CO介导的H_2O_2参与ABA诱导气孔关闭和FC抑制ABA诱导气孔关闭的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究证实过氧化氢(H_2O_2)、一氧化氮(NO)和一氧化碳(CO)均介导脱落酸(ABA)诱导的气孔关闭,也有资料显示壳梭孢素(fusicoccin,FC)有促进气孔开放的效应,但时止今日尚未清楚ABA诱导气孔关闭中CO与H_2O_2的关系,FC抑制ABA诱导的气孔关闭与保卫细胞H_2O_2、NO变化的关系也未见研究。本文以蚕豆为材料,借助表皮条试验和激光共聚焦扫描显微镜(LSCM)技术对上述问题进行了探索。所得结果主要如下:
     1.ABA、CO合成底物亚铁血红素(Ht)、CO水溶液和H_2O_2均表现促进气孔关闭的效应,CO产生酶亚铁血红素加氧酶-1(HO-1)专一性抑制剂锌原卟啉(ZnPPIX)、H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)和H_2O_2产生酶NADPH氧化酶抑制剂二苯基碘(DPI)均抑制ABA诱导气孔关闭,Ht诱导的气孔关闭也被Vc、CAT和DPI抑制,这些结果暗示ABA可能通过诱导保卫细胞CO合成增加H_2O_2产生,进而促进气孔关闭。内源H_2O_2检测结果表明,ABA和Ht确有诱导保卫细胞H_2O_2产生的作用,而且ABA促进保卫细胞H_2O_2产生的作用可被ZnPPIX明显抑制,此与前述表皮条试验的结果完全一致。
     2.与H_2O_2清除剂Vc、CAT和H_2O_2产生酶NADPH氧化酶抑制剂DPI一样,FC抑制ABA诱导气孔关闭并降低保卫细胞内源H_2O_2水平,表明FC通过降低保卫细胞H_2O_2水平抑制ABA诱导气孔关闭;与H_2O_2清除剂Vc、CAT类似,FC不仅阻止外源H_2O_2诱导气孔关闭、降低保卫细胞H_2O_2荧光,而且促进ABA诱导下已关闭气孔重新开放、降低ABA诱导下已产生的内源H_2O_2,但H_2O_2产生酶NADPH氧化酶抑制剂DPI却无上述效应,这些结果说明FC可能通过清除而非抑制合成降低保卫细胞H_2O_2水平,进而抑制ABA诱导气孔关闭。
     3.与NO专一性清除剂c-PTIO、NO合酶(NOS)抑制剂L-NAME一样,FC抑制ABA诱导气孔关闭并降低保卫细胞内源NO水平,表明FC通过降低保卫细胞NO水平抑制ABA诱导气孔关闭;与NO专一性清除剂c-PTIO类似,也能通过降低保卫细胞NO水平抑制ABA诱导的气孔关闭。与NO专一性清除剂c-PTIO相类似,FC不仅阻止外源NO供体硝普钠(SNP)诱导气孔关闭、降低保卫细胞NO荧光,而且促进ABA诱导下已关闭气孔重新开放、降低ABA诱导下已产生的内源NO,但NOS抑制剂L-NAME却无上述效应,这些结果说明FC可能通过清除而非抑制合成降低保卫细胞NO水平,进而抑制ABA诱导气孔关闭。
Previous studies showed that CO, H_2O_2 and NO are involve in ABA-induced stomatal closure, and stomatal opening is induced by fusicoccin (FC). However, the role of CO-mediated H_2O_2 in ABA-induced stomatal closure remains unclear. Also, the effect and action mechanism of FC on ABA-induced stomatal closure are unkown. In the present study, by means of the epidermal strip bioassay and the laser scanning confocal microscopy(LSCM), it was investigated that the relationship of CO and H_2O_2 in ABA-induced stomatal closure and the effects and action mechanism of FC on stomatal closure induced by ABA. The main results are as followed:
     1. Stomatal closure were induced by ABA, CO synthesis substrate Hematin (Ht), CO aqueous solution and H_2O_2, ABA-induced stomatal closure was restrained by ZnPPIX (CO specific synthetic inhibitor), CAT(catalase), Vc(H_2O_2 scavenger) and DPI(an inhibitor of H_2O_2 generating enzyme NADPH oxidase), Ht-induced stomatal closure was also prevented by CAT, Vc and DPI. The results suggest that CO Synthesis may mediate ABA-induced H_2O_2 production and stomatal closure. The examination results of endogenous H_2O_2 showed that ABA and Ht induce increase of H_2O_2. However, ABA-induced the production of endogenous H_2O_2 was significantly prevented by ZnPPIX. These results were in accordance with the epidermal strip bioassay.
