性和软化温度也不如硅酸盐玻璃等缺点,因而在光学性能上和实际应用上也受到一些限制。近来出现了一种新型激光介质材料——稀土离子掺杂的透明玻璃陶瓷,通过调整组分和热处理条件,可以实现对玻璃网络结构和玻璃化能力的调节,达到析晶可控和稀土在纳米晶相中重掺的目的。它兼备晶体和玻璃的一些优点,具有高发光效率、高透过率、高稳定性和发光波段可调等性能。而且其热导性和耐热冲击性比较好,使之更适合用做大功率激光工作物质。为了结合磷酸盐玻璃和玻璃陶瓷的双重优点,我们采用高温熔融法,通过合理设计配比,制备出了一系列Er~(3+)/Yb~(3+)掺杂的透明磷酸盐玻璃陶瓷,应用差热分析(DTA)、x射线衍射(XRD)、透射电镜(TEM)或扫描电镜(SEM)、光致发光谱(PL)以及Judd-Ofelt(J-O)理论、McCumber理论和Fuchtbauer-Ladenburg(F-L)方程等手段和方法,详细研究了各组分和热处理制度对玻璃陶瓷的相组成、微观结构以及发光性能的影响,取得了一些重要的结论和创新性成果,为稀土掺杂透明磷酸盐玻璃陶瓷的进一步发展和应用奠定了基础。主要的研究工作和创新性成果有:
     制备了摩尔组分为37P_2O_5-31.4CaO-25.6Na_2O-6Al_2O_3-0.25Er_2O_3-7.5Yb_2O_3的磷酸盐玻璃陶瓷,研究了Er~(3+)离子在玻璃和玻璃陶瓷中的发光特性。XRD测试表明,玻璃陶瓷中的晶体颗粒组成为YbPO_4和ErPO_4,晶粒尺寸和析晶速率都随着热处理时间的延长而逐渐增加。通过PL谱测量发现,与玻璃相比,Er~(3+)离子在玻璃陶瓷中的上转换发光强度和1.5μm近红外发光强度显著增大,这与析晶度和纳米晶粒尺寸的变化规律比较吻合。应用J-O理论、McCumber理论和F-L方程较完整地计算、评价了玻璃晶化前后的光谱学参数。确认由于晶化热处理后Er~(3+)离子进入到YbPO_4晶格,提高了其配位对称性和有序性,降低了其所处格位的共价性,导致其Ω_2显著减小,从而显著提高了其上转换发光性能以及1.5μm近红外发光效率、有效宽度和增益参数等。我们还测量了上述玻璃陶瓷在不同温度下的上转换和近红外发光特性,利用Er~(3+)/Yb~(3+)双掺系统的能级结构和跃迁过程分析了发射强度随温度的变化规律,以及用多声子弛豫(MPR)理论分析了Er~(3+)离子~4I_(13/2)能级的寿命随温度升高而降低的原因。这些结果对进一步优化激光器和高增益光纤器件材料有一定的指导作用。
     制备并研究了Ce~(3+)/Er~(3+)/Yb~(3+)掺杂的透明磷酸盐玻璃陶瓷的发光特性。发现引入Ce~(3+)后,通过Er~(3+)和Ce~(3+)之间的能量传递(Er~(3+):~4I_(11/2)+Ce~(3+):~2F_(5/2)→Er~(3+):~4I_(13/2)+Ce~(3+):~2F_(7/2)),可以加快Er~(3+)离子从~4I_(11/2)到~4I_(13/2)能级的无辐射跃迁速率,从而有效抑制975nm激光二极管(LD)抽运下的磷酸盐玻璃陶瓷中的可见上转换发光,改善Er~(3+)在1.5μm附近波段的发光性能,使Ce~(3+)/Er~(3+)/Yb~(3+)掺杂的透明磷酸盐玻璃陶瓷更适合作为光纤放大器和激光器的增益介质材料。
     制备了含有LiPO_3单相和LiPO_3与TiP_2O_7复合相的透明发光玻璃陶瓷,确定了热处理条件对Er~(3+)/Yb~(3+)共掺磷酸盐玻璃的晶粒尺寸、透光率、上转换发光以及1.5μm近红外发光性能的影响,为进一步研究该类稀土掺杂透明磷酸盐玻璃陶瓷提供了依据。晶化后,玻璃陶瓷中的上转换发光明显增强,并随着热处理温度的升高或时间的延长进一步增加。纳米晶的析出对Er~(3+)离子在1.5μm处的近红外发光也有积极的影响,其发射峰出现了一定的Stark劈裂,谱线也有所加宽。由光谱性质测试和对光学性能参数的计算表明,该类玻璃陶瓷与同组分玻璃相比,具有更宽的1.5μm的发射带宽,更强的1.5μm近红外发光强度和上转换发光强度。其1.5μm近红外荧光的品质因数σ_e×τ_(mea)和增益参数σ_e×Δλ_(eff)均优于ZBLAN玻璃。例如480℃热处理4h样品GCA的品质因数和增益参数与ZBLAN玻璃相比,分别增加近33%和22%。
In recent years, Er~(3+) and Er~(3+)/Yb~(3+) co-doped phosphate glasses have attracted much attention as host materials for microchip lasers and fiber lasers and amplifiers operating at the eye-safe wavelengths of 1.54μm. They have wide applications including optical communication, range finding, coherent optical transmission and etc. The co-doped glasses exhibit high solubility of rare earth ions, large stimulated emission cross-section, long radiative lifetime, high energy transfer efficiency from Yb~(3+) to Er~(3+), and weak interaction among active ions.
     Unfortunately, their relatively poor thermal and chemical durability prevents them from optical properties and widely practical applications. Recently, rare earth (RE) doped transparent glass ceramics (TGC) have been investigated as laser materials since they exhibit high luminescent efficiency, Vis-NIR transparency, chemical stability, and so on. Such glass ceramics are characterized with their adjustable structure, controllable phase crystallizing and heavy RE~(3+)-doping level. More importantly, the glass ceramics have better properties of thermal conductivity and thermal shock, which make them more suitable to be laser materials for high-power devices. In order to combine the good performance of the erbium doped phosphate glass and the nanostructure of glass ceramic, we fabricated Er~(3+)/Yb~(3+) co-doped phosphate glass ceramics by the high-temperature melting technique. Using different thermal analysis (DTA), x-ray diffraction (XRD), transmittance electronic microscope (TEM) or scanning electronic microscope (SEM), photoluminescence spectra (PL), and Judd-Ofelt (J-O) theory, McCumber theory, and Fuchtbauer-Ladenburg (F-L) formula, we studied the correlation among heat treating techniques, precipitated crystal size, crystallinity, transmittance and luminescence behaviors. A series of important conclusions and innovative results with practical significance were obtained, which provide the foundation for further development and application of RE ions doped phosphate glass ceramics.
     Transparent 37P_2O_5-31.4CaO-25.6Na_2O-6Al_2O_3-0.25Er_2O_3-7.5Yb_2O_3 (mol %) phosphate glass ceramics have been prepared. The spectroscopic properties of Er~(3+) in the glass and glass ceramics have been studied. XRD results indicated that the nanocrystals were YbPO_4 and ErPO_4 and the crystal size and crystallinity increased with the heat treating time increasing. The upconversion and near infrared emissions of the Er~(3+) ions in the glass ceramics are increased significantly with the precursor glass. This agrees well with the varation of the crystal size and crystallinity. Calculation using J-O theory, McCumber theory and F-L formula confirmed that Er~(3+) ions entering into the nanocrystals led to their higher ligand symmetry and weaker covalence properties than in the glass matrix, which madeΩ_2 decreased and further improved the properties of upconversion luminescence and 1.54μm near infrared emission efficiency, effective width, and gain parameters. The effect of temperature on the luminescence intensity of up-conversion and near infrared in Er~(3+)/Yb~(3+) co-doped phosphate glass ceramics has been investigated. The fluorescence intensity is changing at different temperature and the results are explained with the level transitions in Er~(3+)/Yb~(3+) co-doped system. Meanwhile, the lifetime of Er~(3+):~4I_(13/2) level corresponding to different operating temperature and pump power is also discussed, and the experimental results are fitted using multiphonon relaxation theory. These results will be helpful to further optimize parameters of lasers materials and high gain fiber devices.
