锌、铜氧化物的仿生制备与形貌调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有特殊形貌和尺寸的无机微纳米材料在化学、电子、生物学等领域具有广泛的应用前景,所以这类材料的可控合成是近年来的研究热点。传统的物理化学方法往往需要较为苛刻的合成条件,如高温、高压以及强酸强碱环境等。但是,生物体可以利用生物分子作为晶体生长调节剂,在温和反应条件下介导产生具有新颖形貌的生物矿化材料。这为材料制备提供了一条重要途径。于是,仿生合成法得以产生。由于它一般是在较为温和的反应条件(低温、常压、以及水溶液)中进行,为合成无机材料提供了一条低成本、高效率、绿色的合成方法。因此,近些年它成为一门迅速发展的重要学科。本论文利用多种生物分子作为晶体生长调节剂,对ZnO和Cu_2O两类无机材料进行形貌调控。主要包括以下几个方面的内容:
     一.选择β-环糊精(β-CD)作为晶体生长调节剂,在温和的反应条件下仿生合成具有特殊形貌的ZnO分级结构。XRD表明,产物为六方纤锌矿型ZnO,具有较高的晶化度。研究发现:β-CD浓度和反应时间对产物形貌有重要影响。当β-CD浓度逐渐增大时,产物ZnO形貌从花状转变成为球状(直径为1.5-2μm);反应温度70℃下,当反应时间少于10min时,没有产物生成。从反应时间10min至10h范围内,产物形貌从不规则聚合体逐渐转变成为花状分级结构;反应温度对本反应体系没有明显影响。此外,本文还提出了一种生长模型。该模型强调了β-CD的吸附和包裹效应在形成目标产物中的重要作用。
     二.利用DNA作为晶体生长条件剂,在水/甘油介质中仿生合成出ZnO花状介晶。本实验充分利用冷场发射扫描电镜(FESEM)、透射电镜(TEM)、选区电子衍射(SAED)、X射线粉末衍射(XRD)等表征技术对材料的形貌结构、元素组成和表面性质进行分析,揭示ZnO的自组装方式。研究结果表明,DNA介导合成的ZnO介晶体系受到多种实验参数影响,如DNA浓度、反应时间以及溶剂组分等。DNA作为晶体生长调节剂,会影响ZnO晶核的形成和生长。使得ZnO晶核生成后,便会向特定的晶体生长方向延伸、聚合,最终形成花状介晶。本文用定向附着(OA)理论加以解释。溶剂组分是影响产物形貌的一项重要因素。当使用粘度较低的纯水或乙醇/水混合液作为溶剂时,产物并未呈现出具有特异形貌的介晶体系。由XRD表征可知,可知DNA介导产生的ZnO介晶具有较高的晶化度。FESEM图像显示,产物ZnO表面粗糙,由许多微小的纳米颗粒组成。通过TEM可以进一步认定产物ZnO确实由纳米颗粒自组装而成。SAED技术表明,产物虽然在形貌上类似多晶体系,但是却表现出单晶的电子衍射习性。这进一步表明,DNA的存在导致ZnO晶核的生长和聚合具有特定方向。通过OA途径,纳米颗粒基元拥有相同的晶体学方向。本研究还观察到,传统的奥氏熟化(OR)途径也在发挥着一定作用,随着反应时间延长,产物的直径逐渐变大。抑菌实验表明,ZnO介晶对大肠杆菌E.coli和金黄色葡萄球菌S.aureus具有明显的抑制效应,其抑菌活性明显高于市售ZnO纳米颗粒。
     三.选用DNA作为晶体生长调节剂,仿生合成出花状ZnO层级结构。研究了多种实验参数对产物形貌的影响,包括DNA浓度、反应时间、反应温度、NaOH添加量以及锌盐种类。结果表明,加入DNA是产物具有花状层级结构的必要条件;反应温度对产物形貌无明显影响;NaOH添加量和锌盐是合成目标材料的的关键因素。另外,本文依据产物形貌随反应时间的变化情况,对晶体生长模式进行探索。选用萘酚蓝黑(NBB)作为模拟污染物,通过光催化实验发现,本实验所合成花状ZnO具有明显的光催化活性。抑菌实验表明,花状ZnO对大肠杆菌E.coli和金黄色葡萄球菌S.aureus均具有较强的抑制作用,其中对前者的作用效果更为明显。花状ZnO的光催化和抗菌活性均明显强于市售ZnONPs。
     四.利用明胶作为晶体生长调节剂,仿生合成出具有多种复杂形貌的Cu-Cu_2O复合材料。通过调整实验参数,产物可以呈现出实心球形、空心球形、核壳结构等多种复杂形貌。通过研究发现,明胶浓度和实验温度是对产物形貌有较大影响的作用因子。研究还发现,传统的OA过程在晶体生长途径中具有重要作用。产物会随着时间延长,内部结构会发生溶解-重结晶,并呈现出奇特的核壳结构。抑菌实验表明,三种样品对革兰氏阴性菌(E.coli)的抑制效果强于革兰氏阳性菌(S.aureus);复合物中Cu含量增加有助于提高样品的抗菌活性。
     五.利用多巴胺仿生合成出Ag-Cu_2O和TiO_2-Cu_2O复合材料。利用XRD、FESEM、TEM、XPS以及傅里叶转换红外光谱(FTIR)等技术手段对材料结构和形貌进行表征。本实验首先制备了作为材料核心的Cu_2O晶体,然后在其表面进行仿生修饰,进而得到目标材料。以后的研究内容分两部分。第一部分将多巴胺的黏着特性和还原性整合,在Cu_2O表面形成了Ag纳米颗粒。XRD技术表明,多巴胺并未和Cu_2O发生反应,只是吸附在其表面,形成包裹层。通过研究AgNO_3浓度对材料形貌的影响,发现降低其浓度会使得Cu_2O表面的Ag生成量降低。EDS能谱显示,产物表面的确有Ag元素存在,这与XRD结果相一致。FTIR技术进一步证明有多巴胺吸附在Cu_2O表面;Ag纳米颗粒生成后,多巴胺振动峰发生移动。第二部分,利用多巴胺的黏着性质,将溶菌酶预吸附到其表面,然后再利用溶菌酶的缩合功能,在室温下将钛前驱物转变成为TiO_2。通过XPS技术证实材料表面的确存在多巴胺和生成的TiO_2。抗菌实验表明,Ag-Cu_2O对大肠杆菌E.coli的抑制效果强于金黄色葡萄球菌S.aureus。而且,提高Ag含量有助于增强材料的抑菌活性。
     六.利用DNA仿生合成苹果状Cu_2O。本实验选用鲱鱼精DNA作为晶体生长调节剂,在室温下合成了具有新颖形貌的Cu_2O。本合成方法简便易行,与环境友好。实验结果证明,CTAB适当缩合DNA是反应的必要条件;温度会对合成造成不良影响。本实验结果间接证明了遗传物质在生物矿化过程中可能也具有一定作用。
Micro/nano-inorganic materials with particular morphologies and sizes have extensivelypromising applications in many fields, such as chemistry, electron, and biology. Conventionalphysical and chemical synthetic methods for these materials need harsh reaction conditions,including high temperature and pressure, and strongly acid and basic solution. However, livingorganisms generate various biomaterials in biomineralization, which are synthesized throughmildly reaction utilizing many biomolecules as templates or agents during inorganic crystalgrowth. This phenomenon provides an important route for the inorganic materials. Therefore,biomimetic synthesis or biologically-inspired synthesis of inorganic materials have beengenerated. This novel method generally process under gentle conditions (ambient temperature andpressure) and often in aqueous environments, so it has been a quickly expanding area of researchdue to it offers a lower cost, more efficient, and “green” approach. In this article, we use manybiomolecules as crystal modifier to control the morphologies of ZnO and Cu_2O. The contents arelined as follows:
     (1) β-cyclodextrin (β-CD) has been chosen as a crystal modifier for the synthesis ofhierarchical ZnO with unusual surface morphology and textures at a relatively mild reactioncondition. The crystalline of the products were characterized by X-ray diffraction (XRD). Theresults showed that the diffraction peaks were well assigned to hexagonal wurtzite phase ZnOwith the high purity and good crystalline. The morphologies of ZnO were seriously affected bymany reaction parameters including β-CD concentration and reaction time. When the β-CDconcentration was increased, the shape of flower-like ZnO changed to be sphere-like; At70°C,within the initial time for10min, no visible precipitates were observed. From time of10min to10h, the products evolved from irregularly shaped polycrystalline aggregates toward flower-likestructures; the temperature had not affected the shapes of the products evidently. Finally, we haveproposed a growth mechanism for the morphological evolution of the as-synthesized ZnO crystals,in which the adsorption and coating effect of β-CD were underlined.
     (2) Novel flower-like ZnO mesocrystals have been synthesized in water/glycerol system,using a biomimetic method in the presence of DNA. The morphologies and strutcures, constitute elements, and surface properties of the as-prepared products were characterized by manytechniques, such as field-emission scanning electron microscope (FESEM), transmission electronmicroscopy (TEM), XRD. The as-prepared ZnO morphologies were affected by a number ofreaction parameters such as DNA concentration, reaction time and constitutes of solvent. DNAserved as a crystal modifier and influenced the formation and growth of ZnO crystal nuclei. Thetiny ZnO building units crystallographically aligned along a mutual order and finally formed theflower-like mesocrystal structures. This result was explained by oriented attachment (OA).Theconstitutes of the solvent severely impacted the morphologies of ZnO mesocrystals. When thepure water or alcohol/water mixed solvent was used, the as-synthesized products did not appearthe flower-like mesocrystal. XRD analysis showed that the as-prepared ZnO mesocrytsals hadhigh crystallization. The FESEM overviews revealed that the as-produced mesocrystals had roughsurfaces and consisted of a large number of nanoparticles, which were further identified by TEMimages. The selected electron diffraction (SAED) pattern disclosed that the as-synthesized ZnOmesocrystals diffracted like a single crystal, indicating that DNA led the whole assembly of thebuilding units to highly orient and align along with the mutual order. Moreover, the Oswaldripening (OR) could also play an important role, which resulted in the generation of the productswith larger diameters. The antibacterial experiments show that ZnO mesocrystals had evidentantibacterial effect on E.coli and S.aureus; its antibacterial activity was obviously higher thancommercial ZnO nanoparticles.
