湿法冶金用复合多孔Pb合金阳极制备与应用关键技术及基础理论
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Zn、Cu、Ni、Co、Mn等金属的湿法冶金工业中,电积工序一般采用含高浓度H2S04的电解液,因而只能采用Pb合金阳极。但Pb合金阳极存在析氧过电位高、表面氧化膜疏松易脱落、密度大、易蠕变等问题,造成电积过程的能耗高、阴极产品易受Pb污染。针对上述问题开发的电催化涂层阳极(DSA)、多元Pb合金阳极及多孔阳极,虽然分别在某些方面取得了较好效果,但仍不能满足工业应用要求。
     论文借鉴相关领域的最新研究成果,以开发低成本、高性能新型复合多孔Pb合金阳极为目标,深入研究了多孔Pb合金阳极在H2S04电解液中的电化学行为,研究了“反三明治”结构对多孔Pb合金阳极的阳极电位、腐蚀率、导电性及力学性能的影响,研究了RE添加对Pb合金阳极结构与性能的影响,研究了复合多孔Pb合金阳极在锌电积和铜粉电积中的应用关键技术,开发了工业尺寸复合多孔Pb合金阳极的反重力渗流铸造设备与工艺,采用复合多孔Pb合金阳极在锌电积工业现场开展了工业电解试验。主要创新性成果如下:
     (1)研究了多孔Pb合金阳极在H2S04溶液中的电化学行为,明确了多孔结构对阳极表面氧化膜的形成过程、膜层组分与结构、电极内部传质传荷特点及阳极析氧机制的影响,多孔阳极内部的传质与传荷平行进行,电化学反应强度从外到内依次减弱,电化学“特征深度”约为3mm。计算了多孔阳极电化学反应有效面积和表观活化能,揭示了多孔阳极节能降耗的电化学本质,其表观活化能较传统阳极增加约5kJ/mol,但电化学反应有效面积为传统阳极的10倍左右,使得析氧过程的表观交换电流密度大,析氧能力增强。
     (2)提出并制备了“反三明治”结构复合多孔Pb合金阳极,实现了金属芯板与多孔层的冶金结合。复合多孔阳极的芯板主要起传导电流和承担载荷的作用,而电化学性能靠外侧多孔层发挥。当芯板为2mm厚时,孔径为1.25-1.43mm的Pb-Ag合金复合多孔阳极的极限抗拉强度和导电率分别为同孔径纯多孔阳极的3倍和1.3倍。与传统平板阳极和多孔阳极比较,复合多孔阳极的阳极电位降低114mV和16mV,腐蚀率降低48.7%和6.3%,同时抗拉强度和导电率较多孔阳极提高200%和30%。
     (3)揭示了Nd、Pr、Gd和Sm对Pb合金的组织结构、氧化膜结构以及析氧过程的影响规律,获得了适用于湿法冶金电沉积的Pb-Ag(0.6wt.%)-Nd(0.5wt.%)三元合金阳极,其极限抗拉强度、稳定阳极电位和腐蚀率分别为20.985MPa.1.798V和2.347g/(m2h),分别是传统Pb-Ag(0.8%)平板阳极的113.9%、99.7%和59.9%。
     (4)研发了复合多孔Pb合金阳极在锌电积和铜粉电积中的工业应用技术,采用975mm×620mm×6mm的复合多孔阳极开展了为期24天的锌电积工业试验。与传统平板阳极比较,阳极电位、槽电压和能耗平均降低91mV、116mV和85kWh/t-Zn,腐蚀率、阳极泥及电锌Pb含量分别降低82.5%、77%和34.4%。
In the hydrometallurgical process of nonferrous metals such as Zn, Cu, Ni, Co, Mn, the high-concentration H2SO4solution is always used and Pb-based alloys are generally used as anodes. It can meet the basic requirements, but still has problems such as high oxygen evolution over-potential, unsatisfactory corrosion resistance, heavy and easy creep, which may result in high energy consumption and lead contamination of the cathode products. In order to save these problems, research has been done, mainly focused on electrocatalytic coated anodes(DSA), Pb-based multi-component alloy anodes and porous anodes. There are certain progress but still cannot meet the industrial requirements,
     In order to develop low cost and high performance new composite porous anode(CPA), by adopting the latest research results in related field, the electrochemical behavior of porous anode in H2SO4electrolyte, the influence of "anti-sandwich structure" on anodic potential, anodic corrosion rate, electric conductivity and mechanical properties, and the influence of RE elements on the structure and performance of Pb-based alloys are studied. After that, the counter-gravity infiltration equipment and technologies of industrial-sized composite porous anode are developed, and then the industrial test at zinc electro winning industrial site is carried out. The main research results are as follows:
     (1) The electrochemical behavior of CPA in H2SO4electrolyte is studied, and the forming process, structure and component of the oxidation film, the charateristic of mass transfer and charge transfer, and the oxygen evolution mechanism of it are revealed. Inside the porous anode, mass transfer and charge transfer are parallel processes, and the electrochemical reaction strength decreases from outside to inside, the "characteristic depth" is about3mm when the pore diameter is1.43-1.60mm. The electrochemical surface area and apparent activation energy are caculated, and the electrochemical nature of energy-saving performance is indicated. The apparent activation energy of CPA is about5kJ/mol more than traditional flat plate anode, but its electrochemical surface area is about10times of the later, which can enlarge the apparent exchange current, and enhance the oxygen evolution capability.