     We prepared Ce~(3+)/Er~(3+)/Yb~(3+) tri-doped transparent phosphate glass ceramics and discussed the influence of energy acceptors Ce~(3+) ions on the upconversion and 1.5μm emission properties of Er~(3+) in the glass ceramics. The phonon-assisted energy transfer between Er~(3+) and Ce~(3+) (Er~(3+):~4I_(11/2)+Ce~(3+):~2F_(5/2)→Er~(3+):~4I_(13/2)+Ce~(3+):~2F_(7/2)) accelerated population feeding from the ~4I_(11/2) to the ~4I_(13/2) level, and therefore drastically decreased the upconversion emission of Er~(3+) under 975 nm LD excitation. Meanwhile, the near infrared luminescence enhanced greatly with the introduction of Ce~(3+) ions at the proper concentration. The Ce~(3+)/Er~(3+)/Yb~(3+) tri-doped phosphate glass ceramics will be preferable for efficient 980 nm pumped Er~(3+)-doped optical amplifiers and lasers.
     Luminescence TGCs containing LiPO_3 and TiP_2O_7 have been prepared successfully. We investigated the effects of heat treatment conditions on the crystal size, Vis-NIR transparency, the upconversion and near infrared luminescence of Er~(3+) ions in the glass ceramics. The upconversion luminescence intensity of Er~(3+) ions in the glass ceramics increased significantly with increasing heat treating temperature or time under 975nm wavelength excitation. Stark split near infrared emission peaks of Er~(3+) have been observed in the glass ceramics, and the effective bandwidth increases with increasing heat treating temperature. PL spectra measurements and J-O calculation reveal that Er~(3+)/Yb~(3+) co-doped TGCs have much broader 1.5μm bandwidth, much stronger 1.5um luminescence, red and green upconversion luminescence than the precursor glass. For the co-doped TGCs, both of their 1.5μm quality factors for bandwidth (σ_e×Δλ_(eff)) and for gain (σ_e×τ_(mea)) are better than ZBLAN. For the glass ceramic heat treated at 480℃for 4h, the bandwidth and gain are 1.33 and 1.22 times than that of ZBLAN, respectively.
引文
[1]李庆福,黄世华.透明氟氧化物玻璃陶瓷研究进展.半导体光电,2002,Vol.23(6): 291-310
    [2] 侯朝霞,苏春辉.光功能微晶玻璃应用与研究进展.激光与光电子学进展,2006,Vol.43(2):329-331
    [3] Xvsheng Qiao, Xianping Fan, Jin Wang, Minquan Wang. Luminescence behavior of Er~(3+) ions in glass-ceramics containing CaF_2 nanocrystals. J.Non-Cryst.Solids, 2005, Vol.351: 357-363
    [4] Feng Liu, En Ma, Daqin Chen, Yunlong Yu, Yuansheng Wang. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF_4 Nanocrystals. J. Phys. Chem. B, 2006, Vol.110: 20843-20846
    [5] Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma, Feng Bao, Zhongjian Hu, Yao Cheng. Influences of Er~(3+) content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF_2 nanocrystals. Mater Chem Phys, 2006, Vol.95(2): 264-269
    [6] Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma, Zhongjian Hu. Spectroscopic properties of Er~(3+) ions in transparent oxyfluoride glass ceramics containing CaF_2 nano-crystals. J. Phys.:Condens. Matter, 2005, Vol.17(41): 6545-6557
    [7] Junjie Zhang, Dongbing He, Zhongchao Duan, Liyan Zhang, Shixun Dai, Lili Hu. Mechanisms and concentrations dependence of up-conversion luminescence in Tm~(3+)/Yb~(3+) codoped oxyfluoride glass-ceramics. Physics Letters A, 2005, Vol.337: 480-486
    [8] 周刚,戴世勋,于春雷等.含纳米晶颗粒的Yb~(3+)/Er~(3+)共掺透明碲酸盐玻璃陶瓷的光谱性质研究.中国稀土学报,2005,Vol.23(5):518-523
    [9] 孙江亭,张家骅,吕少哲等.掺Er~(3+)钆硼硅酸盐玻璃及玻璃陶瓷的红外发光特性和热稳定性.发光学报,2004,Vol.25(6):649-654
    [10] 秦冠仕,秦伟平,陈宝玖等.Tm~(3+)/Er~(3+)共掺氟氧化物玻璃陶瓷材料结构和上转换发光性质的研究.发光学报,2001,Vol.22(4):397-400
    [11] Hua Yu, Lijuan Zhao, Jie Meng, et al. Effect of nanocrystals on up-conversion luminescence of Er~(3+),Yb~(3+) co-doped glass-ceramics. Chinese Optics letters, 2005, Vol.3(8): 469-471
    [12] 赵丽娟,吕少哲,孙聆东等.饵离子在氟氧化物玻璃陶瓷中的上转换发光特性研究.发光学报,2001,Vol.22(1):51-54
    [13] B.C. Hwang, S. Jiang, et al. Erbium-doped phosphate glass fiber amplifiers with gain per unit length of 2.1 dB/cm. Electron. Lett., 1999, Vol.35(12): 1007-1009
    [14] Bor-Chyuan Hwang, Shibin Jiang, Tao Luo. Performance of High-Concentration Er~(3+)-Doped Phosphate Fiber Amplifiers. IEEE Photonics Technology Letters, 2001, Vol. 13(3): 197-199
    [15] Xvsheng Qiao, Xianping Fan, Minquan Wang. Luminescence behavior of Er~(3+) in glass ceramics containing BaF_2 nanocrystals. Scripta Materialia , 2006, Vol.55: 211-214
    [16] Xvsheng Qiao, Xianping Fan, Minquan Wang. Spectroscopic properties of Er~(3+) doped glass ceramics containing Sr_2GdF_7 nanocrystals. Appl. Phys. Lett., 2006, Vol.89: 111919
    [17] Xvsheng Qiao, Xianping Fan, Minquan Wang, Xianghua Zhang. Up-conversion luminescence and near infrared luminescence of Er~(3+) in transparent oxyfluoride glass-ceramics. Opt. Mater, 2004, Vol.27: 597-603