     (3) DNA was used as a crystal growth modifier to prepare hierarchical flower-like ZnOsuperstructures. In this paper, we studied the effects of many reaction paremeters, including DNAconcentration, reaction time, reaction temperature, NaOH concentration, and kind of zinc salts, onthe morphologies of the final products. The results shows that the addition of DNA was necessaryin fabrication of the as-synthesized products; the temperature did not have the evident impact onthe ZnO morphologies, while NaOH concentration and the select of zinc salts played animportant role in the synthetic system. Studying on the change of the morphology of the productswith reaction time, we proposed a growth model of the as-produced ZnO crystals. Thephotocatalytic performance of the three as-synthesized products was evaluated by using NBB as arepresentative dye pollutant. The result demonstrates that as-prepared products had high photocatalystic activities. The antibaterial experiments are also carried out. The results show thatthe products exhibit high antibacterial ability against E. coli and S. aureus, with more effectiveactivity against the former one. Importantly, the products had higher photocatalytic andantibacterial activities than commercial ZnO NPs.
     (4) Cu-Cu_2O composite materials with various morphologies were synthesized by usinggelatin as a crystal modifier. With Adjustment of the reaction parameters, the as-preparedproducts appeared various shapes such as solid sphere-like, hollow sphere-like, andcore-shell-like. The results showed that gelatin concentration and temperature had importanteffect on the morphologies of the products. In addition, the growth of the as-synthesized materialswas affected by the Oswald ripening process. With increasing reaction time, the size of theproducts became larger, and a dissolution-recrystallization process occurred in interior of thecrystals and formed a shell structure. The obtained Cu-Cu_2O crystals all show higher antibacterialeffect on the gram-negative bacteria E.coli than the gram-positive S.aureus. In addition, increaseof the content of Cu improved the antibacterial activity of the products.
     (5) Ag-Cu_2O and TiO_2-Cu_2O composite materials were prepared in the presence of thedopamine and lysozyme (Lys). The structures and morphologies of the as-synthesized productswere determined by XRD and XPS, and FESEM and TEM, respectively. In this paper, Cu_2Ocrystals were firstly prepared serving as the core in the composites. The surfaces of Cu_2O werethen decorated with dompamine. The following contents of research were divided into two parts:(a) by using the adhesion and redox characteristic of dopamine, Ag nanoparticles (Ag NPs) wereformed in the surfaces of the Cu_2O core. XRD patterns showed that the dopamine did not reactwith Cu_2O, and only coated on the surfaces of the core material. Moreover, effect of the AgNO_3concentration on the shape of the products was also studied. The results displayed that yield of AgNPs were reduced with the AgNO_3concentration. EDS energy spectrum also testified that AgNPs indeed existed in the surfaces of the composites, whith was in accordance with the results ofXRD. Finally, the Fourier transform infrared (FTIR) spectroscopy was employed. The resultsconfirmed that the dopamine adsorbed on the surfaces of the products and the adsorption peaks ofthe dopamine shifted after the synthesis of Ag NPs.(b) Lys was adsorbed beforehand on thesurfaces of the Cu_2O core, duo to the adhesion of dopamine. Then, Lys was used to condense the TiO_2precursor to synthesize nanocrystalline titanium dioxide under the room temperature. XPSresults confirmed the presence of the TiO_2.The as-prepared Ag-Cu_2O have higher antibaterialeffects on the bacteria E.coli than the S.aureus. In addition, increase of the content of Agnanoparticles enhanced the antibacterial activity of the products.
     (6) Apple-like Cu_2O was synthesized in the presence of DNA. DNA originated from herringsperm was selected as a crystal modifier to control the morphologies of Cu_2O, in the roomtemperature. This method presented an easy, facile and environment-friendly approach togenerate Cu_2O. The results showed that the condensation of DNA using CTAB was necessary forpreparing the as-synthesized products with the peculiar shape. This paper indirectly demonstratedthat the genetic materials might act in biomineralization.
引文
[1]Bauerlein E. Biomineralization of unicellular organisms: An unusual membranebiochemistry for the production of inorganic nano-and microstructures[J]. Angew Chem IntEd,2003,42(6):614-641.
    [2]Veis A. A window on biomineralization[J]. Science,2005,307(5714):1419-1420.
    [3]Weiner S.Biomineralization: A structural perspective[J]. J Struct Biol,2008,163(3):229-234.
    [4]Tao A R,Niesz K,Morse D E.Bio-inspired nanofabrication of barium titanate[J]. J MaterChem,2010,20:7916-7923.
    [5]Gao S Y,Li Z D,Zeng H B,et al. Biomolecule-assisted in situ route toward3Dsuperhydrophilic Ag/CuO micro/nanostructures with excellent artiticial sunlight self-cleaningperformance[J]. J Mater Chem,2011,21:7281-7288.
    [6]Lee S,Gao X,Matsui H. Biomimetic and aggregation-driven crystallization route forroom-temperature material synthesis: Growth of β-Ga2O3nanoparticles on peptide assembliesas nanoreactors[J]. J Am Chem Soc,2007,129(10):2954-2958.