     (2) The "anti-sandwich structure" composite porous anode, with the core of dense metal and two pieces of porous layers metallurgical bonding together, is designed and prepared. The core board of the composite porous anode mainly takes the role of conducting current and taking load, and the electrochemical performance depends on the lateral porous layer. When the core board is2mm thick, the ultimate tensile strength and conductivity of CPA with pore diameter of1.25-1.43mm are3times and1.3times respectively than that of pure porous anode for the same pore diameter. Compared with traditional flat anodes and pure porous anodes, its anodic potential is114mV and16mV lower, and its corrosion rate is48.7%and6.3less, respectively.
     (3) The influences of Gd、Pr、Nd、Sm on the metallographic structure, oxidation film and mechanism of the oxygen evolution process are revealed, and a new kind of Pb-Ag (0.6wt.%)-Nd (0.5wt.%) ternary alloy suits for the electro winning process is obtained. The ultimate tensile strength, stable anodic potential and corrosion rate are20.985MPa、1.798V and2.347g/(m2h), which is respectively113.9%,99.7%and59.9%of the traditional Pb-Ag(0.8wt.%) anode.
     (4) The industrial application technologies of composite porous anode in zinc electrolytic process and copper powder electrolytic process are studied and developed, and the24-day industrial test using975mm×620mm×6mm CPAs is carried out in the zinc electrolyzing plant. The anodic potential, cell voltage and energy consumption are91mV,116mV and85kWh/t-Zn lower than traditional flat plate anode, and corrosion rate, formation of anode slime and Pb in zinc product are respectively82.5%,77%and34.4%less.
引文
[1]C.Cachet, C.Rerolle, R.Wiart. Kinetics of Pb and Pb-Ag anodes for zinc electrowinning. Electrochemical Acta,1996,41(1):83-90.
    [2]王钧扬.锌电积的节电探讨.湖南冶金,2003,31(2):45-48.
    [3]Aromaa J, Evans J.M. Electrowinning of metals. Encyclopedia of Electrochemistry,2007, (5): 159-265.
    [4]Cifuentes L, Astete E, Crisostomo G. Corrosion and protection of lead anodes in acidic copper sulphate solutions. Corrosion Engineering, Science and Technology,2005,40(4):321-327.
    [5]Rashkov St, Dobrev Ts, Noncheva Z. Lead-cobalt anodes for electrowinning of zinc from sulphater electrolytes. Hydrometallurgy,1999,52:223-230.
    [6]Jeffers T H, Groves R D. Electrowinning extraction acid Pb-Sb anodes copper from solvent strip solution using. Metallurgical Transactions,1977, (8):115-119.
    [7]Nguyen T, Atrens A. Influence of lead dioxide surface films on anodic oxidation of a lead alloy under conditions typical of copper electrowinning. Journal of Applied Electrochemistry,2008, 38:569-577.
    [8]Ivanov I, Stefanov Y, Noncheva Z, et al. Insoluble anodes used in hydrometallurgy Part Ⅰ. Corrosion resistance of lead and lead alloy anodes. Hydrometallurgy,2000,57:109-124.
    [9]Ivanov I, Stefanov Y, Noncheva Z, et al. Insoluble anodes used in hydrometallurgy Part Ⅱ. Anodic behaviour of lead and lead-alloy anodes. Hydrometallurgy,2000,57:125-139.
    [10]Lupi C, Pilone D. New lead alloy anodes and organic depolarizer utilization in zinc electrowinning. Hydrometallurgy,1997,44:347-358.
    [11]Petrova M, Noncheva Z, Dobrev Ts, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys. Hydrometallurgy, 1996,40:293-318.
    [12]Oliveira-Sousa A De, Silva M A S Da, Machado S A S, et al. Influence of the preparation method on the morphological and electrochemical properties of Ti/Ir02-coated electrodes. Electrochemica Acta,2000,45:4467-4473.
    [13]Hu J M, Zhang J Q, Cao C N. Oxygen evolution reaction on IrO2-based DSA type electrodes:kinetics analysis of Tafel lines and EIS. International Journal of Hydrogen Energy, 2004,29:791-797.
    [14]Ma H C, Liu C P, Liao J H. Study of ruthenium oxide catalyst for electrocatalytic performance in oxygen evolution. Journal of Molecular Catalysis A:Chemical,2006,247:7-13.
    [15]Song S D, Zhang H M, Ma X P, et al. Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. International Journal of Hydrogen Energy, 2008,33:4955-4961.
    [16]Jirkovsky J, Makarova M, Krtil P. Particle size dependence of oxygen evolution reaction on nanocrystalline RuO2 and Ru0.8Co0.2O2-x. Electrochemistry Communications,2006, (8): 1417-1422.
    [17]Macounova K, Jirkovsky J, Marina V. Oxygen evolution on Ru1-xNixO2-y nanocrystalline electrodes. J Solid State Electrochem,2009,13:959-965.
    [18]Shrivastava P, Moats M S. Ruthenium palladium oxide-coated titanium anodes for low-current-density oxygen evolution. Journal of The Electrochemical Society,2008,155(7): E101-E107.