     2. Like CAT. Vc and DPI, FC inhibited ABA-induced stomatal closure and reduced the level of endogenous H_2O_2 in guard cells, which indicated that FC inhibited ABA-induced stomatal closure by reducing endogenous H_2O_2 level. Like CAT and Vc, FC not only prevented stomatal closure induced by exogenous H_2O_2, reduced H_2O_2 fluorescence of guard cells treated by exogenous H_2O_2, but also promoted the closed stoma induced by ABA to reopen, abolished H_2O_2 that had been generated by ABA. However, DPI had no the effects mentioned above. Taken together, our results indicate that FC probably reduce the levels of H_2O_2 in guard cells by scavenging, not restraining H_2O_2 generation, and then prevent ABA-induced stomatal closure.
     3. Like c-PTIO(NO scavenger) and L-NAME(NO synthase inhibitor), FC prevented ABA-induced stomatal closure and reduce the level of endogenous NO in guard cells, which indicated that FC prevented ABA-induced stomatal closure by reducing the level of endogenous NO. Like c-PTIO, FC not only prevented SNP-induced stomatal closure, reduced NO fluorescence of guard cells treated by SNP, but also promote the closed stoma induced by ABA to reopen, abolished NO that had been generated by ABA. However, L-NAME had no the effects mentioned above. Hence, it is concluded that FC reduce probably the levels of NO in guard cells via scavenging, not preventing NO generation, and then prevent ABA-induced stomatal closure.
引文
[1] Popova L P, Outlaw W H, et al. Abscisie acid-an intraleaf water-stress signal [J]. Physiol Plant, 2000, 108: 376-381.
    [2] Schroeder J I, Kwak J M, Allen G J. Guard cell abscisic acid signaling and engineering drought hardiness in plants [J].Nature, 2001a. 410:327-330.
    [3] Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J]. Annual Review of Plant Physiology and Plant Molecule Biology, 2001b, 52, 627-658.
    [4] Anderson B E, Ward J M, Schroeder J I. Evidence for an extracellular reception site for abscisic acid in commelina guare cells [J].Plant physiol, 1994, 104, 1177-1183.
    [5] Schwartz A, Wu W H, Tucker E B, et al. Inhibition of inward K~+ channels and stomatal response by abscisie acid: an intracellular locus of phytohormone action[J].Proc Natl Acad Sci USA. 1994, 91, 4019-4023.
    [6] 王恒彬,王学臣,陈枷等.蚕豆保卫细胞原生质体质膜ABA结合蛋白与气孔对ABA敏感性的关系[J].植物学报,1997b,39(2),126-129.
    [7] Zhang X, Zhang L, Dong F C, et al. Hydrogen peroxide is involved in abscisie acid-induced stomatal closure in Vicia faba[J].Plant Physiol, 2001a, 126, 1438-1448.
    [8] Hornberg C, Weiler E W. High-afinity binding sites for abscisie acid on plasmamebrane of viciafaba guard cells [J].Nature, 1994, 310, 321-324.
    [9] 张子连,陈珈,张大鹏.葡萄果实中ABA结合蛋白的存在及其性质[J].生物化学杂志,1995,12(4):404-408.
    [10] 陈珈,吴忠义,朱美君.玉米根质膜ABA结合蛋白增溶及特性研究[J].植物学报,1997,39(11):43-48.
    [11] 王恒彬,王学臣,陈枷等.蚕豆保卫细胞原生质体质膜ABA结合蛋白的理化特性[J].植物学报,1997a,39(1),43-48.
    [12] 王恒彬,王学臣,陈枷等.蚕豆保卫细胞原生质体质膜ABA结合蛋白与气孔对ABA敏感性的关系[J].植物学报,1997b,39(2),126-129.
    [13] 陈珈,朱美君.玉米根微粒体ABA结合蛋白的性质及逆境胁迫的影响[J].植物生理学报,1996,22(1):63-68.
    [14] MacRobbie E A C. Signal transduction and ion channels in guard cells [J].Phil Trans R Soc Lond B, 1998, 353: 1475-1488.
    [15] Assmann S M, Shimazaki K I. The multisensory guard cell. stomatal responses to blue light and abscisic acid[J].Plant Physiol, 1999, 19: 809-815.
    [16] Schroeder J I. Kwak J M. Allen G J. Guard cell abscisic acid signaling and engineering drought hardiness in plants [J].Nature, 2001a, 410:327-330.
    [17] Schroeder J I, Allen G J, Hugouvieux V, et al. Guard cell signal transduction [J]. Annual Review of Plant Physiology and Plant Molecule Biology, 2001b, 52,627-658.
    [18] Allen G J, Chu S P, Schumacher K, et al. Alternation of stimulus specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant [J].Science,2000. 289, 2338-2342.
    [19] Pei Z M, Murata Y, Benning G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells[J] .Nature, 2000,406:731-734.
