半导体自组织量子点的光学性质和其在量子信息中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体自组织量子点由于能级结构和单个原子的类似性,有很多和原子相近的光学性质和量子效应。而且由于它的稳定性和与现代半导体器件设备的兼容,使得它的制备和操作变得相对简单。因而半导体自组织量子点成为一个在量子信息中非常有应用前景的固体体系。研究量子点的光学性质,一方面可以探索量子点内部能级结构和载流子弛豫的信息,从而了解如何把量子点构造成为量子计算中的单个量子比特。另一方面,利用量子点发出的单光子或纠缠光子对,可以用来传输单个比特的量子信息。因此本人将半导体自组织量子点的光学性质和其在量子信息中的应用作为博士论文的研究课题。同时还涉及了半导体自组织量子点一些生长知识和固体物理性质。本论文所取得的成果主要有:
     1.从实验上发现了量子点系综中的声子-激子强耦合现象,并且给出了进一步的实验验证和理论解释。我们发现在某些特定的温度下,量子点系综的载流子驰豫会和声子相互结合起来,产生一个新的弛豫窗口,从荧光谱上看会产生一个低于原先s壳层发光峰一个声子能量的新发光峰。并且两个峰之间的相对强度会随着温度改变,直到最后,几乎所有的载流子都通过这个新窗口弛豫。我们提出了一种全新测量量子点能级寿命的方法,利用这种方法从能级寿命的角度验证了声子-激子之间的强耦合的存在。
     2.我们从量子点的单光子性质出发,研究了其作为单光子源的可行性,并提出了利用量子点单光子源实现量子随机行走算法的实验方案。单光子由于可携带相干的量子信息,并在空间中能基本无消相干的进行传输,成为了传输和构造量子态的重要工具。由于激光激发量子点发射单光子在效率和时间可控性上都非常优秀,我们提出用其来作为量子随机行走中的行走比特载体,实现了可扩展的量子随机行走算法。
     3.利用量子点双激子级联发射的路径相干性和精细结构的存在,我们提出了产生多维纠缠光子对的实验方案。这个方案把在其他利用量子点产生纠缠的方案中致命的精细结构劈裂加以应用,除了偏振维度外,让光子在能量维度也纠缠起来,从而实现了在量子信息中性能更强大的多维纠缠态。
     4.实验上验证了载流子弛豫过程中俄歇效应的存在,并考量了其对量子点发光谱的影响。我们在实验上观测了不同密度量子点系综发光峰随激发功率的移动过程,证明了在俄歇效应作用下,不同密度的量子点样品会产生不同的发光峰移动趋势。并给出了完美的理论模型解释。
     5.研究了量子点系综中的轨道角动量信息,从而为在单量子点实现轨道角动量纠缠提供了必要的实验探索。量子点发出的光子模式并不是我们之前所设想的为单一的高斯光,而是高斯模式和高阶LG模的叠加。
Quantum dots, the so called "artificial atoms", possess many quantum effects and optical properties similar with atoms. Besides, because of the stability and compati-bility with modern semiconductor technologies and devices, it is relatively easy to be manufactured and integrated. Therefore, it is a prospective solid state system in quan-tum information and computation. To study the optical properties of quantum dots, on the one hand we can investigate the intrinsic energy level structure making it as a qubit in quantum computation. On the other hand, the emitted single photon and entangled photon pairs can be tools for quantum communications. So I selected the optical prop-erties as the main topic of this thesis. We also make discussions on some fundamental growth techniques and solid state theory on self-assembled semiconductor quantum dots.
     1. We experimentally discovered the exciton-phonon interaction in quantum dots ensemble, and gave further experimental proofs and theoretical explanation. We find under certain temperatures, a exciton in quantum dots ensemble can be coupled to a phonon, thus provide a new relaxation window for the carriers. Form the photo-luminescence picture, a new peak appears separating from the origin s-shell peak with one phonon energy. The relative intensity changes with the temperature. Finally, al-most all the carriers decays through the new window. We put forward a new technique to measure the lifetime of excitons in quantum dots, and the results show that under certain temperatures, the exciton indeed combines with phonon resulting in longer life-time.