    [19]Marshall A, Borresen B, Hagen G, et al. Iridium oxide-based nanocrystalline particles as oxygen evolution electrocatalysts. Russian Journal of Electrochemistry,2006,42(10):1134-1140.
    [20]Ye Z G, Meng H M, Sun D B. New degradation mechanism of Ti/IrO2+MnO2 anode for oxygen evolution in 0.5M H2SO4 solution. Electrochimica Acta,2008,53:5639-5643.
    [21]A. Marshall, B. B(?)rresen, G. Hagen, et al. Electrochemical characterisation of IrxSn1-xO2 powders as oxygen evolution electrocatalysts. Electrochimica Acta,2006,51(15):3161-3167.
    [22]Cattrin S, Guerriero P, Musiani M. Preparation of anodes for oxygen evolution by electrodeposition of composite Pb and Co oxides. Electrochimica Acta,2001,46:4229-4234.
    [23]Dalchiele E A, Cattarin S, Musiani M. Electrodeposition studies in the MnO2+PbO2 system: formation of Pb3Mn7O15. Journal of Applied Electrochemistry,2000,30:117-120.
    [24]Singh R N, Singh J P, Singh N K, et al. Sol-gel derived spinel MxCo3-xO4 (M=Ni, Cu; O≤x≤1) films and oxygen evolution. Electrochimica Acta,2000,45:1911-1919.
    [25]Singh R N, Singh J P, Lal B, et al. Preparation and characterization of CuFe2-xCrxO4 (O≤x≤1) nano-spinels for electrocatalysis of oxygen evolution in alkaline solutions. International Journal of Hydrogen Energy,2007,32:11-16.
    [26]梁镇海,孙彦平Ti/SnO2+Sb2O3+MnO2/PbO2阳极的性能研究.无极材料学报,2001,16(1):183-187.
    [27]衷水平.锌电积用铅基多孔节能阳极的制备、表征与工程化试验:[博士学位论文].长沙:中南大学,2009.
    [28]Shuiping Zhong, Yanqing Lai, Liangxing Jiang, et al. Fabrication and anodic polarization behavior of lead-based porous anodes in zinc electrowinning. Journal of Central South University of Technology,2008, (15):757-762.
    [29]陈文革,张强.泡沫金属的特点、应用、制备与发展.粉末冶金工业,2005,15(2):37-42.
    [30]杨雪娟,刘颖,李梦等.多孔金属材料的制备及应用.材料导报,2007,21(8):380-383.
    [31]John Banhart. Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science,2001,46(6):559-632.
    [32]刘荣佩,左孝青,杨晓源等.渗流铸造法制备多孔泡沫金属电极.云南冶金,2000,29(1):37-39.
    [33]刘荣佩,左孝青,张林洪.渗流铸造多孔泡沫铅电极的性能测试分析.机械工程材料,2002,26(3):32-34.
    [34]宝鸡有色金属研究所.粉末冶金多孔材料(下册).北京:冶金工业出版社.1977.
    [35]曹立宏,马颖.多孔泡沫金属材料的性能及其应用.甘肃科技,2006,22(6):117-121.
    [36]刘培生,李铁藩,傅超等.多孔金属材料的应用.功能材料,2001,32(1):12-15.
    [37]汤慧萍,张正德.金属多孔材料发展现状.稀有金属材料与工程,1997,26(1):1-6.
    [38]李海涛,朱锡,石勇等.多孔吸声材料的研究进展.材料科学与工程学报,2004,22(6):394-398.
    [39]LJ Gibson, M F Ashby.多孔固体结构与性能(刘培生).北京:清华大学出版社,2003.
    [40]刘培生.泡沫金属的经典性模型——Gibson-Ashby模型浅析.有色金属,2005,57(2):55-57.
    [41]刘培生.泡沫金属力学性能的若干问题.稀有金属材料与工程,2004,33(5):473-477.
    [42]Belhadj Abd-Elmouneim, Kaoua Sid-Ali, Azzaz Mohammed, et al. Elaboration and characterization of metallic foams based on tin-lead Materials Science and Engineerging A,2008,
    [43]卢天健,何德坪,陈常青等.超轻多孔金属材料的多功能特性及应用.力学进展,2006,36(4):517-535.
    [44]卢天健,刘涛,邓子辰.多孔金属材料多功能设计的若干进展.力学与实践,2008,30(1):1-9.
    [45]Jahan-Bakhsh Raoof, Reza Ojani, Abolfazl Kiani, et al. Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction. International Journal of Hydrogen Energy,2010,35(2):452-458.
    [46]John S. Wang, Ping Liu, Elena Sherman, et al. Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams. Journal of Power Sources,2011,196(20):8714-8718.
    [47]H. B. Dai, Y. Liang, P. Wang, et al. High-performance cobalt-tungsten-boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. International Journal of Hydrogen Energy,2008,33(16):4405-4412.
    [48]N. Michailidis. Strain rate dependent compression response of Ni-foam investigated by experimental and FEM simulation methods. Materials Science and Engineering:A,2011,528(12): 4204-4208.
    [49]Yusuke Yamauchi, Masaki Komatsu, Azusa Takai, et al. Direct deposition of nanostructured Pt particles onto a Ni foam from lyotropic liquid crystalline phase by displacement plating. Electrochimica Acta,2007,53(2):604-609.