    [20] Mansfield T A. Hetherington A M, Atkinson C J. Some current aspects of stomatal physiology [J].Annu Rev Plant Physiol Plant Mol Biol, 1990, 41, 55-70.
    [21] Cousson A, Cotelle V. Vavasseur A. Induction of stomatal closure by vanadate or a light/dark transition involves Ca~(2+) calmodulin dependent protein phosophorylations [J].Plant Physiol, 1995, 109, 491-498.
    [22] McAinsh M R, Webb. A A R, Taylor J E, et al. Stimulus induced oscillations in guard cell cytosolic free calcium[J].Plant Cell. 1995, 7: 1207-1213.
    [23] Schroeder J I, Hagiwara S. Repetitive increases in cytosolic Ca~(2+) of guard cells by abscisic acid activation of nonselective Ca~(2+)-permeable channels [J].Proc Natl Acad Sci USA, 1990, 87: 9305-9309.
    [24] Staxen I, Pical C, Montgomery L, et al. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C [J]. Proc Natl Acad Sci USA, 1999, 96: 1779-1784.
    [25] Irving H R, Gehring C A. Parish R W. Changes in cytosolic pH and calcium of guard cells precede stomatal movements [J]. Proc Natl Acad Sci USA, 1992,89:1790-1794.
    [26] Lee Y, Choi Y B, Suh S, et al. Abscisic acid-induced phosphoinositide turnover in guard cell protoplasts of Vicia faba[J].Plant Physiology, 1996, 110, 987-996.
    [27] Gilroy S, Read N D, Trewavas A J. Elevation of cytoplasmic calcium by caged calcium or caged inositol trisphosphate initiates stomatal closure [J].Nature, 1990,346:769-771.
    [28] Assmann S M. Signal transduction in guard cells [J].Annu Rev Cell Biol, 1993,9:345-375.
    [29] Wu Y, Kuzma J, Marechal E, et al. Abscisic acid signaling through cyclic ADP-Ribose in plants [J].Science, 1997, 278: 2054-2055.
    [30] Leckie C P, McAinsh M R. Allen G J, et al. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose[J].Proc Natl Acad Sci USA, 1998, 95:15873-15842.
    [31] Neill S J, Desikan R, Clarke A, et al. Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells[J].Plant Physiology. 2002a, 128, 13-16.
    [32] 刘新,张蜀秋,娄成后.Ca~(2+)参与NO对蚕豆气孔运动的调控[J].植物生理与分子生物学学报,2003,29(4):342-346.
    [33] Sheen J. Ca~(2+)-dependent protein kinases and stress signal transduction in plant[J].Science, 1996,274:1900-1902.
    [34] Li J, Lee Y R J, Assmann S M. Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel[J]. Plant Physiology, 1998, 116:785-795.
    [35] Grabov A, leung J, Giraudat J, et al. Alteration of anion channel kinetics in wild-type and abil-1 transgenic Nicotiana benthamiana guard cells by abscisic acid [J].Plant J, 1997,12,203-213.
    [36] Lemtiri-Chlieh F, MacRobbie E A C. Role of calcium in the modulation of Vicia guard cell potassium channels by abscisic acid-a patch-clamp study [J].Memb Biol,1994, 137: 99-107.
    [37] Kwak J M. Moon J H, Murata Y, et al. Disruption of a guard cell-expressed protein phosphatase 2A regulatory subunit, RCN1, confers abscisic acid insensitivity in Arabidopsis[J].Plant Cell, 2002, 14: 2489-2861.
    [38] Blatt M R. K~+ channels of stomatal guard cell: characteristics of the inward-rectifier and its control by pH [J]. Ge Physiol, 1992,99: 61-644.
    [39] Grabov A, Blatt M R. Parallel control of the inward-rectifier K~+ channel by cytosolic free Ca~(2+) and pH in Vicia guard cells [J].Planta, 1997, 201: 84-95.
    [40] Blatt M R, Armstorng F. K~+ channel of stomatal guard cells: Abscisic acid evoked control the outward rectifier mediated by cytoplasmic pH [J].Planta. 1993, 191, 330-341.
    [41] Li J, Wang X Q, Watson M B, et al. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase[J].Science, 2000,287:300-303.
    [41] Dong F C, Wang P T, Zhang L, et al. The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells[J].Acta Phytophysiological Sinica, 2001, 27, 296-302.
    [42] Desikan R, Cheung M K. Clark A, et al. Hydrogen peroxide is a common signal for darkness- and ABA- induced stomatal closure in Pisum sativum[J]. Functional Plant Biology, 2004, 31, 913-920.
    [43] She X P, Song X G, He J M. The role and relationship of nitric oxide and hydrogen peroxide in light/dark-regulated stomatal movement in Vicia fata [J].Acta Botanica sinica, 2004, 46(11), 1292-1300.