    [7]Kim Y Y,Ribeiro L,Maillot F,et al. Bio-inspired synthesis and mechanical properties ofcalcite-polymer particle composites[J]. Adv Mater,2010,22(18):2082-2086.
    [8]Kroger N,Deutzmann R,Sumper M. Polycationic peptides from diatom biosilica that directsilica nanosphere formation[J]. Science,1999,286(5442):1129-1132.
    [9]Wenzl S,Hett R,Richthammer P,et al. Silacidins: Highly acidic phosphopeptides fromdiatom shells assist in silica precipitation in vitro[J]. Angew Chem Int Ed,2008,47(9):1729-1732.
    [10]Aizenberg J,Weaver J C,Thanawala M S,et al. Skeleton of Euplectellasp: structuralhierarchy from the nanoscale to the macroscale[J]. Science,2005,309(5732):275-278.
    [11]Sundar V C,Yablon A D,Grazul J L,et al. Fibre-optical features of a glass sponge[J].Nature,2003,424(6951):899-900.
    [12]Metzler R A,Tribello G A,Parrinello M,et al. Asprich peptides are occluded in calcite andpermanently disorder biomineral crystals[J]. J Am Chem Soc,2010,132(33):11585-11591.
    [13]Mann S.Principles and concepts in bioinorganic chemistry[M]. New York: OxfordUniversity Press,2001.
    [14]Donahue J L,Weiner I D,Lowenthal D T. Nocturia, aging, benign prostatic hypertrophy,and nocturnal vasopressin. A case report[J]. Geriatr Nephrol Urol,1997,7(2):111-117.
    [15]Addadi L,Moradian J,Shay E,et al. A chemical model for the cooperation of sulfates andcarboxylates in calcite crystal nucleation: Relevance to biomineralization[J]. Proc Natl AcadSci,1987,84(9):2732-2736.
    [16]Weiner S,Nudelman F,Sone E,et al. Mineralized biological materials: A perspective oninterfaces and interphases designed over millions of years[J].Biointerphases,2006,1(2):12-14.
    [17]Politi Y,Arad T,Kleon E, et al. Sea urchin spine calcite forms via a transient amorphouscalcium carbonate phase[J]. Science,2004,306:1161-1164.
    [18]Weiss I M,Tuross N,Addadi L, et al. Mollusc larval shell formation: amorphous calciumcarbonate is a precursor phase for aragonite[J]. J Exp Zool,2002,293(5):478-491.
    [19]Addadi L,Raz S,Weiner S. Taking advantage of disorder: Amorphous calcium carbonateand its roles in biomineralization[J]. Adv Mater,2003,15:959-970.
    [20]Deravi L F,Swartz J D,Wright D W. The biomimetic synthesis of metal oxidenanomaterials[M]. Wiley-VCH Verlag GmbH&Co. KGaA,2007.
    [21]Ahmad A,Mukherjee,Senapati S,et al. Extracellular biosynthesis of silver nanoparticlesusing the fungus Fusarium oxysporum[J]. Coloids Surf.,B,2003,28:313-318.
    [22]Bfilainsa K C,D,Souza S F. Extracellular biosynthesis of silver nanoparticles using thefungus Aspergillus fumigatus[J]. Colloids Surf.,B,2006,47:160-164.
    [23]Ahmad A.Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerantfungus,Trichothecium sp.[J]. J Biomed Nanothechnol,2005,1:47-53.
    [24]Bansal V,Poddar P,Ahmad A,et al. Room-temperature biosynthesis of ferroelectricbarium titanate nanoparticles[J]. J Am Chem Soc,2006,128:11958-11963.
    [25]Kumar U,Shete A,Harle A S,et al.Extracellular bacterial synthesis ofprotein-functionalized ferromagnetic Co3O4nanocrystals and imaging of self-organization ofbacterial cells under stress after exposure to metal ions[J].Chem Mater,2008,20(4):1484-1491.
    [26]Klem M T,Resnick D A,Gilmore K,et al. Synthetic control over magnetic moment andexchange bias in all-oxide materials encapsulated within a spherical protein cage[J]. J AmChem Soc,2007,129(1):197-201.
    [27]Ghosh D,Mondal S,Ghosh S,et al. Protein conformation driven biomimetic synthesis ofsemiconductor nanoparticles[J]. J Mater Chem,2012,22:699-706.
    [28]Li D,Mathew B,Mao C. Biotemplated synthesis of hollow double-layered core/Shelltitania/Silica nanotubes under ambient conditions[M]. Small,2012,8:3691-3697.
    [29]Luckarift H R,Dickerson M B,Sandhage K H,et al. Rapid, room-Temperature synthesis ofantibacterial bionanocomposites of lysozyme with amorphous silica or titania[J]. Small,2006:640-643.
    [30]Johnson J M,Kinsinger N,Sun C,et al. Urease-Mediated Room-Temperature Synthesis ofNanocrystalline Titanium Dioxide[J]. J Am Chem Soc,2012,134(34):13974-13977.
    [31]Luckarift H R,Spain J C,Naik R R,et al.Enzyme immobilization in a biomimetic silicasupport[J]. Nat Biotechnol,2004,22(2):211-213.