    [50]Mohamed Shehata Aly. Effect of pore size on the tensile behavior of open-cell Ti foams: Experimental results. Materials Letters,2010,64(8):935-937.
    [51]S. V. Raj, L. J. Ghosn. Failure maps for rectangular 17-4PH stainless steel sandwiched foam panels. Materials Science and Engineering:A,2008,474(1-2):88-95.
    [52]Xiang-Yang Zhou, Jie Li, Bo Long, et al. The oxidation resistance performance of stainless steel foam with 3D open-celled network structure at high temperature. Materials Science and Engineering:A,2006,435-436:40-45.
    [53]A. Paul, T. Seshacharyulu, U. Ramamurty. Tensile strength of a closed-cell al foam in the presence of notches and holes. Scripta Materialia,1999,40(7):809-814.
    [54]Y. Y. Zhao, D. X. Sun. A novel sintering-dissolution process for manufacturing A1 foams. Scripta Materialia,2001,44(1):105-110.
    [55]Simancik, Reproducibility of aluminium foam properties, In:Cellular Metals and Metal Foaming Technology, Ed. by J. Banhart, M.F. Ashby, N.A. Fleck. MIT-Verlag:Bremen.2001,235.
    [56]Frantisek Simancik, Walter Rajner, Rainhard Laag. Reinforced alulight for structural use. In: Processing and properties of Lightweight Cellular Metals and Structures(TMS Annual Meeting). 2002. Seattle, USA.
    [57]H.P.蒂吉斯切,B.克雷兹特.多孔泡沫金属(左孝青,周芸).北京:化学工业出版社,2005.
    [58]John Banhart, Hans-Wolfgang Seeliger. Aluminium Foam Sandwich Panels:Manufacture, Metallurgy and Applications. Advanced Engineering Materials,2008,10(9):793-802.
    [59]张敏,于九明.金属夹芯复合板及其制备技术的发展.焊接技术,2003,32(6):21-25.
    [60]T. Bernard, H.W. Bergmann, C. Haberling, et al. Joining Technologies for Al-Foam-A1-Sheet Compound Structures. Advanced Engineering Materials,2002,4(10):798-802.
    [61]伊藤泰永.铝合金钎焊蜂窝板及其应用.国外机车车辆工艺,2002,(9):21-25.
    [62]石丸靖男.高速铁道车辆用钎焊铝蜂窝板及其加工.国外机车车辆工艺,2001,(2):11-17.
    [63]山口进吾.蜂窝状焊接构件的设计制造.国外机车车辆工艺,1994,(5):11-17.
    [65]曲文卿,张彦华.TLP连接技术研究进展.焊接技术,2002,31(3):4-5.
    [66]Nabavi A, Vahdati Khaki J. Manufacturing of aluminum foam sandwich panels:comparison of a novel method with two different conventional methods. Journal of Sandwich Structures and Materials,2011,13(2):177-187.
    [67]粱晓军,朱勇刚,陈锋等.泡沫铝三明治结构的制备.江苏冶金,2004,32(1):7-12.
    [68]Reimund Neugebauer, Carsten Lies, Jorg Hohlfeld, et al. Adhesion in sandwiches with aluminum foam core. Production Engineering,2007,1(3):271-278.
    [69]Gauthier M, Lefebvre L P, Thomas Y. Production of metallic foams having open porosity using a powder metallurgy approach. Materials and Manufacturing Processes,2004,19(5):793-811.
    [70]Stobener K, Baumeister J, Lehmhus D, et al. Composites based on metallic foams: Phenomenology, production, properties and principles, in International Conference Advanced Metallic Materials 2003:Smolenice, Slovakia.2003,281-286.
    [71]Kunze H. D, Baumeister J, Banhart J, et al. P/M Technology for the Production of Metal Foams. Powder Metallurgy International,1993,25(4):182-185.
    [72]KORNER Carolin, HIRSCHMANN Markus, WIEHLER Harald. Integral foam moulding of light metals. Materials Transactions,2006,47(9):2188-2194.
    [73]H. Wiehler, C. Korner, R.F. Singer. High Pressure Integral Foam Moulding of Aluminium-Process Technology. Advanced Engineering Materials,2008,10(3):171-178.
    [74]Carolin Koerner. Integral foam molding of light metals:technology, foam physics and foam simulation. Verlag Berlin Heidelberg:Springer.2008.
    [75]郭铁明,季根顺,马勤等.弥散强化型导电铜基复合材料的研究进展.材料导报,2007,21(7):27-32.
    [76]李松瑞.铅及铅合金.长沙:中南工业大学出版社.1996.
    [77]Roberts David Henry. Improvements relating to dispersion strengthened lead. UK:GB1122823A, 1965.5.19.
    [78]Keith Ebdon Denis. Dispersion hardening of lead. USA:US3189989,1963.5.20.
    [79]Henry R Huffman, John Ivor Evans David. Dispersion strengthened lead battery grids. USA: US3310438,1966.02.17.
    [80]Joseph L Rooney, John Badger. Dispersion lead alloys for battery grids. USA:US3253912, 1963.5.20.
    [81]Y Cartigny, J M Fiorani, A Maitre, et al. Pb-based composites materials for grids of acid battery. Materials Chemistry and Physics,2007,103(2-3):270-277.