    [44] He J M, Xu H, She X P, et al, The role of the interrelationship of hydrogen peroxide and niric oxide in the UV-B-induced stomatal movement in broad bean[J].Functional Plant Biology, 2005, 32, 237-247.
    [45] Dwyer S C, Legendre L, Low P S, et al. Plant and human neutrophil oxidative burst complexes contain immunologically related proteins. Biochimica et Biophysica Acta, 1996. 1289:231-237.
    [46] Lamb C, Dixon R A. The oxidative burst in plant disease resistance [J].Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275.
    [47] Xing T, Higgins V J, Blumwald E. Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic componets of NADPH oxidase to the plasma membrane of tomato cells[J].The Plant Cell, 1997, 9: 249-259.
    [48] Groom Q J, Torres M A, Fordham-Skelton A P, et al. A rice homologue of the mammalian gp91-phox respiratory burst oxidase gene [J].Plant J, 1996, 10,515-522.
    [49] Keller G L, Nikolau B J, Ulrich T H, et al. Comparison of starch and ADP-glucose pyrophosphorylase levels in nonembryogenic cells and developing embryos from induced carrot cultures[J].Plant Physiol, 1998, 86(2): 451-456.
    [50] Bolwell G P, Davies D R. Gerrish C, et al. Comparative biochemistry of the oxidative burst produced by rose and French bean reveals two distinct mechanisms [J].Plant Physiology, 1998. 116, 1379-1358.
    [51] Otte O, Bar W. The elicitor-induced oxidative burst in cultured chickpea cells drives the rapid insolubilization of two cell wall structural proteins [J].Planta, 1996, 200:238-246.
    [52] Zhang X, Dong F C, Gao J F, et al. Hydrogen peroxide-induced changes in intracellular pH of guard cells precedes stomatal closure [J].Cell Res. 2001c, 11, 37-43.
    [53] Miao Y C, Song C P, Dong F C et al. ABA induced hydrogen peroxide generation in guard cells of Vicia faba[J]. Acta Photophysiologica Sinica. 2000, 26(1): 53-58.
    [54] 刘新,张蜀秋,娄成后.气孔运动调控中过氧化氢和一氧化氮信号途径的交叉作用[J].自然科学进展,2003,13(4):355-355.
    [55] Kwak J M, Mori I C, Pei Z M, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J].EMBO J, 2003, 22: 2623-2633.
    [56] Manthe B, Meyer H D, Cederbaum L S. Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: Evidence for salicylic acid metabolization[J]. Journal of Chemical Ecology, 1992, 18: 1525-1539.
    [57] Dat J F, Lopez D H, et al. Parallel changes in H_2O_2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings[J].Plant Physiology, April 1, 1998, 116(4): 1351-1357.
    [58] Suhita D, Raghavendra A S, Kwak J M, et al. Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure[J].Plant Physiol, 2004, 134: 1536-1545.
    [59] Lee S, Choi H, Doo I S, et al. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis [J].Plant Physiology, 1999, 121, 147-152.
    [60] Purohit S, Kumar G P, Laloraya M, et al. Involvement of superoxide radical in signal transdution regulation stomatal movements[J].Biochem Biophys Res Comm, 1994,205:30-37.
    [61] McAinsh M R. Clayton H, Mansfield T A. et al. Changes in stomatal behavior and cytosolic free calcium in response to oxidative stress [J].Plant Physiology, 1996,111:1031-1042.
    [62] Yang T, Poovaiah B W. Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin [J].Proc Natl Acad Sci USA, 2002, 99(6): 4097-4102.
    [63] Rajasekhar V K, Lamb C, Dixon R A. Early events in the signal pathway for the oxidative burst in soybean cells exposed to avirulent Pseudomonas syringae pvglycinea [J].Plant Physiology, 1999, 120, 1137-1146.
    [64] 董发才,薄惠,王棚涛等.拟南芥保卫细胞中茉莉酸甲酯诱导的H_2O_2产生与MAPK信号转导体系的可能关系[J].植物生理学通讯,2005,41(4):439-443.
    [65] Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J].The Plant Cell, 2002, 14, 3089-3099.
    [66] Gupta R, Huang Y, Kieber J, et al. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis[J]].Plant J, 1998, 16:581-589.
    [67] Xu Q, Fu H H, Gupta R, et al. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-response gene in Arabidopsis[J].Plant Cell,1998,10:849-857.
    [68] 石武良,贾文锁,刘新等.酪氨酸蛋白磷酸酶参与保卫细胞中ABA诱导产生H_2O_2的信号传递[J].科学通报.2004,16(49):1617-1622.
    [69] 安国勇,宋纯鹏,张骁等.过氧化氢对蚕豆气孔运动和质膜K~+通道的影响[J].植物生理学报,2000,26(5):458-464.