    [32]Yan D,Yin G,Huang Z,et al.Characterization and bacterial response of zinc oxideparticles prepared by a biomineralization process[J].J Phys Chem B,2009,113(17):6047-6053.
    [33]Huang Z,Yan D,Yang M,et al. Preparation and characterization of the biomineralized zincoxide particles in spider silk peptides[J]. J Colloid Interface Sci,2008,325(2):356-362.
    [34]Glawe D D,Rodríguez F,Stone M O,et al. Polypeptide-mediated silica growth on indiumtin oxide surfaces[J]. Langmuir,2004,21(2):717-720.
    [35]Tomczak M M,Glawe D D,Drummy L F,et al. Polypeptide-templated synthesis ofhexagonal silica platelets[J]. J Am Chem Soc,2005,127(36):12577-12582.
    [36]Preston T C,Signorell R. Formation of gold particles on nanoscale toroidal DNAassembled with bis(ethylenediamine)gold(III)[J]. Langmuir,2010,26(12):10250-10253.
    [37]Berti L,Alessandrini A,Facci P. DNA-Ttemplated photoinduced silver deposition[J]. JAm Chem Soc,2005,127(32):11216-11217.
    [38]Cai A,Wang Y,Du L, et al. DNA-templated apple-like cuprous oxide[J]. Mater Lett,2012,70(0):149-151.
    [39]Aksay I A,Trau M,Manne S, et al. Biomimetic pathways for assembling inorganic thinfilms[J]. Science,1996.273(5277):892-898.
    [40]Zhang X,Guo Q,Cui D. Recent advances in nanotechnology applied to biosensors[J].Sensors,2009,9(2):1033-1053.
    [41]Abdulla-Al-Mamun M,Kusumoto Y, Islam M S. Enhanced photocatalytic cytotoxicactivity of Ag@Fe-doped TiO2nanocomposites against human epithelial carcinoma cells[J]. JMater Chem,2012,22:5460-5469.
    [42]Zhu G,Liu Y,Xu H,et al. Photochemical deposition of Ag nanocrystals on hierarchicalZnO microspheres and their enhanced gas-sensing properties[J].CrystEngComm,2012,14(2):719-725.
    [43]Li H,Liu R,Liu Y,et al. Carbon quantum dots/Cu2O composites with protrudingnanostructures and their high efficient (near) infrared photocatalytic behavior[J]. J MaterChem,2012,22:17470-17475.
    [44]Ye J,Liu W,Cai J,et al. Nanoporous anatase TiO2mesocrystals: Additive-free synthesis,remarkable crystalline-phase stability, and improved lithium insertion behavior[J]. J AmChem Soc,2011,133(4):933-940.
    [45]Hirai T,Bando Y,Komasawa I. Immobilization of CdS nanoparticles formed in reversemicelles onto alumina particles and their photocatalytic properties[J]. J Phys Chem B.2002,106(35):8967-8970.
    [46]Ahmad A,Mukherjee P,Mandal D,et al. Enzyme mediated extracellular synthesis of CdSnanoparticles by the fungus, Fusarium oxysporum[J]. J Am Chem Soc,2002,124(41):12108-12109.
    [47]Wang S,Mamedova N,Kotov N A,et al. Antigen/antibody immunocomplex from CdTenanoparticle bioconjugates[J]. Nano Letters,2002,2(8):817-822.
    [48]Xiao Y,Patolsky F,Katz E,et al."Plugging into Enzymes": Nanowiring of redox enzymesby a gold nanoparticle[J]. Science,2003,299(5614):1877-1881.
    [49]Ahmad A,Senapati S,Khan M I,et al. Extracellular biosynthesis of monodisperse goldnanoparticles by a novel extremophilic actinomycete, Thermomonospora sp.[J]. Langmuir,2003,19(8):3550-3553.
    [50]He H,Feng M,Hu J,et al. Designed short RGD peptides for one-pot aqueous synthesis ofintegrin-binding CdTe and CdZnTe quantum dots[J]. ACS Appl Mater Inter,2012,4(11):6362-6370.
    [51]Das S K,Liang J,Schmidt M,et al. Biomineralization mechanism of gold by zygomycetefungi Rhizopous oryzae[J]. ACS Nano,2012,6(7):6165-6173.
    [52]Zhao Y,Wei M,Lu J,et al. Biotemplated hierarchical nanostructure of layered doublehydroxides with improved photocatalysis performance[J]. ACS Nano,2009,3(12):4009-4016.
    [53]Cōlfen H,Antonientti M.Mescrystals and nonclassical crystallization[M]. John Wiley&Sons,2008.
    [54]Niederberger M,Cōlfen H.Oriented attachment and mesocrystals: Non-classicalcrystallization mechanisms based on nanoparticle assembly[J]. Phys Chem Chem Phys,2006,8(28):3271-3287.
    [55]Zhang Q,Liu S J,Yu S H. Recent advances in oriented attachment growth and synthesis offunctional materials: concept, evidence, mechanism, and future[J]. J Mater Chem,2009,19:191-207.