    [18] Feng Liu, En Ma, Daqin Chen, Yunlong Yu, Yuansheng Wang. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF_4 Nanocrystals. J. Phys. Chem. B, 2006, Vol.110: 20843-20846
    [19] Nickkols R W, Ng W K. Raman shifted Nd: YAG class I eye-safe laser development. Proc. SPIE, 1986, Vol.610: 92-98
    [20] Narasimha S.Prasad, Allen R.Geiger, Richard D.Richmond. Semiconductor diode-pumped optical parameter oscillator and amplifier-based compact range finder. Proc.SPIE, 1996, Vol.2748: 367-377
    [21] B.C. Hwang, S. Jiang, et al. Erbium-doped phosphate glass fiber amplifiers with gain per unit length of 2.1 dB/cm. Electron. Lett., 1999, Vol. 35(12): 1007-1009
    [22] Bor-Chyuan Hwang, Shibin Jiang, Tao Luo. Performance of High-Concentration Er~(3+)-Doped Phosphate Fiber Amplifiers. IEEE Photonics Technology Letters, 2001, Vol. 13(3): 197-199
    [23] Hu Y, Jiang S, et al. Performance of high-concentration Er~(3+)/Yb~(3+)-codoped phosphate fiber amplifiers. IEEE Photon. Tech. Lett, 2001, Vol. 13(7): 657-659
    [24] F.Song, GY.Zhang, MR Shang, H.Tan, et al. Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass. Appl. Phys. Lett., 2001, Vol. 79(12): 1748-1750
    [25] 戴世勋,胡丽丽,祁长鸿等.Er~(3+)/Yb~(3+)共掺磷酸盐铒玻璃光谱性质研究.中国激光,2001,Vol.28(5):467-470
    [26] 吴朝辉,宋峰,刘淑静等.上转换对Er~(3+)/Yb~(3+)共掺磷酸盐玻璃激光器输出的影响.物理学报,2005,Vol.54(12):5637-5641
    [27] Song F, Zhang GY, Shang MR, et al. Three-photon phenomena in the upconversion luminescence of erbium-ytterbium-codoped phosphate glass. Appl. Phys. Lett., 2001, Vol.79(12): 1748-1750
    [28] V.G.Gapontsev, S.M Matitsin, A.A Isineev, et al. Erbium glass lasers and their applications. Opt. and Laser Tech., 1982, Vol.14: 189-196
    [29] B.C. Hwang, S. Jiang, T. Luo, et al. Erbium-doped phosphate glass fiber amplifiers with gain per unit length of 2.1 dB/cm. Electron. Lett., 1999, Vol.35(12): 1007-1009
    [30] Shibin Jiang, Bor-Chyuan Huang, Tao Luo. Net gain of 15.5 dB from a 5.1 cm-long Er~(3+)-doped phosphate glass fiber. Optical Fiber Communications Conference Proceedings, 2000, PD5-1
    [31] Bor-Chyuan Hwang, Shibin Jiang, Tao Luo. Performance of High-Concentration Er~(3+)-Doped Phosphate Fiber Amplifiers. IEEE Photonics Technology Letters, 2001, Vol. 13(3): 197-199
    [32] Hu Y, Jiang S, T. Luo, et al. Performance of high-concentration Er~(3+)/Yb~(3+)-codoped phosphate fiber amplifiers. IEEE Photon. Tech. Lett. 2001, Vol. 13(7): 657-659
    [33] T. Qiu, L.LI, V. Temyanko. Generation of High power 1535nm light from a short cavity cladding pumped Er:Yb Phosphate fiber laser. Lasers and Electro-Optics, (CLEO) Conference on 2004, Vol. 1(1): 1-2
    [34] Qiu, T. Li, L. Schulzgen, A. Temyanko, et al. Generation of 9.3-W Multimode and 4-W Single-Mode Output From 7-cm Short Fiber Lasers. IEEE Photon. Tech. Lett. 2004, Vol.16(12): 2592-2594
    [35] J. D. Minelly, W. L. Barnes, R.I. Laming, et al. Diode-array pumping of Er~(3+)/Yb~(3+) co-doped fiber lasers and amplifiers. IEEE Photon. Technol. Lett., 1993, Vol.5(3): 301-303
    [36] B. Hwang, S. Jiang, T. Luo, et al. Cooperative upconversion and energy transfer of new high Er~(3+) and Yb~(3+)-Er~(3+)-doped phosphate glasses. J. Opt. Soc. Amer. B, 2000, Vol.5(17): 833-839
    [37] C. Li, R. Moncorge, J.C. Souriau, C. Borel, Ch. Wyon, Room temperature cw laser action of Y_2SiO_5:Yb~(3+), Er~(3+) at 1.57 μm, Opt. Comm., 1994, Vol.107(1-2): 61-64
    [38] T. Schweizer, T. Jensen, E. Heumann, G. Huber. Spectroscopic properties and diode pumped 1.6 urn laser performance in Yb-codoped Er:Y_3Al_5O_(12) and Er:Y_2SiO_5. Opt. Comm., 1995, Vol. 118(5-6): 557-561
    [39] N. A. Tolstik, S. V. Kurilchik, V. E. Kisel, N. V. Kuleshov, V. V. Maltsev, O. V. Pilipenko, E. V. Koporulina, and N. I. Leonyuk. Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl_3(BO_3)_4 laser. Opt. Lett., 2007, Vol.32(22): 3233-3235
    [40] J. Huang, Y. Chen, Y. Lin, X. Gong, Z. Luo, and Y. Huang. High efficient 1.56μm laser operation of Czochralski grown Er:Yb:Sr_3Y_2(BO_3)_4 crystal. Optics. Express., 2008, Vol. 16(22): 17243-17248
    [41] F. Song, L. Han, H. Tan et al. Spectral performance and intensive green upconversion luminescence in Er~(3+)/Yb~(3+)-codoped NaY(WO_4)_2 crystal. Opt. Comm., 2006, Vol.259(1): 179-186
    [42] N. Xue, X. Fan, Z. Wang, and M. Wang. Synthesis process and luminescence properties of Ln~(3+) doped NaY(WO_4)_2 nanoparticles. Mater. Lett., 2007, Vol.61(7): 1576-1579
    [43] J. Huang, X. Gong, Y. Chen, Y. Lin et al, Growth and spectral properties of Er~(3+):NaGd(WO_4)_2 crystal. Mater. Lett, 2007, Vol.61(16): 3400-3403.