    [70] Beligni M V, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants [J].Planta, 2000, 210: 215-221.
    [71] LeshemY Y, Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum Sativum Linn foliage[J].Plant Physiology, 1996, 148:258-263.
    [72] Clarke A, Desikan R, Hurst R D, et al. NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures [J]. Plant, 2000, 24: 667-677.
    [73] Pedroso M C, Durzan D. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves [J].Exp Bot. 2000, 86: 983-994.
    [74] Marietta M A. Nitric oxide synthese structure and mechanism [J].Biol Chem, 1993, 268: 12231-12234.
    [75] Nathan C, Xie Q W. Nitric oxide synthase: roles tolls, and controls [J].Cell, 1994, 78:915-918.
    [76] Delldonne M, Xia Y J, Dixon R A, et al. Nitric oxide functions as a signal in plant disease resistance[J].Nature, 1998, 394, 585-588.
    [77] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP and cyclic ADP-ribose[J].Proc Natl Acad Sci USA, 1998, 95: 10328-10333.
    [78] Ribeiro E A, Cunha F Q, Tamashiro W M S C, et al. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells [J]. FEBS Letters, 1999, 445(2): 283-286.
    [79] Chandok M R, Ytterberg A J. Wijk K J, et al. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex [J].Cell, 2003,113: 469-482.
    [80] Rockel P, Strube F, Rockel A, et al. Regulation of nitric oxide (NO) production by plant nitrate reductase in vitro[J].J Exp Bot, 2002, 53: 103-110.
    [81] Dean J V, Harper J E. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vitro nitrate reductase assay [J].Plant Physiol, 1986, 82: 718-723.
    [82] Wildt J, Kley D, Rockel P, et al. Emission of NO from several higher plant species[J].Journal of Geophysical Research, 1997, 102: 5919-5927.
    [83] Desikan R, Griffiths R, Hancock J, et al. A new role for an old enzyme: Nitrate reductase-mediate nitric generation is required for abscisic acid-induced stomatal closure in an Arabidopsis thaliana [J].Proc. Natl. Acad. Sci. USA. 2002, 99, 16314-16318.
    [84] Mata G C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant response against drought stress [J].Plant Physiol. 2001, 126: 1196-1204.
    [85] Neill S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signaling molecules in plants[J].J Exp Bot, 2002b, 372: 1237-1247.
    [86] Mata G C, Lamattina L. Nitric oxide abscisic acid cross talk in guard cells [J]. Plant Physiol, 2002, 128: 790-792.
    [87] 刘新,张蜀秋,娄成后.一氧化氮参与水杨酸对蚕豆气孔运动的调控[J].科学通报,2003b,48,60-63.
    [88] 刘新,石武良,张蜀秋等.一氧化氮参与茉莉酸诱导蚕豆气孔关闭的信号转导 [J].科学通报, 2005, 50, 453-458.
    [89] Sakihama Y, Murakamai S, Yamasaki H. Involvement of nitric oxide in the mechanism for stomatal opening in Vicia faba leave[J].Biologia Plantarum, 2003,45: 117-119.
    [90] McAinsh M R, Gray J E, Hetherington A M, et al. Ca~(2+) signaling in stomatal guard cells[J].Biochem, Soc Trans, 2000, 28: 476-481.
    [91] Fu S L, Zhou Y B, Wang M, et al. Effect of exogenous NO and ABA on the leaf stomatal movement and enzyme activities of scavenging free radical of populus[J].Journal of Shenyang Agricultural University, 2004, 35(1): 29-32.
    [92] Newton R P, Roef L, Witters E, et al. Cyclic nucleotides in higher plants: the enduring paradox [J].New phytologist, 1999, 143: 427-455.
    [93] Neill S J, Desikan R, Hancock J T. Nitric oxide signaling in plants [J].New phytologist. 2003b, 159: 11-35.
    [94] Leng Q, Richard W, Mercier, et al. Berkowitz, cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel[J].Plant Physiol,1999,21:753-761.
    [95] Kohler C, Merkle T. Neuhaus G. Characterization of a novel gene family of putative cyclic nucleotide- and calmodulin-regulated ion channels in Arabidopsis thaliana[J].The Plant Journal. 1999, 18: 97-104.
    [96] Navarre D A, Wendehenne D, Durner J, et al. Nitric oxide modulates the activity of tobacco aconitase[J].Plant Physiol, 2000, 122: 573-582.
    [97] Desikan R. Cheung M K. Bright J, et al. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells[J].J.Exp.Bot, 2004, 55: 205-212.
    [98] Verma A, Hirsch D J, Glatt C E, et al. Carbon monoxide: a putative neural messenger[J].Science. 1993,259, 381-384.