    [56]Huang F,Gilbert B,Zhang H,et al. The role of oriented attachment crystal growth inhydrothermal coarsening of nanocrystalline ZnS[J]. J Phys Chem B,2003,107:10470-10475.
    [57]C lfen H,Mann S. Higher-order organization by mesoscale self-assembly andtransformation of hybrid nanostructures[J]. Angew Chem Int Ed,2003,42:2350-2365.
    [58]C lfen H,Antonietti M. Mesocrystals: Inorganic superstructures made by highly parallelcrystallization and controlled alignment[J]. Angew Chem Int Ed,2005,44(35):5576-5591.
    [59]Zhou L,O'Brien P. Mesocrystals: a new class of solid materials[J]. Small,2008,4(10):1566-1574.
    [60]Song R,C lfen H,Xu A,et al. Polyelectrolyte-directed nanoparticle aggregation:Systematic morphogenesis of calcium carbonate by nonclassical crystallization[J]. ACS Nano,2009,3(7):1966-1978.
    [61]Lausser C,C lfen H,Antonietti M.Mesocrystals of vanadium pentoxide: a comparativeevaluation of three different pathways of mesocrystal synthesis from tactosol precursors[J].ACS Nano,2011,5(1):107-114.
    [62]Wang T,C lfen H,Antonietti M. Nonclassical crystallization: Mesocrystals andmorphology change of CaCO3crystals in the presence of a polyelectrolyte additive[J]. J AmChem Soc,2005,127(10):3246-3247.
    [63]Gebauer D,Volkel A,Colfen H. Stable prenucleation calcium carbonate clusters[J].Science,2008,322(5909):1819-1822.
    [64]Liu Z,Wen X D,Wu X L,et al. Intrinsic dipole-field-driven mesoscale crystallization ofcore-shell ZnO mesocrystal microspheres[J]. J Am Chem Soc,2009,131(26):9405-9412.
    [65]Distaso M,Klupp Taylor R N,Taccardi N, et al. Influence of the counterion on thesynthesis of ZnO mesocrystals under solvothermal conditions[J]. Chem–European J,2011,17(10):2923-2930.
    [66]Wu X L,Xiong S J,Liu Z,et al. Green light stimulates terahertz emission from mesocrystalmicrospheres[J]. Nat Nanotechnol,2011,6(2):103-106.
    [67]Fang J X,Ding B J,Song X P,et al. How a silver dendritic mesocrystal converts to a singlecrystal[J]. Appl phys lett,2008,92:17320-17323.
    [68]Ahmed S,Ryan K M. Self-assembly of vertically aligned nanorod supercrystals usinghighly oriented pyrolytic graphite[J]. Nano Lette,2007,7(8):2480-2485.
    [69]Ge J,Hu Y,Biasini M,et al. Superparamagnetic magnetite colloidal nanocrystal clusters[J].Angew Chem Int Ed,2007,46(23):4342-4345.
    [70]Cho S,Jang J W,Kim J,et al. Three-dimensional type II ZnO/ZnSe heterostructures andtheir visible light photocatalytic activities[J]. Langmuir,2011,27(16):10243-10250.
    [71]Li J,Fan H,Jia X. Multilayered ZnO nanosheets with3D porous architectures: Synthesisand gas sensing application[J]. J Phys Chem C,2010,114(35):14684-14691.
    [72]Li P,Wei Z,Wu T,et al. Au-ZnO hybrid nanopyramids and their photocatalyticproperties[J]. J Am Chem Soc,2011,133(15):5660-5663.
    [73]Rezapour M,Talebian N. Comparison of structural, optical properties and photocatalyticactivity of ZnO with different morphologies: Effect of synthesis methods and reactionmedia[J]. Mater Chem Phys,2011,129:249-255.
    [74]An W,Wu X,Zeng X C. Adsorption of O2, H2, CO, NH3, and NO2on ZnO nanotube: Adensity functional theory study[J]. J Phys Chem C,2008,112(15):5747-5755.
    [75]Kim J,Yong K. Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing[J].J Phys Chem C,2011,115(15):7218-7224.
    [76]Zhang J,Gao G,Zhang M,et al. ZnO/PS core-shell hybrid microspheres prepared withminiemulsion polymerization[J]. J Colloid Interf Sci,2006,301(1):78-84.
    [77]Tomczak M M,Gupta M K,Drummy L F,et al. Morphological control and assembly ofzinc oxide using a biotemplate[J]. Acta Biomater,2009,5(3):876-882.
    [78]Padalkar S,Capadona J R,Rowan S J,et al. Natural biopolymers: Novel templates for thesynthesis of nanostructures[J]. Langmuir,2010,26(11):8497-8502.
    [79]Hou Y,Kondoh H,Shimojo M,et al. Inorganic nanocrystal self-assembly via the inclusioninteraction of β-cyclodextrins: Toward3D spherical magnetite[J]. J Phys Chem B,2005,109(11):4845-4852.
    [80]Sui Y,Fu W,Zeng Y,et al. Synthesis of Cu2O nanoframes and nanocages by selectiveoxidative etching at room temperature[J]. Angew Chem Int Ed,2010,49(25):4282-4285.
    [81]Lin Y,Jiang Q. Effect of substrates and anions of zinc salts on the morphology of ZnOnanostructures[J]. Appl Surf Sci,2011,257(20):8728-8731.