    [82]H C Wesson. Improving the mechanical properties of lead by dispersion strengthening. Light Metals Metal Ind.,1965,28(330):71-72.
    [83]毛小南,张鹏省,于兰兰等.纤维增强钛基复合材料研究新进展.稀有金属快报,2005,24(5):1-7.
    [84]B. Esmaeillou, J. Fitoussi, A. Lucas, et al. Multi-scale experimental analysis of the tension-tension fatigue behavior of a short glass fiber reinforced polyamide composite. Procedia Engineering, 2011,10(0):2117-2122.
    [85]王延斌,苏勋家,侯根良等.碳纤维增韧陶瓷基复合材料界面的研究.材料导报,2007,21:431-433.
    [86]Eric N. Brown, Philip J. Rae, Dana M. Dattelbaum, et al. Rate dependent response and failure of a ductile epoxy and carbon fiber reinforced epoxy composite. Dynamic Behavior of Materials,2011, 1:401-402.
    [87]Pengfei Yan, Guangchun Yao, Jianchao Shi, et al., Preparation and Characterization of Short Carbon Fiber Reinforced Aluminium Matrix Composites, In:Supplemental Proceedings, Ed. by. John Wiley & Sons, Inc.2011,199-204.
    [88]郝元恺,肖加余.高性能复合材料学.北京:化学工业出版社.2004.
    [89]N E Bagshaw. Lead alloys:past, present and future. Journal of Power Sources,1995,53(1):25-30.
    [90]李党国,周根树,林冠发等.稀土-铅合金在硫酸溶液中阳极行为研究.中国稀土学报,2005,23(2):224-227.
    [91]薛松柏,马鑫,钱乙余等.镧与Sn-Pb合金体系中组元的相互作用关系.中国稀土学报,2000,18(4):334-336.
    [92]马鑫,钱乙余,吉田综仁.稀土对近共晶Sn60-Pb40软钎料合金凝固组织及高温力学性能的影响.中国稀土学报,2000,18(2):135-137.
    [93]朱颖,康慧,曲平等.Sn-Pb-RE钎料的塑性变形抗力研究.中国稀土学报,1999,17(2):145-148.
    [94]Mori T, Koda M, Monzen R. Particle blocking in grain boundary sliding and associated internal friction. Acta Metallurgica, 1983,32(2):275-283.
    [95]李道韫,徐连棠,傅念新等.稀土防止高铅青铜偏析的研究.中国稀土学报,1991,9(1):56-60.
    [96]邱聿成,叶英宁,吴炳乾.代ZQSn6-6-3轴承套材料的加稀土铅青铜.机械工程材料,1984,2:54-57.
    [97]杨习文,唐有根,舒宏等.添加富铈稀土对低锑合金结构及电化学性能的影响.中国有色金属学报,2006,16(10):1817-1822.
    [98]贺小红.磁场凝固处理对低锑稀土铅合金的微观结构和电化学性能的影响:[硕士学位论文].长沙:中南大学,2007.
    [99]唐有根,贺小红,杨习文等.添加铈对低锑铅合金的微观结构及电化学性能的影响.中国稀土学报,2007,25(3):323-328.
    [100]陈有孝.免维护密闭铅酸蓄电池板栅合金的研究:[硕士学位论文].天津:天津大学,1991.
    [101]Hou-tian Liu. A lead-tin-rare earth alloy for VRLA batteries. Journal of Electrochemical Society, 2004,151(7)
    [102]柳厚田,杨春晓,梁海河.铈对铅钙锡合金在硫酸溶液中阳极行为的影响.电化学,2000,6(3):265-271.
    [103]Hou-tian Liu. The anodic films on lead alloys containing rare-earth elements as positive grids in lead acid battery. Materials Letters,2003, (57):4597-4600.
    [104]柳厚田,张新华,杨炯等.铈降低在硫酸溶液中生长的阳极Pb(Ⅱ)氧化物膜的电阻的研究.化学学报,2002,60(4):643-646.
    [105]Hou-Tian Liu, Jiong Yang, Hai-He Liang, et al. Effect of cerium on the anodic corrosion of Pb-Ca-Sn alloy in sulfuric acid solution. Journal of Power Sources,2001,93(1-2):230-233.
    [106]柳厚田,张新华,杨炯等.铈降低在硫酸溶液中生长的阳极Pb(Ⅱ)氧化物膜的电阻的研究.化学学报,2002,60(4):643-646.
    [107]张新华,杨炯,周彦葆.温度对铅铈合金在硫酸溶液中阳极Pb(Ⅱ)膜生长速率的影响的研究.蓄电池,2001,38(4):3-5.
    [108]杨炯,梁海可,柳厚田.铅铈和常用板栅合金在硫酸溶液中生成的阳极膜的比较.复合学报,2000,39(4):427-431.
    [109]柳厚田,杨春晓,杨炯等.铅镧和铅钐合金在硫酸溶液中生长的阳极膜性质研究.电化学,2001,(7):439.
    [110]杨春晓.铅钐铅镧合的阳极Pb(Ⅱ)氧化物膜的性质研究:[硕士学位论文].上海:复旦大学,2002.
    [111]张新化.稀土元素对铅及其合金阳极腐蚀影响的研究:[硕士学位论文].上海:复旦大学,2003.