    [99] Longo M, Jain V, Vedernikov Y P, et al. Effect of nitric oxide and carbon monoxide on uterine contractility during human and rat pregnancy[J].American Journal of Obstetrics and Gynecology, 1999, 181: 981-988.
    
    [100] Ryter S W, Otterbein L E, Morse D, et al. Heme oxygenase/carbon monoxide signaling pathways: Regulation and functional significance[J].Molecular and Cellular Biochemistry, 2002, 234/235: 249-263.
    [101] Otterbein L E. Otterbein S L. Ifedigbo E. et al. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury[J].American Journal of Pathology, 2003, 163(6):2555-2563.
    [102] Watts R N, Ponka P, Richardson D R. Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron[J].Biochemistry Journal, 2003, 369, 429-440.
    [103] Johnson R A, Jonhnson F K. The effects of carbon monoxide as a neuron transmitter[J].Curr Opin Neurol, 2000, 13: 709-713.
    [104] Wilks S S. Carbon monoxide in green plants[J].Science, 1959, 129: 964-966.
    [105] L(?)ttge U, Fischer K. Light-dependent net CO-evolution by C_3 and C_4 plants [J]. Planta, 1980,149:59-63.
    [106] Tarr M A, Miller W L, Zepp R G. Direct carbon monoxide photoproduction from plant matter[J].J Geophys Res, 1995, 100: 11403-11413.
    [107] Siegel S M, Renwick G, Rosen L A. Formation of carbon monoxide during seed germination and seedling growth[J].Science. 1962, 137: 683-684.
    [108] Ryter S W, Tyrrell R M. The heme synthesis and degradation pathways: role in oxidant sensitivity [J].Free Radic Biol Med, 2000, 28(2):289-309.
    [109] Tomaro M L, Batlle A M. Bilirubin: its role in cytoprotection against oxidative stress [J]. IJBCB, 2002, 34: 216-220.
    [110] Muramoto T, Tsurui N, Terry M J, et al. Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required for phytochrome chromophore synthesis[J].Plant Physiol, 2002, 130:1958-1966.
    [111] Kitamura Y, Matsuoka Y, Nomura Y, et al. Induction of inducible nitric oxide synthase and heme oxygenase-1 in rat glial cells[J].Life Sci. 1998, 62(17-18): 1717-1721.
    [112] Brune B, Ullrich V. Inhibition of platelet aggregation by carbon monoxide is mediated by activation of guanylate cyclase[J].Mol Pharmacol, 1987, 32(4): 497-504.
    [113] Farrugia G, Miller S M, Rich A. et al. Distribution of heme oxygenase and effects of exogenous carbon monoxide in canine jejunum[J]. Am J Physiol, 1998, 274(2): G350-G358.
    [114] Kozma F, Johnson R A. Zhang F. et al. Contribution of endogenous carbon monoxide to regulation of diameter in resistance vessels [J].Am J Physiol. 1999, 276(4): R1087-R1094
    [115] Otterbein L E, Bach F H, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen activated protein kinase pathway[J].Nat Med, 2000,6(4):422-428
    [116] Dulak J, Jozkowicz A. Carbon monoxide-a "new" gaseous modulator of gene expression[J].Acta Biochim Pol, 2003, 50: 31-47.
    [117] Hartsfield C L. Cross talk between carbon monoxide and nitric oxide[J]. Antioxid.Redox. Signal, 2002, 4: 301-307.
    [118] Thom S R, Xu Y A, Ischiropoulos H. Vascular endothelial cells generate peroxynitrite in response to carbon monoxide exposure[J].Chem Res Toxicol. 1997,10: 1023-1031.
    [119] Xu J, Xuan W, Huang B K, et al. Carbon monoxide-induced adventitious rooting of hypocotyl cuttings from mung bean seedling[J].Chinese Science Bulletin, 2006b,51(6), 668-674.
    [120] Cao Z Y. Xuan W. Liu Z Y, et al. Carbon monoxide promotes lateral root formation in rapeseed [J].Journal of Integrative Plant Biology. 2007, 49: 1070-1079.
    [121] Noriega G O, Balestrasse K B, Batlle A. et al. Heme oxygenase exerts a protective role against oxidative stress in soybean leaves[J].Biochem Biophys Res Commun.2004,323: 1003-1008.
    [122] Balestrasse K B, Noriega G O, Batlle A, et al. Involvement of heme oxygenase as antioxidant defense in soybean nodules [J].Free Radic Res, 2005, 39: 145-151.
    [123] Balestrasse, K B, Noriega G O, Batlle A, et al. Heme oxygenase activity and oxidative stress signaling in soybean leaves [J].Plant Science, 2006, 170(2):339-346.
    [124] Yannarelli G G Noriega G O, Batlle A, et al. Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species[J].Planta,2006,224:1154-1162.