     2. We discuss the probability of single quantum dots to be single photon source, and propose a scheme to realize quantum random walk algorithm. Single photon can carry coherent state and propagate decoherence-freely in free space, so it can be an important tool for quantum state engineering and for transporting. Single quantum dot excited by a pulse laser can provide single photons effectively on demand, thus can be used as the carrier of walk qubit to realize scalable quantum random walk.
     3. We propose a scheme to generate hyper-entangled photon pairs taking use of the cascaded photon emitting from biexciton state. In this scheme, exciton fine-structure splitting, which was previously deemed undesirable in similar schemes, is used here to produce photon pairs entangled in both frequency and polarization degrees of freedom.
     4. We study the orbital angular momentum distribution of the photon emitted by quantum dots, to explore the probability of single quantum dot as entanglement source in orbital angular momentum dimension. The photons from quantum dots are not in single Gaussian mode but superposition of Gaussian mode and high order LG modes.
引文
[1]Bohr, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.48,696-702 (1935).
    [2]Schrodinger, E. Die gegenwartige situation in der quantenmechanik. Naturwissenschaften 23,807-812,823-828,844-849 (1935).
    [3]Wheeler, J. A. and Zurek, W. H. (eds.). Quantum theory and measurement (Princeton Univ. Press, Princeton, NJ,1983).
    [4]Aspelmeyer, M. and Zeilinger, A. A quantum renaissance. Phys. World 21,22-28 (2008).
    [5]Clarke, J. and Wihelm, F. K. Superconducting quantum bits. Nature 453,1031-1042 (2008).
    [6]Bennett, C. H., Brassard, G., Crepeau, C., et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett.70,1895-1899 (1993).
    [7]Bouwmeester, D., Pan, J. W., Mattle, K., et al. Experimental quantum teleportation. Nature 390,575-579 (1997).
    [8]Mattle, K., Weinfurter, H., Kwiat, P. G., et al. Dense coding in experimental quantum com-munication. Phys. Rev. Lett.76,4656-4659 (1996).
    [9]Barreiro, J. T., Wei, T. C. and Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys.4,282-286 (2008).
    [10]Bennett, C. H. and Brassard, G. Quantum cryptography:Public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore.175-179 (1984).
    [11]Ekert, A. Quantum cryptography based on Bell's theorem. Phys. Rev. Lett.67,661-663 (1991).
    [12]Gisin, N., Ribordy, G., Tittel, W., et al. Quantum cryptography. Rev. Mod. Phys.74,145-195 (2002).
    [13]Moore, G. E. Cramming more components onto integrated circuits. Electron-ics 38 (1965).
    [14]Feynman, R. E. There's plenty of room at the bottom. Engineering and Science, Caltech publication (1960).
    [15]Deutsch, D. and Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439,553 (1992).
    [16]Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput.26,1484 (1997).
    [17]Grover, L. K. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev.
    Lett.79,325 (1997).
    [18]杰拉德·密尔著,郭光灿等译.费曼处理器:量子计算机简介(江西教育出版社,1999).
    [19]陈汉武.量子信息与量子计算简明教程(东南大学出版社,2006).
    [20]戴葵宋辉,刘芸,谭明峰.量子信息技术引论(国防科技大学出版社,2001).
    [21]段路明,郭光灿.量子信息讲座第一讲量子计算机(中国科学技术大学物理系,1998).
    [22]Bennett, C. H.J.Res. Dev.6,525 (1973).
    [23]DiVincenzo, D. P. Quantum information and computation. Nature 404,247 (2000).
    [24]尼尔森等著,郑大钟,赵千川译.量子计算和量子信息(清华大学出版社,2003).
    [25]Hiskett, P. A., Rosenberg, D., Peterson, C. G., et al. Long-distance quantum key distribution in optical -bre. New J. Phys.8,193 (2006).
    [26]Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al. Free-space distribution of entan-glement and single photons over 144 km. Nature Physics 3,481 (2007).