    [112]Yan-bao ZHOU, Xin-hua ZHANG. Effect of Pr and Gd on the Formation of Anodic Films on Pb Electrodes in Sulfuric Acid Solution. In:204th ECS Meeting.2004:204th ECS Meeting.
    [113]杨春晓,张新华,周彦葆等.Pb-Gd合金在硫酸溶液中生长的阳极Pb(Ⅱ)膜的阻抗的研究.复旦大学学报(自然科学版),2004,43(4):584-588.
    [114]Yan-Bao Zhou, Hou-Tian Liu, Wen-Bin Cai, et al. A Lead-Tin-Rare Earth Alloy for VRLA Batteries. Journal of The Electrochemical Society,2004,151(7):A978-A982.
    [115]柳厚田,张新华.Sm对硫酸溶液中阳极Pb(Ⅱ)氧化物膜的影响,in 第八届全国铅酸电池学术年会论文.第八届全国铅酸电池学术年会论文.2002.12.
    [116]周彦葆,马敏.稀土元素Sm代替Pb-Ca-Sn合金中Ca对铅合金在硫酸溶液中阳极行为的影响.复旦大学学报(自然科学版),2003,(42):930-934.
    [117]Hou-tian Liu. Comparison of Pb-Sm-Sn and Pb-Ca-Sn Alloys for the Positive Grids in a Lead Acid Battery. Journal of Alloys and Compounds,2004, (365):108-111.
    [118]周彦葆.一种新型铅钐锡正极板栅合金.蓄电池,2003,24(9):1677-1679.
    [119]H.Y. Chen, S. Li, A.J. Li, et al. Lead-samarium alloys for positive grids of valve-regulated lead-acid batteries Journal of Power Sources,2007,168(1):79-89.
    [120]Hou-Tian Liu, Chun-Xiao Yang, Xin-Hua Zhang, et al. Effects of Samarium on the Properties of the Anodic Pb(Ⅱ) Oxides Film Formed on Pb in Sulfuric Acid Solution. Chinese Journal of Chemistry,2002,20(6):591-595.
    [121]杨春晓,王会锋,周彦葆.铅-稀土合金在VRLA电池中的应用.蓄电池,2005,42(4):79-80.
    [122]杨春晓,王会锋,马敏.铅-镱合金在硫酸溶液中的阳极行为.复旦大学学报,2005,42(6):1023-1027.
    [123]魏杰,赵利.含铈和钇的铅酸蓄电池板栅合金添加剂.中国有色金属学报,2003,13(2):497-501.
    [124]Fleschmann M, Thirsk H R. An investigation of electrochemical kinetics at constant overvoltage. the behaviour of the lead diaxide electrode. Part 5.-The formation of lead sulphate and the phase change to lead dioxide. Transactions of the Faraday Society,1955,51:71-95.
    [125]Pavlov D, Zanova S, Papazov G. Photoelectrochemical properties of the lead during anodic oxidation in sulfuric acid solution. Journal of The Electrochemical Society,1977,124(10): 1522-1528.
    [126]Ruetschi P. Ion selectivity and diffusion potentials in corrosion layer-PbSO4 film on Pb in H2SO4. Journal of Electrochemical Society,1973,120(3):331-336.
    [127]M. N. C. Ijomah. Electrochemical Behavior of Some Lead Alloys. Journal of Electrochemical Society,1987,134(12):2960-2966.
    [128]Yoshifijmi Yamamoto, Koichi Fumino, Takumi Ueda, et al. A potentiodynamic study of the lead electrode in sulphuric acid solution. Elecmchimica Acta,1992,37(2):199-203.
    [129]D. Pavlov, C. N. Poulieff, E. Klaja, et al. Dependence of the Composition of the Anodic Layer on the Oxidation Potential of Lead in Sulfuric Acid. Journal of The Electrochemical Society,1969, 116(3):316-319.
    [130]Nam Bui, Patrick Mattesco, Patrice Simon, et al. The tin effect in lead-calcium alloys. Journal of Power Sources,67(1-2):61-67.
    [131]N. A. Hampson, J. B. Lakeman. Fundamentals of lead-acid cells:Part XI. Phase formation at solid and porous lead electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1979,107(1):177-188.
    [132]柳厚田,王群洲,万咏勤等.硫酸溶液中铅阳极膜研究的几个问题(二).电化学,1996,2(2):123-127.
    [133]G. Archdale, J. A. Harrison. The electrochemical dissolution of Pb to form PbSO4 by a solution-precipitation mechanism. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1972,34(1):21-26.
    [134]R. G. Barradas, D. S. Nadezhdin. Some observations on the effects of temperature and illumination on the anodic passivation of lead in sulphuric acid. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1983,158(1):165-173.
    [135]M. Dimitrov, K. Kochev, D. Pavlov. The effect of thickness and stoichiometry of the PbO layer upon the photoelectric properties of the Pb/PbO/PbSO4/H2SO4 electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1985,183(1-2):145-153.
    [136]翟和生.铅电极在硫酸溶液中电化学行为研究:[博士学位论文].厦门:厦门大学,1993.
    [137]V. I. Birss, M. T. Shevalier. The Lead Anode in Alkaline Solutions III. Growth of Thick PbO Films. Journal of Electrochemical Society,1990,137(9):2643-2647.