    [125] Sa Z S, Huang L Q, Wu G L, et al. Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves[J].Journal of Integrative Plant Biology.2007, 49(5): 638-645.
    [126] Pollok M, Heber U, Naik M S. et al. Inhibition of stomatal opening in sunflower leaves by carbon monoxide, and reversal of inhibition by light[J].PIanta, 1989, 178:223-230.
    [127] Cao Z Y, Huang B K, Wang Q Y, et al. Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway[J].Chinese Science Bulletin, 2007a, 52(17):2365-2373.
    [128] Song X G, She X P, Zhang B, et al. Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis[J].Physiologia Plantarum, 2008, 132:514-525.
    [129] Marre E. Fusicoccin: a tool in plant physiology [J].Annu Rev Plant Physiology, 1979,30:273-288.
    [130] Korthout H A A J, de Boer A H. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs [J].Plant Cell, 1994, 6: 1681-1692.
    [131] Oecking C, Eckerskorn C, Weiler E W. The fusicoccin receptor of plants is a member of the superfamily of eukaryotic regulartory proteins [J].FEBS Lett, 1994, 352:163-166.
    [132] Palmgren M G, Larsson C, Sornrnarin M. Proteolytic activation of the plant plasma membrane H~+-ATPase by removal of a terminal segment[J] J Biol chem, 1990,265:13423-13426.
    [133] Palmgren M G. Regulation of plant plasma membrane H~+-ATPase activity[J]. Physiol plant, 1991,83:31-41.
    [134] de Boer B. Fusicoccin-a key to multiple 14-3-3 locks [J].Trends Plant Science, 1997,2:60-66.
    [135] Johansson F, Sommarin M, larsson C. Fusicoccin activates the plasma membrane H-ATPase by a mechanism involving the C-terminal inhibitory domain[J].Plant Cell, 1993, 5:321-327.
    [136] Johansson F, Sommarin M, larsson C. Brij58, a polyoxyethylene acylether, creates membrane vesicles of unform sideness. A new tool to obtain inside-out (cytoplasmic sideout) plasma membrane vesicles[J].Plant J, 1995, 7: 165-171.
    [137] Lanfermeijer F C, Prins H B A. Modulation of H~+-ATPase activity by fusicoccin in plasma membrane vesicles from oat roots[J].Plant physiol. 1994, 104: 1277-1285.
    [138] Assmann S M, Schwartz A. Synergistic effect of light and fusicoccin on stomatal opening [J].Plant Physiol. 1992, 98: 1349-1355.
    [139] Ballio A, Chain E B, De Leo P. et al. Fusicoccin: A new wilting toxin produced by Fusicoccin amygdali Del [J] .Nature, 1964, 203: 297.
    [140] Shimazaki K, Omasa K, Kinoshita T, Nishimura M. Properties of the signal transduction pathway in the blue light response of stomatal guard cells of Vicia faba and Commelina benghalensis[J].Plant Cell Physiol, 1993, 34: 1321-1327.
    [141] Squire G R, Mansfield T A. Studies of the mechanism of action fusicoccin, the fungal toxin that induces wilting, and its interaction with abscisic acid[J].Planta,1972,105:71-78.
    [142] Eun S O, Lee Y. Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells[J].Planta, 2000, 210: 1014-1017.
    [143] William H, Outlaw Jr. Zhirong Du, et al. Requirements for activation of the signal-transduction network that leads to regulatory phosphorylation of leaf guard-cell phosphoenolpyruvate carboxylase during fusicoccin-stimulated stomatal opening[J]. Archives of Biochemistry and Biophysics, 2002, 407: 63-71.
    [144] Zhang X, Wang H B Takemiya A, et al. Inhibition of blue light-dependent H~+-pumping by abscisic acid through hydrogen peroxide-induced dephosphorylation of the plasma membrane H~+-ATPase in guard cell protoplasts[J].Plant Physiology, 2004, 136: 4150-4158.
    [145] Terry M J. Linley P J, Kochi T. Making light of it: the role of plants heme oxygenases in phytochrome chromophore synthesis [J].Biochemical Society Transactions, 2002, 30: 604-609.
    [146] Ortiz de Montellano P R, Wilks A. Heme oxygenase structure and mechanism[J].Advanced Inorganic Chemistry, 2001, 51: 359-407.
    [147] Dat J. Vandenbeele S. Vranová E, et al. Dual action of the active oxygen species during plant stress responses[J].Cellular and Molecular Life Sciences, 2000, 57:779-795.
    [148] Nell S J, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in plants[J].Exp. Bot, 2002, 53, (372): 1237- 1247.
    [149] Desikan R K, Clarke A, Hancock J, et al. Short communication H_2O_2 activates a MAP kinase-like enzyme in Arabidopsis thaliana suspension cultures[J].J. Exp.Bot,1999,50,1863-1866.