    [44] F. Song, H. Tan, M. Shang et al. Spectra characteristics of Er~(3+) doped NaY(WO_4)_2 crystal. Acta Physica Sinica, 2002, Vol.51(10): 2375-2379
    [45] F. Song, J. Su, H. Tan et al. The energy transfer process between the Er~(3+) and Tm~(3+) in Er,Tm-codoped-NaY(WO_4)_2 crystal. Opt. Comm., 2004, Vol.241(4-6): 455-463
    [46] P. Y. Shih. Thermal, chemical and structural characteristics of erbium-doped sodium phosphate glasses. Mater. Chem. Phys. 2004, Vol.84(1):151-156
    [47] P.W.McMillan. Glass-ceramics. London: Academic Press, 1979: 5-63, 81-104
    [48] 苏春辉.透明陶瓷材料的研究.沈阳:东北大学.1996:92
    [49] Li. Rounan, Zhu Peinan. Phlogopite-based Glass Ceramics. J.Non-Cryst.Solids. 1986, Vol.80: 600-604
    [50] 干福熹.新技术领域中的硅酸盐材料.硅酸盐学报,1991,Vol.19(1):52-64
    [51] Bhargava A, Shelby J.E, Snyder R.L. Crystallization of Glass in the System BaO-TiO_2-B_2O_3. J.Non-Cryst.Solids, 1988, Vol.102(1): 136-142
    [52] Goto Y, Tsuge A. Mechanical Properties of Unidirectionally Oriented SiC-Whisker-Reinforced Si_3N_4 Fabricated by Extrusion and Hot-pressing. J. Am. Ceram. Soc. 1993,Vol.76(6): 1420-1424
    [53] Komatsu T, Hirose C, Ohki T. et al. Superconducting-coupling Nature at Grain Boundaries in Bi_2Sr_2Ce-Cu_2Ox Glass-ceramics. J.Am.Ceram.Soc, 1990, Vol.73(12): 3569-3574
    [54] Galliano P G, Lopez J M Porto. Thermal Behaviour of Bioactive Alkaline-earth Silicophosphate Glasses. J. Mater. Sci., 1995, Vol.6 (6): 353-359
    [55] Navarro M, Del Valle S, Martinez S, Zeppetelli S, Ambrosio L, Planell J A, Ginebra M P. New Macroporous Calcium Phosphate Glass Ceramic for Guided Bone Regeneration. Biomaterials, 2004, Vol.25(18): 4233-4241
    [56] Langlet M, Saltzberg M, Shannon R D. Aluminium Metaphosphate Glass-Ceramics. J. Mater. Sci., 1992, Vol.27(4): 972-982
    [57] 麦克米伦.P.W.微晶玻璃.王千仞译,北京:中国建筑工业出社,1988
    [58] C. F. Rapp, J. Chrysochoos. Neodymium-doped glass-ceramic laser material. J.Mater Sci, 1972,Vol.7(9): 1090-1092
    [59] Auzel F, Pecile D, Morin D. Rare earth doped vitroceramics: new efficient blue and green emitting materials for infrared upconversion. J. Electrochem Soc., 1975, Vol.122(1): 101-107
    [60] Yuhu Wang. Junichi Ohwaki. New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion. Appl. Phys. Lett., 1993, Vol.63(24): 3268-3270
    [61] M.J. Dejneka. The luminescence and structure of novel transparent oxy-fluoride glass-ceramics.J. Non-Cryst. Solids, 1998, Vol. 239(1): 149-155
    [62] G. Dominiak-Dzik, W. Ryba-Romanowski. Structural and luminescent properties of crystalline microstructure in the GeO_2-PbO-PbF_2 glass-ceramics doped with luminescent ions. J. Alloys Compd, 2008, Vol.451(1): 586-590
    [63] V.K. Tikhomirov, K. Driesen, C. G¨orller-Walrand, M. Mortier. Mid-infrared emission in Yb~(3+)-Er~(3+)-Tm~(3+) co-doped oxyfluoride glass-ceramics. Materials Science and Engineering B, Solid-state materials for advanced technology, 2008, Vol. 146(1): 66-68
    [64] Lihui Huang, Guanshi Qin, Yusuke Arai, Rajan Jose, et al. Crystallization kinetics and spectroscopic investigations on Tb~(3+) and Yb~(3+) codoped glass ceramics containing CaF_2 nanocrystals. J. Appl. Phys, 2007, Vol. 102(9): 093506-1-8
    [65] V.K. Tikhomirov, J. Me'ndez-Ramos, V.D. Rodri'guez, D. Furniss, A.B. Seddon. Laser and gain parameters at 2.7um of Er~(3+)-doped oxyfluoride transparent glass-ceramics. Opt. Mater. 2006, Vol.28(10): 1143-1146
    [66] Gina C. Jones, Susan N. Houde-Walter. Determination of the macroscopic upconversion parameter in Er~(3+)-doped transparent glass ceramics. J.Opt.Soc.Am.B, 2006, Vol.23(8): 1600-1608
    [67] Vincent Seznec, Hong Li Ma, Xiang Hua Zhang, Virginie Nazabal, Jean-Luc Adam, X.S. Qiao, X.P. Fan. Preparation and luminescence of new Nd~(3+) doped chloro-sulphide glass-ceramics. Opt. Mater, 2006, Vol.29(4): 371-376
    [68] G. Dantelle, M. Mortier, D. Vivien, G. Patriarche. Influence of Ce~(3+) doping on the structure and luminescence of Er~(3+)-doped transparent glass-ceramics. Opt. Mater., 2006, Vol.28(6):638-642
    [69] G. Dantelle, M. Mortier, D. Vivien, G. Patriarche. Effect of CeF_3 Addition on the Nucleation and Up-Conversion Luminescence in Transparent Oxyfluoride Glass-Ceramics. Chem.Mater.,2005, Vol. 17(8): 2216-2222
    [70] M. Itoh, T. Sakurai, T. Yamakami, J. Fu. Time-resolved luminescence study of CaF_2: Eu~(2+) nanocrystals in glass-ceramics. J. Lumin, 2005, Vol.112(1): 161-165
    [71] Xvsheng Qiao, Xianping Fan, Minquan Wang, Xianghua Zhang. Spectroscopic properties of Er~(3+)-Yb~(3+) co-doped glass ceramics containing BaF_2 nanocrystals. J.Non-Cryst.Solids, 2008, Vol.354(28): 3273-3277
    [72] Zhongjian Hu, Yuansheng Wang, En Ma, Daqin Chen, Feng Bao. Microstructures and upconversion luminescence of Er~(3+) doped and Er~(3+)/Yb~(3+) co-doped oxyfluoride glass ceramics. Mater. Chem. Phys, 2007, Vol. 101(1): 234-237
    [73] En Ma, Zhongjian Hu, Yuansheng Wang, Feng Bao. Influence of structural evolution on fluorescence properties of transparent glass ceramics containing LaF_3 nanocrystals. J. Lumin, 2006, Vol.118(2): 131-138
    [74] Feng Liu, En Ma, Daqin Chen, Yunlong Yu, Yuansheng Wang. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF_4 Nanocrystals. J. Phys. Chem. B, 2006, Vol.110(42): 20843-20846
    [75] Zhongchao Duan, Junjie Zhang, Weidong Xiang, Hongtao Sun, Lili Hu. Multicolor upconversion of Er~(3+)/Tm~(3+)/Yb~(3+) doped oxyfluoride glass ceramics. Mater. Lett, 2007,Vol.61( 11): 2200-2203
    [76] Hua Yu, Kaidi Zhou, Kai Chen, Jie Song, Chunxiao Hou, Lijuan Zhao. Investigation of the crystallization process in oxyfluoride glass ceramics. J.Non-Cryst.Solids, 2008, Vol.354(30): 3649-3652
    [77] Funk D S, Carlson J W, Eden J G. Room temperature upconversion ultraviolet (381nm) and violet (412nm) laser in Nd~(3+):ZBLAN fiber. Proceedings of SPIE, 1995, Vol.2380(7-9): 108-114
    [78] Wetenkamp L, West G F, Tobben H. Optical properties of rare earth-doped ZBLAN glasses. J.Non-Cryst.Solids, 1992, Vol.140: 35-40
    [79] Mita Y, Hirama K, Ando H et al. Luminescence processes in Tm-and Er -ion-activated, Yb~(3+)-ion sensitized infrared upconversion devices. J. Appl. Phys., 1993, Vol.74(7): 4703-4709
    [80] Tick P A, Borrelli N F, Cornelius L K, et al. Transparent glass ceramics for 1300 nm amplifier applications. J. Appl Phys., 1995, Vol.78(11): 6367-6374
    [81] 郑伟宏.掺杂对Li_2O-Al_2O_3-SiO_2系统微晶玻璃结构和性能的影响:[武汉理工大学博士学位论文].武汉:武汉理工大学,2007
    [82] 芦玉峰,堵永国,肖加余等.晶种对低温烧结BaO-Al_2O_3-SiO_2系微晶玻璃析晶的影响.材料研究学报,2008,Vol.22(2):175-181
    [83]王浩,陆雷,吴国芳,隋普辉.低温烧结法制备LZS系微晶玻璃及其性能.材料、科学与工程学报,2008,Vol.26(4):616-619
    [84]彭文琴.CaO-MgO-Al_2O_3-SiO_2系微晶玻璃的研究:[湖南大学硕士学位论文].湖南:湖南大学,2002
    [85]潘守琴,魏侃贤,朱一明等.新型玻璃,上海:同济大学出版社,1992:54-94
    [86]杨家宽,王海,何归丽等.热处理条件对FeO-Fe_2O_3-CaO-SiO_2体系铁磁微晶玻璃显微组织的影响.材料热处理学报,2004,Vol.25(2):48-51
    [1] 苏瑞渊.高增益铒镱共掺光纤放大器的研究和制作:[硕士毕业论文].天津:南开大学,2006
    [2] Judd B R. Optical absorption intensities of rare earth ions. Phys. Rev., 1962, Vol. 127(3):750-761
    [3] Ofelt G S. Intensities of crystal spectra of rare earth ions. J. Chem. Phys., 1962, Vol.37(3):511-520
    [4] Kaminskii A A, Laser Crystals: their physics and properties. Springer-Verlag Berlin Heidelberg New York, 1981
    [5] M. J. Weber. Probabilities for radiative and nonradiative decay of Er~(3+) in LaF_3. Phys. Rev., 1967, Vol. 157(2): 262
    [6] Jayasankar C K, Devi A R. Optical properties of Tm~(3+) ions in lithium borate glasses. OptMat., 1996,Vol.6(3): 185-201
    [7] R.Reisfeld. Spectra and energy transfer of rare earths in inorganic glasses. Structure and Bonding (Berlin, Germany), 1973, Vol.13: 53-98.