    [138]Kathryn R. Bullock, Glenn M. Trischan, Robert G. Burrow. Photoelectrochemical and Microprobe Laser Raman Studies of Lead Corrosion in Sulfuric Acid. Journal of Electrochemical Society,1983,130(6):1283-1289.
    [139]Yonglang Guo, Jinhua Yue, Changyi Liu. The kinetics of the reduction processes of PbO film in H2SO4-Ⅵ. Effects of Pb-Sb alloy electrodes. Electrochimica Acta,1993,38(8):1131-1138.
    [140]卫昶,陈霞玲,李宏珉等.电化学方法分析铅阳极膜的相组成.化学学报,1989,47(6):569-573.
    [141]G. Cifuentes, L. Cifuentes, G. Crisostomo. A lead-acid battery analogue to in situ anode degradation in copper electrometallurgy. Corrosion Science,40(2-3):225-234.
    [142]E. M. L. Valeriote, L. D. Gallop. The Kinetics of the Potentiostatic Oxidation of Lead Sulfate Films on Lead in Sulfuric Acid Solution. Journal of Electrochemical Society,1977,124(3): 370-380.
    [143]E. M. L. Valeriote, L. D. Gallop. Low Temperature Oxidation Kinetics of Anodic Films on Lead in Sulfuric Acid Solution. Journal of Electrochemical Society,1977,124(3):380-387.
    [144]R. G. Barradas, D. S. Nadezhdin, Webb J.B., et al. Some photoelectrochemical observations on lead under anodic oxidation in sulphuric acid. Journal of Electroanalytical Chemistry,1981,126: 273-281.
    [145]J. S. Buchanan, L. M. Peter. Photocurrent spectroscopy of the lead electrode in sulphuric acid. Electrochimica Acta,1988,33(1):127-136.
    [146]何卓立,浦琮,柳厚田等.阳极氧化铅膜的光电流频谱随膜增厚而位移的研究.化学学报,1992,50(2):118-121.
    [147]Jun Han, Cong Pu, Wei-Fang Zhou. Determination of the phase composition of anodic lead(II) film formed in sulfuric acid solution. Journal of Electroanalytical Chemistry,1994,368(1-2): 43-46.
    [148]Chang Wei, Krishnan Rajeshwar. In Situ Characterization of Lead Corrosion Layers by Combined Voltammetry, Coulometry, and Electrochemical Quartz Crystal Microgravimetry. Journal of Electrochemical Society,1993,140(8):L128-L130.
    [149]蔡文斌,柳厚田,周伟舫.硫酸溶液中铅阳极膜研究的几个问题(一).电化学,1995,1(3):259-263.
    [150]Kathryn R. Bullock. corrosion of the lead in sulfuric acid at high potentials. Journal of Electrochemical Society,1986,133(6):1085-1090.
    [151]Wen-bin CAI, Yong-qin WAN, Hou-tian LIU, et al. A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry,1995,387(1-2): 95-100.
    [152]D. Pavlov. The Lead-Acid Battery Lead Dioxide Active Mass:A Gel-Crystal System with Proton and Electron Conductivity. Journal of Electrochemical Society,1992,139(11):3075-3080.
    [153]D. Pavlov, B. Monahov. Mechanism of the Elementary Electrochemical Processes Taking Place during Oxygen Evolution on the Lead Dioxide Electrode. Journal of Electrochemical Society, 1996,143(11):3616-3629.
    [154]T. Laitinen, G. Sundholm, J. K. Vilhunen. Comments on sample treatment in the X-ray diffraction analysis of the oxidation products of lead. Journal of Power Sources,1990,32(1): 71-80.
    [155]Stefanov Y, Dobrev T. Developing and studying the properties of Pb-TiO2 alloy coated lead composite anodes for zinc electrowinning. Transactions of the Institute of Metal Finishing,2005, 83(6):291-295.
    [156]St Rashkov, Y. Stefanov, Z. Noncheva, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc Ⅱ. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction. Hydrometallurgy,1996,40(3):319-334.
    [157]Yoshifumi Yamamoto, Koichi Fumino, Takumi Ueda, et al. A potentiodynamic study of the lead electrode in sulphuric acid solution. Electrochimica Acta,1992,37(2):199-203.
    [158]张鉴清.电化学测试技术.北京:化学工业出版社.1999.
    [159]Chang-Song Dai, Bin Zhang, Dian-Long Wang, et al. Study of influence of lead foam as negative electrode current collector material on VRLA battery charge performance. Journal of Alloys and Compounds,2006,422:332-337.
    [160]P. Ruetschi. Ion Selectivity and Diffusion Potentials in Corrosion Layers:PbSO4 Films on Pb in H2SO4. Journal of The Electrochemical Society,1973,120(3):331-336.
    [161]柳厚田,蔡文斌,周伟舫.硫酸溶液中阳极Pb(Ⅱ)膜研究进展.电源技术,1996,20(6):256-260.
    [162]杨言言.三维多孔膜电极电控离子分离过程离子传荷-反应特性:[硕士学位论文].太原:太原理工大学,2010.
    [163]Thomas F. Sharpe. The Behavior of Lead Alloys as PbO2 Electrodes. Journal of Electrochemical Society,1977,124(2):168-173.
    [164]P. Jones, H. R. Thirsk. An electrochemical and structural investigation of the processes occurring at silver anodes in sulphuric acid. Transactions of the Faraday Society,1954,50:732-739.