    [27]Hong, C. K., Ou, Z.-Y. and Mandel, L. Measurement of subpicosecond time intervals be-tween two photons by interference. Phys. Rev. Lett.59,2044-2046 (1987).
    [28]Shih, Y. H. and Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett.61, 2921-2924 (1988).
    [29]Rarity, J. G. and Tapster, P. R. Experimental violation of Bell's inequality based on phase and momentum. Phys. Rev. Lett.64,2495-2498 (1990).
    [30]Kiess, T. E., Shih, Y. H., Sergienko, A. V., et al. Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion. Phys. Rev. Lett. 71,3893-3897 (1993).
    [31]Shih, Y. H. and Sergienko, A. V. Two-photon anti-correlation in a Hanbury Brown-Twiss type experiment. Phys. Lett. A 186,29-34 (1994).
    [32]Shih, Y. H., Sergienko, A. V., Rubin, M. H., et al. Two-photon entanglement in type-Ⅱ parametric down-conversion. Phys. Rev. A 50,23-28 (1994).
    [33]Kwiat, P. G., Mattle, K., Weinfurther, H., et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75,4337-4341 (1995).
    [34]Kwiat, P. G., Waks, E., White, A. G., et al. Ultrabright source of polarization-entangled photons. Phys. Rev. A 60, R773-R776 (1999).
    [35]Jones, J. A. and Mosca, M. Implementation of a quantum algorithm on a nu-clear magnetic resonance quantum computer. Journal of Chemical Physics 109,1648 (1998).
    [36]Linden, N., Barjat, H. and Freeman, R. An implementation of the deutsch-jozsa algorithm on a three-qubit nmr quantum computer. Chemical Physics Letters 296,61 (1998).
    [37]Phillips, W. D. Laser cooling and trapping of neutral atoms. Rev. Mod. Phys.70,721 (1998).
    [38]Monroe, C., Swann, W., Robinson, H., et al. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett.65,1571 (1990).
    [39]Meekhof, D., Monroe, C., King, B., et al. Generation of non-classical motional states of a trapped atom. Phys. Rev. Lett.76,1796 (1996).
    [40]Haljan, P. C., Brickman, K.-A., Deslauriers, L., et al. Spin-dependent forces on trapped ions for phase-stable quantum gates and mo-tional schrodinger cat states. Phys. Rev. Lett.63, 153602 (2005).
    [41]Blinov, B. B., Moehring, D. L., Duan, L.-M., et al. Observation of en-tanglement between a single trapped atom and a single photon. Nature 428,153 (2004).
    [42]Moehring, D. L., Maunz, P., Olmschenk, S., et al. Entanglement of single atom quantum bits at a distance. Nature 449,68 (2007).
    [43]Stick, D., Hensinger, W. K., Olmschenk, S., et al. Ion trap in semiconductor chip. Nature Physics 2,36 (2006).
    [44]Chen, P., Piermarocchi, C. and Sham, L. J. Phys. Rev. Lett.87,067401 (2001).
    [45]Stievater, T. H., Li, X. Q., Steel, D. G., et al. Phys. Rev. Lett.87,133603 (2001).
    [46]Htoon, H., Takagahara, T., Kulik, D., et al. Phys. Rev. Lett.88,087401 (2002).
    [47]Zrenner, A., Beham, E., Stufler, S., et al. Nature 418,612 (2002).
    [48]王取泉,程木田,刘绍鼎.基于半导体量子点的量子计算与量子信息(中国科学技术大学出版社,2000).
    [49]Toda, Y., Moriwaki, O., Nishioka, M., et al. Phys. Rev. Lett.82,4114 (1999).
    [50]Wang, Q. Q., Muller, A., Bianucci, P., et al. Phys. Rev. B 72,035306 (2005).
    [51]Kamath, K., Bhattacharya, P., Sosnowski, T., et al. Electronic Lett.32,1374 (1996).
    [52]Fafard, S., Hinzer, K., Raymond, S., et al. Science 274,1350 (1996).