    [8] T. Izumitani, H. Toratani and H. Kuroda. Radiative and nonradiative properties of neodimium doped silicate and phosphate glasses. J. Non-Cryst. Solid., 1982, Vol.47(1): 87-89.
    [9] S.Tanabe, T.Ohyagi, N.Soga et al. Compositional dependence of Judd-Ofelt parameters of Er~(3+) ions in alkali-metal borate glasses. Phys. Rev. B., 1992, Vol.46(6): 3305-3310.
    [10] M. Bettinelli, A. Speghini, M. Ferrari and M. Montagna. Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions. J. Non-Cryst. Solid., 1996, Vol.201(3): 211-221.
    [11] E.W.J.L. Oomen and A.M.A. van Dongen. Europium (Ⅲ) in oxide glasses: Dependence of the emission spectrum upon glass composition. J. Non-Cryst. Solid., 1989, Vol.111(2): 205-213.
    [12] Y. Nageno, H. Takebe, K. Morinaga and T. Izumitani. Effect of modifier ions on fluorescence and absorption of Eu~(3+) in alkali and alkaline earth silicate glasses. J. Non-Cryst. Solid., 1994, Vol. 169(2): 288-294.
    [13] S.Tanabe, T.Ohyagi, S.Todoroki et al. Relation between the Ω, intensity parameter of Er~(3+) ions and the ~(151)Eu isomer shift in oxide glasses. J. Appl. Phys., 1993, Vol.73(12):8451-8454.
    [14] S.Tanabe, T.Hanada, T.Ohyagi et al. Correlation between ~(151)Eu Mossbauer isomer shift and Judd-Ofelt Ω_6 parameters of Nd~(3+) ions in phosphate and silicate laser glasses. Phys. Rev. B., 1993,Vol.48(14): 10591-10594.
    [15] S.Tanabe, K.Takahara, M.Takahashi et al. Spectroscopic studies of radiative transitions and upconversion characteristics of Er~(3+) ions in simple pseudoternary fluoride glasses MF_n-BaF_2-YF_3 (M: Zr, Hf, Al, Sc, Ga, In, or Zn). J. Opt. Soc. Am. B., 1995, Vol.12(5):786-793.
    [16] Tanabe S. Optical transitions of rare earth ions for amplifiers: how the local structure works in glass. J. Non-Cryst. Solids, 1999, Vol.259(1-3): 1-9.
    [17] Tanabe S, Ohyagi T, Todoroki S. Relation between the Ω_6 intensity parameter of Er~(3+) ions and the ~(151)Eu isomer shift in oxide glasses. J. Appl. Phys., 1993, Vol.73(12): 8451-8454.
    [18] M. Abril, J. Mendez-Ramos, I. R. Martin, U. R. Rodriguez-Mendoza, V. Lanin, P. Nunez, A. D. Lozano-Gorrin. Optical properties of Nd~(3+) ions in oxyfluoride glasses and glass ceramics comparing different preparation methods. J. Appl. Phys., 2004, Vol. 95(10): 5271-5279
    [19] A. A. Kaminski, Laser Crystals (Springer,-Berlin, 1981)
    [20] D. K. Sardar, J. B. Gruber, B. Zandi, J. A. Hutchinson, C. W. Trussell. Judd-Ofelt analysis of the Er~(3+)(4f_(11)) absorption intensities in phosphate glass: Er~(3+), Yb~(3+). J. Appl. Phys.,2003, Vol. 93(4): 2041-2046
    [21] 杨建虎,戴世勋,胡丽丽等.Er~(3+)和Yb~(3+)共掺碲酸盐玻璃的光谱性质.光学学报,2003,Vol.23(2):210-215.
    [22] Tanabe S, Ohyagi T, Todoroki S. Relation between the Ω_6 intensity parameter of Er~(3+) ions and the 151Eu isomer shift in oxide glasses. J. Appl. Phys., 1993, Vol.73(12): 8451-8454
    [23] Tanabe S, Tamai K, Hirao K, et al. Branching ratio of uv and blue upconversions of Tm~(3+) ions in glasses. Phys. Rev. B., 1996, Vol.53(13): 8358-8362
    [24] Caird J, DeShazer L, Nella J et al. Characteristics of room-temperature 2.3-μm laser emission from Tm~(3+) in YAG and YAlO_3. J.Quan.Elect., 1975, Vol.QE-11(11): 874-881
    [25] Jaque D, Lagomacini J C, Jacinto C et al. Continuous-wave diode-pumped Yb: glass laser with near 90% slope efficiency. Appl. Phys. Lett., 2006, Vol.89(12): 121101.
    [26] Li W, Hao Q, Zhai H et al. Low-threshold and continuously tunable Yb:GdSiO laser. Appl.Phys.Lett., 2006, Vol.89(10): 101125.
    [27] Brenier A, Jaque D, Garcia J et al. Excited-state absorption in NdAl_3(BO_3)_4 laser crystal, Appl. Phys .Lett., 2003, Vol.82: 3826.
    [28] Hommerich U, Brown E, Trivedi S et al. Synthesis and 1.5μm emission properties of Nd~(3+) activated lead bromide and lead iodide crystals. Appl. Phys .Lett., 2006, Vol.88(25): 251906.
    [29] Suzuki T, Ohishi Y. Ultrabroadband near-infrared emission from Bi-doped Li_2O-Al_2O_3-SiO_2 glass, Appl. Phys. Lett., 2006, Vol.88(19): 191912.