    [82]Sui Y,Fu W,Yang H,et al. Low Temperature synthesis of Cu2O crystals: Shape evolutionand growth mechanism[J]. Cryst Growth Des,2010,10(1):99-108.
    [83]Aree T,Chaichit N. A new crystal form of β-cyclodextrin-ethanol inclusion complex:channel-type structure without long guest molecules[J]. Carbohydr Res,2003,338(15):1581-1589.
    [84]Xu L,Jiang L P,Zhu J J. Sonochemical synthesis and photocatalysis of porous Cu2Onanospheres with controllable structures[J]. Nanotechnology,2009,20(4):45605-45610.
    [85]Yao K X,Zeng H C. ZnO/PVP nanocomposite spheres with two hemispheres[J]. J PhysChem C,2007,111(36):13301-13308.
    [86]Chen P,Gu L,Xue X D,et al. Facile synthesis of highly uniform ZnO multipods as thesupports of Au and Ag nanoparticles[J]. Mater Chem Phys,2010,122(1):41-48.
    [87]Georgekutty R,Seery M K,Pillai S C. A highly efficient Ag-ZnO photocatalyst:synthesis,properties,and mechanism[J]. J Phys Chem C,2008,112(35):13563-13570.
    [88]Tomczak M M,Gupta M K,Drummy L F,et al. Morphological control and assembly ofzinc oxide using a biotemplate[J]. Acta Biomater,2009,5(3):876-882.
    [89]Tang H,Chang J C,Shan Y,et al. Surfactant-assisted alignment of ZnO nanocrystals tosuperstructures[J]. J Phys Chem B,2008,112(13):4016-4021.
    [90]Tseng Y,Lin H,Liu M,et al. Biomimetic synthesis of nacrelike faceted mesocrystals ofZnO-gelatin composite[J]. J Phys Chem C,2009,113(42):18053-18061.
    [91]Wu,X L,Xiong S J,Liu Z,et al. Green light stimulates teahertz emission from mesocrystalmicrosphere[J]. Nat Nanotechol,2011,6(2):103-106.
    [92]Kulak A N,Iddon P,Li Y,et al. Continuous structural evolution of calcium carbonateparticles:A unifying model of copolymer-mediated crystallization[J]. J Am Chem Soc,2007,129(12):3729-3736.
    [93]Lausser C,C lfen H,Antonietti M. Mesocrystals of vanadium pentoxide: A comparativeevaluation of three different pathways of mesocrystal synthesis from tactosol precursors[J].ACS Nano,2011,5(1):107-114.
    [94]Wu H B,Chen J S,Lou X W D,et al. Synthesis of SnO2hierarchical structures assembledfrom nanosheets and their lithium storage properties[J]. J Phys Chem C,2011,115(50):24605-24610.
    [95]Lee H,Mijovi J. Bio-nano complexes: DNA/surfactant/single-walled carbon nanotubeinteractions in electric field[J]. Polymer,2009,50(3):881-890.
    [96]Palaniappan P R,Pramod K S. FTIR study of the effect of n TiO2on the biochemicalconstituents of gill tissues of Zebrafish (Danio rerio)[J]. Food Chem Toxicol,2010,48:2337-2343.
    [97]Liang M,Deschaume O,Patwardhan S V,et al. Direct evidence of ZnO morphologymodificatoin via the selective adsorption of ZnO-binding peptides[J]. J Mater Chem,2011,21(80):80-89.
    [98]Barth A.The infrared absorption of amino acid side chains[J]. Prog Biophys Mol Biol,2000,74:141-173.
    [99]Raula M,Rashid M H,Paira T K,et al. Ascorbate-assisted growth of hierarchical ZnOnanostructures: sphere, spindle, and flower and their catalytic properties[J]. Langmuir,2010,26(11):8769-8782.
    [100]Cheng B,Cai W,Yu J. DNA-mediated morphosynthesis of calcium carbonate particles[J].J Colloid Interf Sci,2010,352(1):43-49.
    [101]Cai A,Wang Y,Xing S,et al. Cavity of cyclodextrin, a useful tool for the morphologicalcontrol of ZnO micro/nanostructures[J]. Ceram Int,2012,38(6):5265-5270.
    [102]Sounart T L,Liu J,Voigt J A, et al. Secondary nucleation and growth of ZnO[J]. J AmChem Soc,2007,129(51):15786-15793.
    [103]Tseng Y H,Liu M H,Kuo Y W,et al. Biomimetic ZnO plate twin-crystals periodicalarrays[J]. Chem Commun,2012,48(26):3215-3217.
    [104]Yang X,Liao S,Liang Z,et al. Gelatin-assisted templating route to synthesize sponge-likemesoporous silica with bimodal porosity and lysozyme adsorption behavior[J]. MicroporMesopor Mater,2011,143:263-269.
    [105]Allouche J,Boissiere M,Helary C,et al. Biomimetic core-shell gelatine/silicananoparticles: A new example of biopolymer-based nanocomposites[J]. J Mater Chem,2006,16:3120-3125.