    [150] Yuasa T. Ichimura K. Mizoguchi T, et al. Oxidative stress activates ATMPK6, an Arabidopsis homologue of MAP kinase [J].Plant Cell Physiology. 2001, 42 (9):1012-1016.
    [151] Kovtun Y, Chiu W L, Tena G,et al. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants[J].Proc. Natl. Acad. Sci. USA, 2000, 97(6): 2940-2945.
    [152] Delledonne M, Zeier J, Marocco A, et al. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J].Proceedings of the National Academy of Sciences USA, 2001, 98, 13454-13459.
    [153] Su G X, Zhang W H. Liu Y L. Involvement of hydrogen peroxide generated by polyamine oxidative degradation in the development of lateral roots in soybean[J]. Journal of Integrative Plant Biology, 2006, 48(4), 426-432.
    [154] Joo J H, Bae Y S, Lee J S. Role of auxin-induced reactive oxygen species in root gravitropism[J].Plant Physiology, 2001, 126, 1055- 1060.
    [155] Song X G, She X P, He J M, et al. Cytokinin- and auxin-induced stomatal opening involves a decrease in levels of hydrogen peroxide in guard cells of Vicia faba[J].Functional Plant Biology, 2006, 33, 573-583.
    [156] Zhu J K. Salt and drought stress signal transduction in plants [J].Annu Rev Plant Biol, 2002, 53: 247-273.
    [157] Hetherington A M. Guard cell signaling[J].Cell, 2001, 107: 711-714.
    [158] Shimazaki K, Noriaki Kondo. Plasma membrane H~+-ATPase in guard cell protoplasts from Vicia faba[J].Plant Physiol, 1987, 28: 893-900.
    [159] Morsomme P, de Kerchove d'Exaerde A, De Meester S, et al. Single point mutations in various domains of plant plasma membrane H~+-ATPase expressed in Saccharomyces cerevisiae increase H~+ pumping and permit yeast growth at low pH[J].EMBO J, 1996, 15: 5513-5526.
    [160] Sze H, Li X, Palmgren M G, Energization of plant cell membrane by H~+ pumping ATPase: regulation and biosynthesis[J].Plant Cell, 1999, 11: 677-689.
    [161] Aitken A. 14-3-3 and its possible role in coordinating multiple signaling pathways[J].Trends in Cell Biology, 1996, 6: 341-347.
    [162] Palmgren M G, Proton gradients and plant growth: Role of the plasma membrane H~+-ATPase[J].Adv. Bot. Res., 1998, 28: 1-70.
    [163] Baunsgaard L, Fuglsang A T, Jahn T, et al. The 14-3-3 proteins associate with the plant plasma membrane H~+-ATPase to generate a fusicoccin binding complex and a fusicoccin response system[J].Plant J, 1998, 13: 661-671.
    [164] Fullone M R, Visconti S, Marra M, et al. Fusicoccin effect on the in vitro interaction between plant 14-3-3 proteins and plasma membrane H~+-ATPase[J].J. Biol. Chem, 1998, 273: 7698-7702.
    [165] Oecking C, Piotrowski M, Hagemeier J, et al. Topology and target interaction of the fusicoccin-binding 14-3-3 homologs of Commelina communis[J].Plant J, 1997, 12:441-453.
    [166] Oecking C, Hagemann K. Association of 14-3-3 proteins with the C-terminal autoinhibitory domain of the plant plasma-membrane H~+-ATPase generates a fusicoccin-binding complex[J].Planta, 1999, 207: 480-482.
    [167] Laloi C. Apel K, Danon A. Reactive oxygen signaling: the latest news [J].Curr Opin Plant Biol. 2004, 7: 323-328.
    [168] Zhang X, Miao Y C. An G Y, et al. K~+ channel inhibited by hydrogen peroxide mediate abscisic signaling in Vicia guard cells[J].Cell Res, 2001b, 11, 195-202.
    [169] Kinoshita T, Shimazaki K. Blue light activates the plasma membrane H~+-ATPase by phosphorylation of the C-terminus in stomatal guard cells[J]. EMBOJ, 1999, 18: 5548-5558.
    [170] Jahn T, Fuglsang A T, Olsson A, et al. The 14-3-3 protein interacts directly with the C-terminal region of the plant plasma membrane H~+-ATPase [J] .Plant cell. 1997,9: 1805-1814.
    [180] Soon-Ok Eun, Youngsook Lee. Stomatal opening by fusicoccin is accompanied by depolymerization of actin filaments in guard cells [J].Planta, 2000, 210: 1014-1017.
    [181] Zhang X, Takemiya A, Kinoshita T, et al. Nitric oxide inhibits blue light-specific stomatal opening via abscisic acid signialing pathways in Vicia guard cells[J].Plant cell physiol, 2007,48(5): 715-723.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.