    [30] Liu X, Py C, Tao Y et al. Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative. Appl. Phys. Lett., 2004, Vol.84(15): 2727
    [31] Benyattou T, Seghier D, Guillot G et al. Optical studies of erbium excited states in GaAlAs. Appl. Phys. Lett., 1992, Vol.60(8): 350
    [32] Quang A, Truong V, Jurdyc A et al. Gain properties of an Er~(3+) complex in a poly matrix for 1540 nm broadband optical amplification. J. Appl. Phys., 2007, Vol.101(2): 023110
    [33] Lu X, You Z, Li J et al. Optical properties of Er~(3+) doped Ca_3(BO_3)_2 crystal. J. Appl. Phys., 2006, Vol. 100(3): 033103
    [34] Jia G, Tu C, Li J et al. Spectroscoptic properties of Er~(3+) transitions in SwWO_4 crystal. J. Appl .Phys., 2005, Vol.98(9): 093525
    [35] 苏静.铥、铒、镱掺杂钇钠晶体的能量传递机制和上转换发光的研究:[博士学位论文].天津:南开大学,2007
    [36] McCumber D E. Einstein relations connecting broadband emission and absorption spectra. Phys.Rev., 1964, Vol. 136(4): 954-957
    [37] Aull B F, Jenssen H P. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J.Quantum Electron., 1982, Vol. 18(5): 925-930
    [38] KoechnerW. Solid-State Laser Engineering, New York: Springer, 1986, 17
    [39] Payne S A, Chase L L, Newkirk H W et al. Spectroscopy and gain measurements of Nd~(3+) in SrF_2 and other fluorite-structure hosts. J. Opt Soc. Amer. B, 1991, Vol.8(4): 126-140
    [40] Payne S A, Chase L L, Smith L K et al. Infrared cross-section measurements for crystals doped with Er~(3+), Tm~(3+), and Ho~(3+). IEEE J. Quant Electron., 1992, Vol.28(11): 2619-2630
    [41] Martin W E, Milam D. Gain saturation in Nd: doped laser materials. IEEE J.Quant. Electron., 1982, Vol. 18(7): 1155-1163
    [42] Miniscalco W J, Quimby R S. General procedure for the analysis of Er~(3+) cross sections. Opt. Lett, 1991, Vol. 16(4): 258-260
    [43] Quimby R S, Zheng B. New excited-state absorption measurement technique and application to Pr~(3+) doped fluorozirconate glass. Appl. Phys. Lett. 1992, Vol.60(9): 1055-1057
    [44] Quimby R S. Miniscalco W J. Modified Judd-Oeflt technique and application to optical transitions in Pr~(3+)-doped glass. J. Appl. Phys., 1994, Vol.75(1): 613-615
    [45] R S Quimby. Range of validity of McCumber theory in relating absorption and emission cross sections. J. Appl. Phys., 2002, Vol.92(1): 180-187
    [46] Liu X, Py C, Tao Y et al. Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative. Appl. Phys. Lett., 2004, Vol.84(15): 2727
    [47] Benyattou T, Seghier D, Guillot G et al. Optical studies of erbium excited states in Ga_(0.55)Al_(0.45)As. Appl. Phys. Lett., 1992, Vol.60: 350-352
    [48] Quang A, Truong V, Jurdyc A et al. Gain properties of an Er~(3+) complex in a poly matrix for 1540 nm broadband optical amplification. J. Appl. Phys., 2007, Vol.101(2): 023110
    [49] Lu X, You Z, Li J et al. Optical properties of Er~(3+) doped Ca_3(BO_3)_2 crystal. J. Appl. Phys., 2006, Vol.100(3): 033103
    [50] Jia G, Tu C, Li J et al. Spectroscoptic properties of Er~(3+) transitions in SwWO_4 crystal. J. Appl. Phys., 2005, Vol.98(9): 093525
    [51] Brunold T C, Gudel H C. Hazenkamp M F et al, Excited state absorption measurements and laser potential of Cr~(4+) doped Ca_2GeO_4. Appl. Phys. B, 1997, Vol.64(6): 647-650
    [52] Kumar G A, Riman R, Chae S C, et al. Synthesis and spectroscopic characterization of CaF_2:Er~(3+) single crystal of highly efficient 1.53μm amplification. J. Appl. Phys., 2004, Vol.95(7): 3243-3249
    [53] Moulton P F. Spectroscopic and laser characteristics of Ti:A_2lO_3. J.Opt.Soc.Amer.B., 1986, Vol.3(1): 125-133
    [54] 张德宝,戴能利,祁长鸿等.掺铒铝硅酸盐玻璃光谱和上转换荧光性质研究.光学学报,2003,Vol.23(4):505-510
    [55] Auzel F. Competeur Quantique Par Transfert d'energie Entre Deuxions de Terres RaresDans un Tungstate Mixte et'dans un Verre, C R Acad Science(Paris), 1966, Vol.262: 1016-1019
    [56] Santos P V, Gouveia E A, Araujo M T, et al. Thermally induced threefold upconversion emission enhancement in nonresonant excited Er~(3+) /Yb~(3+) -codoped chalcogenide glass. Appl .Phys. Lett.,1999, Vol.74(24): 3607-3609
    [57] J. S. Chivian, W. E. Case, D. D. Eden. The photon avalanche: A new phenomenon on Pr~(3+)-based infrared quantum counters. Appl. Phys. Lett. 1979, Vol.35(2): 124-126
    [58] Jeong H, Oh K, Han S R, et al. Characterization of broadband amplified spontaneous emission from a Er~(3+)-Tm~(3+) co-doped silica fiber. Chem. Phys. Lett., 2003, Vol.367(3-4): 507-551
    [59] Rakov N, Araujo C B, Messaddeq Y. Avalanche upconversion in Er~(3+) doped fluoroindate glass. Appl. Phys. Lett., 1997, Vol.70(23): 3084-3086
    [60] Xu S Q, Wang G N, Dai S X et al, Infrared to visible upconversion in Er~(3+)-doped lead oxyfluorosilicate glasses, J. Lumin., 2004, Vol.109(3-4): 187-192
    [61] Xvsheng Qiao, Xianping Fan, Jin Wang, Minquan Wang. Luminescence behavior of Er~(3+) ions in glass-ceramics containing CaF_2 nanocrystals. J. Non-Cryst. Solids, 2005, Vol.351(5):357-363
    [62] Feng Liu, En Ma, Daqin Chen, Yunlong Yu, Yuansheng Wang. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF_4 Nanocrystals.J. Phys. Chem. B, 2006, Vol.110(42): 20843-20846
    [63] Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma, Feng Bao, Zhongjian Hu, Yao Cheng. Influences of Er~(3+) content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF_2 nanocrystals. Mater Chem Phys, 2006,Vol.95(2): 264-269
    [64] Daqin Chen, Yuansheng Wang, Yunlong Yu, En Ma, Zhongjian Hu. Spectroscopic properties of Er~(3+) ions in transparent oxyfluoride glass ceramics containing CaF_2 nano-crystals. J. Phys.: Condens. Matter, 2005, Vol.17(41): 6545-6557
    [65] Junjie Zhang, Dongbing He, Zhongchao Duan, Liyan Zhang, Shixun Dai, Lili Hu. Mechanisms and concentrations dependence of up-conversion luminescence in Tm~(3+)/Yb~(3+) codoped oxyfluoride glass-ceramics. Phys. Lett. A, 2005, Vol.337(4-6): 480-486
    [1] Gapontsev V P, Mtisin S M , Isineev A A et al. Erbium glass lasers and their applications. Opt. &Laser Technol. 1989 , Vol.14 (4): 189-196
    [2] Laporta P, Taccheo S, LonghiS et al. Diode pumped microchip Er/Yb:glass laser. Opt. Lett, 1993, Vol.18 (15): 1232-1234
    [3] Ohtsuki T, Peyghambarian N, Honkanen S et al. Gain characteristics of a high concentration Er~(3+) doped phosphate glass waveguide. J. Appl. Phys., 1995 , Vol.78(6): 3617-3621
    [4] Shibin Jiang, Michael Myers, Nasser Peyghambarian. Er~(3+) doped phosphate glasses and lasers. J. Non-Cryst. Solids. 1998, Vol.239(1-3): 143-148
    [5] F. Song, G. Zhang, M. Shang, H. Tan, J. Yang, and F. Meng. Three-photon phenomena in the upconversion luminescenceof erbium-ytterbium-codoped phosphate glass. Appl. Phys. Lett. 2001,Vol.79(12): 1748-1750.