    [53]Saito, H., Nishi, K., Ogura, I., et al. Appl. Phys. Lett.69,3140 (1996).
    [54]Klimov, V. I., Mikhailovsky, A. A., Xu, S., et al. Science 290,314 (2000).
    [55]Grundmann, M. Physica E 5,167 (2000).
    [56]Michler, P., Kiraz, A., Becher, C., et al. Science 290,2282 (2000).
    [57]Santori, C., Pelton, M., Solomon, G., et al. Phys. Rev. Lett.86,1502 (2001).
    [58]Benson, O., Santori, C., Pelton, M., et al. Phys. Rev. Lett.84,2513 (2001).
    [59]Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystal-lites:The size dependence of the lowest excited electronic state. J. Chem. Phys.80,4403 (1984).
    [60]Xiao-Wei Wu and Ming Gong and Chun-Hua Dong and Jin-Ming Cui and Yong Yang and Zheng-Fu Han and Guang-Can Guo, Anti-Bunching, Luminescence Blinking Suppression and Plasmon-Induced Lifetime Shortening in CdSe/ZnS quantum dots. submitted.
    [61]Brokmann, X., Messin, G., Desbiolles, P., et al. Colloidal cdse/zns quantum dots as single-photon sources. New J. Phys.6,99 (2004).
    [62]Brokmann, X., Giacobino, E., Dahan, M., et al. Highly efficient triggered emission of single photons by colloidal cdse/zns nanocrystals 85,712.
    [63]Kuno, M., Fromm, D. P., Hamann, H. F., et al. Nonexponential "blinking" kinetics of single cdse quantum dots:A universal power law behavior. J. Chem. Phys.112,3117 (2000).
    [64]Kuno, M., Fromm, D. P., Hamann, H. F., et al. "on"/"off"fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys.115,1028 (2001).
    [65]Kuno, M., Fromm, D. P., Gallagher, A., et al. Fluorescence intermittency in single inp quantum dots. Nano Letters 1,557 (2001).
    [66]Lounis, B. and Orrit, M. Single-photon sources. Rep. Prog. Phys.68,1129 (2005).
    [67]Koberling, F., Mews, A. and Basche, T. Oxygen-induced blinking of single cdse nanocrys-tals. Adv. Mat.13,672 (2000).
    [68]Klimov, V. I., Mikhailovsky, A. A., McBranch, D. W., et al. Quantization of multiparticle auger rates in semiconductor quantum dots. Science 287,1011 (2000).
    [69]Chen, J. F., Hsiao, R. S. and Huang, W. D. observation of energy-gap scaling law. Appl. Phys. Lett.88,233113 (2006).
    [70]Zhang, K., Heyn, C., Hansen, W.,et al. Appl. Phys. Lett.76,2229 (2000).
    [71]Madhukar, A., Xie, Q., Chen, P., et al. Appl. Phys. Lett.64,2727 (1994).
    [72]Solomon, G. S., Trezza, J. A. and Harris, J. S. Appl. Phys. Lett.66,3161 (1995).
    [73]Peyghambarian, N., Koch, S. W. and Mysyrowicz, A. Introduction to Semiconductor Optics, Prentice-Hall, Inc, New Jersey.
    [74]Luttinger, J. M. and Kohn, W. Phys. Rev.97,869 (1955).
    [75]Kim, D., Sheng, W., Poole, P. J., et al. Tuning the exciton g factor in single inas/inp quantum dots. Phys. Rev. B 79,045310 (2009).
    [76]Tang, J. S., Li, C. F., Gong, M., et al. Direct observation of single inas/gaas quantum dot spectrum with out mesa or mask. Physica E.41,797 (2009).
    [77]Nee, T.-E. Direct observation of single inas/gaas quantum dot spectrum with out mesa or mask. IEEE TRANSACTIONS ON NANOTECHNOLOGY 6,492 (2007).
    [78]Gammon, D., Snow, E. S. and Katzer, D. S. Appl. Phys. Lett.67,2391 (1995).