    [165]Prachi Shrivastava, Michael Moats. Wet film application techniques and their effects on the stability of RuO2-TiO2 coated titanium anodes. Journal of Applied Electrochemistry,2009,39(1): 107-116.
    [166]S. Palmas, A. Polcaro, F. Ferrara, et al. Electrochemical performance of mechanically treated SnO2 powders for OER in acid solution. Journal of Applied Electrochemistry,2008,38(7): 907-913.
    [167]Debora V. Franco, Leonardo M. Da Silva, Wilson F. Jardim, et al. Influence of the electrolyte composition on the kinetics of the oxygen evolution reaction and ozone production processes. Journal of the Brazilian Chemical Society,2006,17(4):746-757.
    [168]Su Lusheng, Gan Yong X (2011). Nanoporous Ag and Ag-Sn anodes for energy conversion in photochemical fuel cells. Nano Energy, DOI:10.1016/j.nanoen.2011.08.002.
    [169]Dupuis M. Development and application of an ANSYS based thermo-electro-mechanical collector bar slot design tool, in TMS. Light Metals:San Diego, USA.2011,519-524.
    [170]Li Jie, Liu Wei, Lai Yan-qing, et al. Coupled Simulation of 3D Electro-Magneto-Flow Field in Hall-Heroult Cells Using Finite Element Method. Acta Metallurgica Sinica (English Letters), 2006,19(2):105-116.
    [171]倪光正,杨仕友,邱捷.工程电磁场数值计算(第二版).北京:机械工业出版社.2010.
    [172]关振铎,张中太.无机材料物理性能.北京:清华大学出版社.1992.
    [173]韩宝忠,韩宝国,王艳洁等.测试导电复合材料直流电阻的四端电极法.哈尔滨工业大学学报,2010,42(10):1677-1680.
    [174]王强,黄笑梅,吕艳凤等.孔隙率及孔径对开孔泡沫铝导电性的影响.兵器材料科学与工程,2006,29(6):12-14.
    [175]C. T. J. Low, E. P. L. Roberts, F. C. Walsh. Numerical simulation of the current, potential and concentration distributions along the cathode of a rotating cylinder Hull cell. Electrochimica Acta, 2007,52(11):3831-3840.
    [176]周仲柏,陈永言.电极过程动力学基础教程.武汉:武汉大学出版社.1989.
    [177]刘广林.铅酸蓄电池工艺学概论.北京:机械工业出版社.2009.
    [178]Petch N J. The cleavage of polycrystals. Journal of the Iron and Steel Institute,1953,174:25-28.
    [179]马运柱,黄伯云,熊翔等.镧、钇对90W-Ni-Fe合金显微结构及性能的影响.中国稀土学报,2005,23(1):85-90.
    [180]徐光宪.稀土(下)(第2版).北京:冶金工业出版社.1995.
    [181]宁远涛.贵金属与稀土金属的相互作用:(Ⅱ)Ag-RE系.贵金属,2000,21(2):46-57.
    [182]M. Petrova, Z. Noncheva, Ts Dobrev, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc I. Behaviour of Pb-Ag, Pb-Ca and Pb-Ag-Ca alloys. Hydrometallurgy, 1996,40(3):293-318.
    [183]Mark C. Lefebvre, Establishing the Link Between Multistep Electrochemical Reaction Mechanisms and Experimental Tafel Slopes Modern Aspects of Electrochemistry, Ed. by B.E. Conway, J.O.M. Bockris, R.E. White. Springer US.2002,249-300.
    [184]Leonardo M. Da Silva, Luiz A. De Faria, Julien F. C. Boodts. Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochimica Acta, 2003,48(6):699-709.
    [185]L. M. Da Silva, L. A. De Faria, J. F. C. Boodts. Green processes for environmental application. Electrochemical ozone production. Pure and applied chemistry,2001,73(12):1871-1884.
    [186]E. R. Kotz, S. Stucki. Ozone and oxygen evolution on PbO2 electrodes in acid solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1987,228(1-2):407-415.
    [187]C. Cachet, C. Rerolle, R. Wiart. Kinetics of Pb and Pb-Ag anodes for zinc electrowinning-Ⅱ. Oxygen evolution at high polarization. Electrochimica Acta,1996,41(1):83-90.
    [188]Serdar Abaci, Ugur Tamer, Kadir Pekmez, et al. Performance of different crystal structures of PbO2 on electrochemical degradation of phenol in aqueous solution. Applied Surface Science, 2005,240(1-4):112-119.
    [189]蔡报珍.超细铜粉的制备及应用.江西有色金属,2008,22(4):42-44.
    [190]刘有源,陈白珍,孙锡良等.浸出-电沉积法从多金属低品位矿制备铜粉的研究.湖南有色金属,2008,24(2):28-31.
    [191]Gokhan Orhan, Gokce Hapci. Effect of electrolysis parameters on the morphologies of copper powder obtained in arotating cylinder electrode cell. Powder Technology,2010,201:57-63.
    [192]周向阳,李劫,刘宏专等.至少包含一泡沫金属层的层状金属材料及其制备方法.中国:ZL200610032593.5,2006.
    [193]周向阳,李劫,刘宏专等.一种渗流铸造法制备泡沫金属的渗流装置.中国:ZL200710034420.1,2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.