    [6] J. Zhou, F. Moshary, B. M. Gross, M. F. Arend, and S. A. Ahmed. Population dynamics of Yb~(3+)/Er~(3+) co-doped phosphate glass. J. Appl. Phys. 2004, Vol.96(1): 237-241.
    [7] J. M. Ward, D. G. O'Shea, B. J. Shortt, and S. N. Chormaic. Optical bistability in Er-Yb codoped phosphate glass microspheres at room temperature. J. Appl. Phys. 2007, Vol.102:023104-1-7.
    [8] P. Y. Shih, Thermal. chemical and structural characteristics of erbium-doped sodium phosphate glasses. Mater. Chem. Phys. 2004, Vol.84(1): 151-156.
    [9] P. Hartmann, J. Vogel, U. Friedrich, C. J(?)ger. Nuclear magnetic resonance investigations of aluminum containing phosphate glass-ceramics. J. Non-Cryst. Solids. 2000, V61.263&264: 94-100.
    [10] I. Ahmed, M. Lewis, I. Olsen, J. C. Knowles. Phosphate glasses for tissue engineering: part2.processing and characterisation of a ternary-based P2O_5-CaO-Na_2O glass fiber system. Biomaterials, 2004, Vol.25(3): 501-507.
    [11] C. K. Jorgensen, B. R. Judd. Hypersensitive pseudoquadrupole transitions in lanthanides. Mol.Phys, 1964, Vol.8(3): 281-290.
    [12] J. Yang, S. Dai, Y. Zhou, L. Wen, L. Hu, and Z. Jiang. Spectroscopic properties and thermal stability of erbium-doped bismuth-based glass for optical amplifier. J. Appl. Phys., 2003, Vol. 93(2): 977-983
    [13] H. Lin, E. Y. B. Pun, S. Q. Man, X. R. Liu. Optical transitions and frequency upconversion of Er~(3+) ions inNa_2O Ca_3Al_2Ge_3O_(12) glasses. J. Opt. Soc. Am. B, 2001, Vol.18(5): 602-609
    [14] D. Chen, Y. Wang, Y. Yu, and E. Ma. Improvement of Er~(3+) emissions in oxyfluoride glass ceramic nano-composite by thermal treatment. J. Solid. State. Chem., 2006,Vol. 179(5): 1445-1452
    [15] D. K. Sardar, C. C. Russell Ⅲ, J. B. Gruber, T. H. Allik. Absorption intensities and emission cross sections of principal intermanifold and inter-Stark transitions of Er~(3+).4f~(11). in polycrystalline ceramic garnet Y_3Al_5O_(12). J. Appl. Phys., 2005, Vol.97(12): 123501-1-6.
    [16] Miyakawa T, Dexter D L. Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids. Phys. Rev. B., 1970, Vol. 1(7):2961-2969.
    [17] X. S. Qiao, X. P. Fan, M. Q. Wang, and X. H. Zhang. Spectroscopic properties of Er~(3+)-Yb~(3+) co-doped glass ceramics containing BaF_2 nanocrystals. J. Non-Cryst. Solids, 2008, vol. 354(15): 3273-3277.
    [18] D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and Z. J. Hu. Spectroscopic properties of Er~(3+) ions in transparent oxyfluoride glass ceramics containing CaF_2 nano-crystals. J. Phys.: Condens. Matter, 2005, Vol.17(41): 6545-6557.
    [19] Y. Chen, Y. Huang, M. Huang, R. Chen, Z. Luo. Spectroscopic properties of Er~(3+) ions in bismuth borate glasses. Opt. Mater., 2004, Vol.25(3): 271-278.
    [20] A. Jha, S. Shen, M. Naftaly, Structural origin of spectral broadening of 1.5-μm emission in Er~(3+)-doped tellurite glasses, Phys. Rev. B, 2000, Vol.62(10): 62156.
    [21] H. Berthou and C. K. Jorgensen. Optical-fiber temperature sensor based on upconversion-excited fluorescence. Opt. Lett., 1990, Vol. 15(19): 1100-1102.
    [22] P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto. J. A. Medeiros Neto, and A. S. B. Sombra. Optical temperature sensing using upconversion fluorescence emission in Er~(3+)/Yb~(3+)-codoped chalcogenide glass. Appl. Phys. Lett., 1998, Vol.73(5): 578-580.
    [23] E. Maurice, G. Monnom, B. Dussardier, A. Saissy, D. B. Ostrowsky, and G. W. Baxter. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors. Appl. Opt., 1995, Vol.34(34): 8019-8025.
    [24] Garima Tripathi, Vineet Kumar Rai, S.B. Rai. Upconversion and temperature sensing behavior of Er~(3+) doped Bi_2O_3-Li_2O-BaO-PbO tertiary glass. Opt. Mater, 2007, Vol.30(2): 201-206
    [25] B. Dong, D. P. Liu, X. J. Wang, T. Yang, S. M. Miao, and C. R. Li. Optical thermometry through infrared excited green upconversion emissions in Er~(3+)-Yb~(3+) codoped Al_2O_3. Appl. Phys. Lett., 2007, Vol.90(18): 181117-1-3.
    [26] M. J. Weber. Optical Intensities of Rare-Earth Ions in Yttrium Orthoaluminate. Phys. Rev. B, 1973, Vol.8(1):47-53.
    [27] D. C. Yeh, W. A. Sibbey, M. Suscavage, and M. G. Drexhage. Multiphonon relaxation and infrared-to-visible conversion of Er~(3+) and Yb~(3+) ions in barium-thorium fluoride glass. J. Appl. Phys., 1987, Vol.62(1): 266-275.
    [28] E. Maurice, G. Monnom, A. Saissy, D. B. Ostrowsky, and G. W. Baxter. Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers. Opt. Lett, 1994, Vol. 19(13): 990-992.
    [29] O. Svelto, Principles of Lasers, 3rd ed. (Plenum, New York, 1989), pp.70-71.
    [30] S. Payne, L. Chase, L. Smith, W. Kway, and W. Krupke. Infrared cross-section measurements for crystals doped with Er~(3+), Tm~(3+), and Ho~(3+). IEEE J. Quantum Electron., 1992, Vol.28(11): 2619-2630.
    [31] S. Taccheo, G. Sorbello, S. Longhi, P. Laporta. Measurement of the energy transfer and upconversion constant in Er-Yb-doped phosphate glass. Opt. Quantum Electron, 1999, 31: 249-262
    [32] D. Grobnic, S. J. Mihailov, R. B. Walker, C. W. Smelser, C. Lafond and A. Croteau. Bragg Gratings Made With a Femtosecond Laser in Heavily Doped Er-Yb Phosphate Glass Fiber. IEEE Photon. Technol. Lett, 2007, Vol. 19(12): 943-945.
    [33] E. Delevaque, T. Georges, M. Monerie, P. Lamouler and J. F. Bayon. Modeling of pair-induced quenching in erbium-doped silicate fibers. IEEE Photon. Technol. Lett., 1993, Vol.5 (1): 73-75.
    [34] H. X. Zheng, G. Z. Wu, and F. X. Gan. Acta Physica Sinica, 1985, Vol.34: 1582.