    [79]Jacques, V., Wu, E., Grosshans, F., et al. Experimental realization of wheeler's delayed-
    choice gedanken experiment. Science 315,966 (2007).
    [80]E. Waks, K. Inoue, C. Santori, et al. Secure communication:quauttma cryptography with a photon turnstile. Nature 420,762 (2002).
    [81]A. Beveratos, R. BrouIi, T. Gacoin, et al. Single photon quantum cryptography. Phys. Rev. Lett.89,187901 (2002).
    [82]R. Alldaume, F. Treussart, G. Messin, et al. Experimental open-air quantum key distribution with a singie-photon source. New J. Phys.6,92 (2004).
    [83]Brown, R. H. and Twiss, H. Correlation between photons in two coherent beams of light. Nature 177,22 (1956).
    [84]H. J. Kimble, M. Dagenais and Mandel, L. Photon antibunching in resonance fluorescence. Phys. Rev. Lett.39,691 (1977).
    [85]Daxquie, B., M. P. A. Jones, Dingjan, J., et al. Controlled single-photon emission from a single trapped two-level atom. Science 309,454 (2005).
    [86]J. Beugnon, M. Jones, J. Dingjan, et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440,779 (2006).
    [87]B, B. and W. E. Moemer. Single photons on demand from a single molecule at room temperature. Nature 407,491 (2000).
    [88]C. Kurtslefer, S. Mayer, P. Zarda, et al. Stable soffd-state source of single photons. Phys. Rev. Lett.85,290 (2000).
    [89]C. Kurtslefer, S. Mayer, P. Zarda, et al. Room temperature stable single-photon source. Eur. Phys, J. D 18,1434 (2004).
    [90]T. Gaebel, I. Pops, A. Gruber, et al. table singlephoton source in the near infrared. New J. Phys.6,98 (2004).
    [91]C. Wang, C. Kurtsiefer, Weimfiurter, I., et al. Single photon emission from siv centrss in diamond produced by ion implantation.J. Phys. B:At. Mol. Opt. Phys 9,37 (2006).
    [92]B. Gayral, J. Inas quantum dots:artificial atoms for sohd-state cavityquantum electrody-namics. Physica E 9,131 (2001).
    [93]H. Kumauo, S. Kimura, M. Endo, et al. Triggered single-photon emission and cro∞-correlation properties in inalas quantum dot. Physica E 32,144 (2006).
    [94]K. Sebald, P. Michler, T. Passow, et al. Singie-photon emission of cdse quantum dots at temperatures up to 200 k. Appl. Phys. Lett.81,2920 (2002).
    [95]C. Santori, D. Fattal, Vuckovic, G. S. Solomon and Y. Yanmmoto. Indistinguishable photons from a singie-photon device. Nature 419,594 (2002).
    [96]Aharonov, Y., Davidovich, L.,, et al. Phys. Rev. A 48,1687 (1993).
    [97]Farhi, E. and Gutmann, S. Phys. Rev. A 58,915 (1998).
    [98]Li, X.-Q., Nakayama, H. and Arakawa, Y. Phonon bottleneck in quantum dots:role of lifetime of the confined optical phonons. Phys. Rev. B 59,5069 (1999).
    [99]Mataloni, P., Jedrkiewicz,O.,, et al. Phys. Lett. A 243,270 (1998).
    [100]Othonos, A. J. Appl. Phys.83,1830 (1998).
    [101]Messin, G., Hermier, J. P., Giacobino, E., et al. Opt. Lett.26,1891 (2001).
    [102]D. Vignaud, E. L. M. Z., J.F. Lampin and Mollot, F. Appl. Phys. Lett.80,4151 (2002).
    [103]Borri, P., Langbein, W., Hvam, J., et al. IEEE Photon Technol. Lett.12,594 (2000).
    [104]Juodawlkis, P., Mclnturff, D.,, et al. Appl. Phys. Lett.69,4062 (1996).
    [105]Bichler, S., Ester, P., Zrenner, A., et al. Appl. Phys. Lett.85,4202 (2004).
    [106]Beham, E., Zrenner, A., Findeis, F., et al. Appl. Phys. Lett.79,2808 (2001).
    [107]Lee, H., Lowe-Webb, R., Johnson, T. J., et al. Appl. Phys. Lett.73,3556 (1998).
    [108]Zhang, Y. C., Huang, C. J., Liu, F. Q., et al. J. Appl. Phys.90,1973 (2001).
    [109]Mazur, Y. I., Wang, Z. M., Tarasov, G. G., et al. Appl. Phys. Lett.86,063102 (2005).
    [110]Tarasov, G. G., Mazur, Y. I., Zhuchenko, Z. Y, et al. Appl. Phys. Lett.88,7162 (2000).
    [111]Uskov, A. V., MeInerney, J., Adler, F., et al. Appl. Phys. Lett.72,58 (1998).
    [112]Uskov, A. V., Adler, F., Schweizer, H., et al. J. Appl. Phys.81,7895 (1997).
    [113]Narvaez, G. A., Bester, G. and Zunger, A. Carrier relaxation mechanisms in self-assembled (in,ga)as/gaaas quantum dots:Efficient p→s auger relaxation of electrons. Phys. Rev. B 74, 075403 (2006).
    [114]Grundmann, M. and Bimberg, D. Appl. Phys. Lett.55,9470 (1997).
    [115]Bell, J. S. Physics 1,195 (1964).
    [116]Akopian, N., Lindner, N. H., Poem, E., et al. Phys. Rev. Lett.96,130501 (2006).
    [117]Stevenson, R. M., Hudson, A. J., Bennett, A. J., et al. Phys. Rev. Lett.101,170501 (2008).
    [118]Young, R. J., Stevenson, R. M., Shields, A. J., et al. Phys. Rev. B 72,113305 (2005).
    [119]Tartakovskii, A. I. Phys. Rev. B 70,193303 (2004).
    [120]Ellis, D. J. P., Stevenson, R. M., Young, R. J., et al. Appl. Phys. Lett.90,011907 (2007).
    [121]Langbein, W., Borri, P., Woggon, U., et al. Phys. Rev. B 69,161301 (2004).
    [122]Seidl, S., Kroner, M., Hogele, A., et al. Appl. Phys. Lett.88,203113 (2006).
    [123]Dou, X. M., Sun, B. Q., Wang, B. R., et al. Chin. Phys. Lett.25,1120 (2008).
    [124]Gerardot, B. D. Appl. Phys. Lett.90,041101 (2007).
    [125]Kowalik, K., Krebs, O., Lemaitre, A., et al. Appl. Phys. Lett.86,041907 (2005).
    [126]Stevenson, R. M., Young, R. J., Atkinson, P., et al. Nature 439,179 (2006).
    [127]He, L. X., Gong, M., Li, C.-F., et al. Appl. Phys. Lett.101,157405 (2008).
    [128]Kwiat, P. H. and Weinfurter, H. Phys. Rev. A 58 (1998).
    [129]Walther, P., Resch, K. J., C. Brukner, et al. Phys. Rev. Lett.94,040504 (2005).
    [130]Gisin, N. and Peres, A. Phys. Rev. A 162,15 (1992).
    [131]Cinelli, C., Barbieri, M., Perris, R., et al. Phys. Rev. Lett.95,242405 (2005).
    [132]Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C., et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys. Rev. Lett.45,8185 (1992).
    [133]Barnett, S. M. and Allen, L. Orbital angular momentum and nonparaxial light beams. Optics Communications 110,670 (1994).
    [134]ARLT, J., DHOLAKIA, K., ALLEN, L., et al. The production of multiringed la-guerre±gaussian modes by computer-generated holograms. journal of modern optics,45, 1231 (1998).
    [135]Vaziri, A., Weihs, G.,, et al. J.opt.B 4 (2002).
    [136]Mair, A., Vaziri, A., Weihs, G., et al. Entanglement of the orbital angular momentum states of photons. Nature 412,313 (2001).
    [137]Kuzmich, A., Bowen, W. P., Boozer, A. D., et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423,731 (2003).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.