    [1] Y. G. Choi, D. S. Lim, K. H. Kim, D. H. Cho, J. Heo. Enhanced ~4I_(11/2)→~4I_(13/2) transition rate in Er~(3+)/Ce3+-codoped tellurite glasses. Electron Lett, 1999,35(20): 1765-1767
    [2] S. Hocde, S. Jiang, X. Peng, N. Peyghambarian. Er~(3+) doped boro-tellurite glasses for 1.5μm broadband amplification. Opt Mater, 2004, Vol.25(2): 149-156
    [3] Yuhu Wang, Junichi Ohwaki. New transparent vitroceramics codoped with Er~(3+) and Yb~(3+) for efficient frequency upconversion. Appl. Phys. Lett., 1993, Vol.63(24): 3268-3270
    [4] D. Chen, Y. Wang, E. Ma, Y. Yu, and F. Liu. Partition,luminescence and energy transfer of Er~(3+)/Yb~(3+) ions in oxyfluoride glass ceramic containing CaF_2 nano-crystals. Opt. Mater., 2007, Vol.29 (12): 1693-1699
    [5] H. Yu, K. Zhou, K. Chen, J. Song, C. Hou, L. Zhao. Investigation of the crystallization process in oxyfluoride glass ceramics codoped with Er~(3+)/Yb~(3+). J. Non-Cryst. Solids., 2008, Vol.354(30): 3649-3652
    [6] X. Qiao, X. Fan, M. Wang, X. Zhang. Spectroscopic properties of Er~(3+)-Yb~(3+) co-doped glass ceramics containing BaF_2 nanocrystals. J. Non-Cryst. Solids., 2008, Vol.354(28): 3273-3277
    [7] G. Dantelle, M. Mortier, D. Vivien, G. Patriarche. Influence of Ce~(3+) doping on the structure and luminescence of Er~(3+)-doped transparent glass-ceramics. Opt. Mater., 2006, Vol.28(6-7): 638-642
    [8] C. StrohhEfer, A. Polman. Enhancement of Er~(3+) ~4I_(13/2) population in Y_2O_3 by energy transfer to Ce~(3+). Opt. Mater., 2001, Vol. 17(4): 445-451
    [9] J. Yang, L. Zhang, L. Wen, S. Dai, L. Hu, Z. Jiang. Comparative investigation on energy mechanisms between Er~(3+) and Ce~(3+) (Eu~(3+), Tb~(3+)) in tellurite glasses. Chem.Phys.Lett., 2004, Vol.384(4-6): 295-298
    [10] S. Shen, B. Richards, A. Jha. Enhancement in pump inversion efficiency at 980 nm in Er~(3+), Er~(3+)/Eu~(3+) and Er~(3+)/Ce~(3+) doped tellurite glass fibers. Opt Express, 2006, Vol. 14(12): 5050-5054
    [11] C. Strohhofer, P. G. Kik, A. Polman. Selective modification of the Er~(3+) ~4I_(11/2) branching ratio by energy transfer to Eu~(3+). J. Appl. Phys., 2000, Vol.88(8): 4486-4490
    [12] Y. G. Choi, K. H. Kim, S. H. Park, and J. Heo. Comparative study of energy transfers from Er~(3+) to Ce~(3+) in tellurite and sulfide glasses under 980 nm excitation. J. Appl. Phys., 2000, Vol.88 (7): 3832-3839
    [13] J. Qiu, Y. Shimizugawa, Y. Iwabuchi, and K. Hirao. Photostimulated luminescence in Eu~(3+)-doped fluoroaluminate glasses. Appl. Phys. Lett, 1997, Vol.71(6): 759-761
    [14] E. Zych, C. Brecher, and A. Lempicki. Infrared spectroscopy of LuAlO_3:Ce a useful tool to determine Ce concentration. Spectrochim. Acta A, 1998, Vol.54(11): 1763-1769
    [15] Z. Meng, T. Yoshimura, Y. Nakata, N. J. Vasa, and T. Okada. Improvement of Fluorescence Characteristics of Er~(3+)-Doped Fluoride Glass by Ce~(3+) Codoping. J. Appl. Phys., 1999, Vol.38 (12): 1409-1411
    [16] M. Inokuti, F. Hirayama. Influence of energy transfer by the exchange mechanism on donor luminescence. Chem Phys, 1965, Vol.43 (6):1978-1989
    [1] B.V. Raghavaiah. N. Veeraiah. Spectroscopic studies of titanium ions in PbO-Sb_2O_3-As_2O_3 glass system. Opt. Commun, 2004, Vol.235(4-6): 341-349
    [2] R. Balaji Rao, G. Nagaraju, N. Veeraiah. Catalyzed crystallization and some physical properties of Li_2O-MgO-B_2O_3:TiO_2 glasses, Ind. J. Pure Appl. Phys. 2005, Vol.43(3): 192-202
    [3] R. Balaji Rao, D. Krishna Rao, N. Veeraiah. The role of titanium ions on structural, dielectric and optical properties of Li_2O-MgO-B_2O_3 glass system. Mater. Chem. Phys, 2004, Vol.87 (2-3): 357-369
    [4] B. Rolling. What do electrical conductivity and electrical modulus spectra tell us about the mechanisms of ion transport processes in melts, glasses, and crystals? J. Non-Cryst. Solids, 1999, Vol.244(1):34-43
    [5] B.P. Antonyuk, N.N.N. Novikona, N.V. Didenko, O.A. Aktsipetrov. All optical poling and second harmonic generation in glasses: theory and experiment. Phys. Lett. A, 2001, Vol.287(1-2): 161-168
    [6] B.V.R. Chowdari, G.V. Subba Rao, G.Y.H. Lee. XPS and ionic conductivity studies on Li_2O-Al_2O_3-(TiO_2 or GeO_2)-P_2O_5 glass-ceramics. Solid State Ionics, 2000, Vol.136&137: 1067-1075
    [7] I. Abrahams, E. Hadzifejzovic. Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li_2O-Al_2O_3-TiO_2-P_2O_5. Solid State Ionics, 2000, Vol.134 (3-4): 249-257
    [8] L. Barbieri, A.B. Corradi, C. Leonelli, C. Siligardi, T. Manfredini, G.C. Pellacani. Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Mater. Res. Bull, 1997, Vol.32(6): 637-648
    [9] M.E. Lines. Influence of d orbitals on the nonlinear optical response of transparent transition-metal oxides, Phys. Rev. B, 1991, Vol.43 (14): 11978-11990
    [10] M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. Van Stryland. Dispersion of bound electron nonlinear refraction in solids. IEEE J. Quantum Electron. 1991, Vol.27(6):1296-1309.
    [11] Y. Watanbe, M. Ohnishi, T. Tsuchiya. Measurement of nonlinear absorption and refraction in titanium dioxide single crystal by using a phase distortion method. Appl. Phys. Lett. 1995, Vol.66 (25): 3431-3432
    [12] G. H. Beall, D. A. Duke, in: D. R. Uhlmann, and N. J. Kreidl, ed. Glass Science and Technology, vol.1, Academic Press, New York, (1983), p.403-445
    [13] G. H. Beall, D. A. Duke. Transparent glass-ceramics. J. Mater. Sci. 1969, Vol.4(4): 340-352
    [14] D. Q. Chen, Y. S. Wang, Y. L. Yu, E. Ma, and Z. J. Hu. Spectroscopic properties of Er~(3+) ions in transparent oxyfluoride glass ceramics containing CaF_2 nano-crystals. J. Phys.:Condens. Matter, 2005, Vol. 17(41): 6545-6557
    [15] A. Jha, S. Shen, M. Naftaly. Structural origin of spectral broadening of 1.5-μm emission in Er~(3+)-doped tellurite glasses. Phys. Rev. B, 2000, Vol.62(10): 6215-6227
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.