    [106]Chatterjee A K,Sarkar R K,Chattopadhyay A P,et al. A simple robust method forsynthesis of metallic copper nanoparticles of high antibacterial potency against E.coli[J].Nanotechnology,2012,23(8):85103-85113.
    [107]Sun S,Zhang X,Song X,et al. Bottom-up assembly of hierarchical Cu2O nanospheres:controllable synthesis, formation mechanism and enhanced photochemical activities[J].CrystEngComm,2012,14(10):3545-3553.
    [108]Deng S,Tjoa V,Fan H M,et al. Reduced graphene oxide conjugated Cu2O nanowiremesocrystals for high-performance NO2gas sensor[J]. J Am Chem Soc,2012,134(10):4905-4917.
    [109]Leng M,Liu M Z,Zhang Y B,et al. Polyhedral50-Facet Cu2O Microcrystals PartiallyEnclosed by {311} High-Index Planes: Synthesis and Enhanced Catalytic CO OxidationActivity[J]. J Am Chem Soc,2010,132:17084-17087.
    [110]Zhang X,Wang G,Zhang W,et al. Fixure-reduce method for the synthesis ofCu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor[J].Biosens Bioelectron,2009,24(11):3395-3398.
    [111]Zhu H,Wang J,Xu G. Fast synthesis of Cu2O hollow microspheres and their applicationin DNA biosensor of hepatitis B virus[J]. Cryst Growth Des,2009,9(1):633-638.
    [112]Hussain S,Cao C,Khan W S,et al. Fabrication and electrical characterization ofp-Cu2O/n-ZnO heterojunction[J]. J Nanosci Nanotechnol,2012,12(3):1967-1971.
    [113]Xu C,Cao L,Su G,et al. Preparation of ZnO/Cu2O compound photocatalyst andapplication in treating organic dyes[J]. J Hazard Mater,2010,176:807-813.
    [114]Liu L,Gu X,Sun C,et al.In situ loading of ultra-small Cu2O particles on TiO2nanosheetsto enhance the visible-light photoactivity[J]. Nanoscale,2012,4(20):6351-6359.
    [115]Pan Y,Deng S,Polavarapu L,et al. Plasmon-enhanced photocatalytic properties of Cu2Onanowire-Au nanoparticle assemblies[J]. Langmuir,2012,28(33):12304-12310.
    [116]Wang Z,Zhao S,Zhu S,et al. Photocatalytic synthesis of M/Cu2O (M=Ag, Au)heterogeneous nanocrystals and their photocatalytic properties[J]. CrystEngComm,2011,13:2262-2267.
    [117]Zhou B,Wang H,Liu Z,et al. Enhanced photocatalytic activity of flowerlike Cu2O/Cuprepared using solvent-thermal route[J]. Mater Chem Phys,2011,126:847-852.
    [118]Sun F,Kong C,You H,et al. Facet-selective growth of Cu-Cu2O heterogenousarchitectures[J]. CrystEngComm,2012,14:40-43.
    [119]Lan X,Zhang J,Gao H,et al. Morphology-controlled hydrothermal synthesisi and growthmechanism of microcrystal Cu2O.CrystEngComm,2011,13:633-636.
    [120]Waite J H,Tanzer M L. Polyphenolic substance of mytilus edulis: novel adhesivecontaining L-dopa and hydroxyproline[J]. Science,1981,212(4498):1038-1040.
    [121]Lee H,Dellatore S M,Miller W M,et al. Mussel-inspired surface chemistry formultifunctional coatings[J]. Science,2007,318(5849):426-430.
    [122]Postma A,Yan Y,Wang Y,et al. Self-polymerization of dopamine as a versatile androbust technique to prepare polymer capsules[J]. Chem Mater,2009,21(14):3042-3044.
    [123]Lynge M E,van der Westen R,Postma A,et al. Polydopamine--a nature-inspired polymercoating for biomedical science[J]. Nanoscale,2011,3(12):4916-4928.
    [124]Cheng C,Nie S,Li S,et al. Biopolymer functionalized reduced graphene oxide withenhanced biocompatibility via mussel inspired coatings/anchors[J]. J Mater Chem B,2013,1(3):265-275.
    [125]Guo L,Liu Q,Li G,et al. A mussel-inspired polydopamine coating as a versatile platformfor the in situ synthesis of graphene-based nanocomposites[J]. Nanoscale,2012,4(19):5864-5867.
    [126]Gao Z,Walton N I,Malugin A,et al. Preparation of dopamine-modified boronnanoparticles[J]. J Mater Chem,2012,22(3):877-882.
    [127]Zhang Z,Zhang J,Zhang B,et al. Mussel-inspired functionalization of graphene forsynthesizing Ag-polydopamine-graphene nanosheets as antibacterial materials[J]. Nanoscale,2013,5(1):118-123.
    [128]Zheng Y,Chen C,Zhan Y,et al. Photocatalytic activity of Ag/ZnO heterostructurenanocatalyst: correlation between structure and property[J]. J Phys Chem C,2008,112(29):10773-10777.
    [129]Cha J N,Shimizu K,Zhou Y, et al. Silicatein filaments and subunits from a marinesponge direct the polymerization of silica and silicones in vitro[J]. Proc Natl Acad Sci,1999,96(2):361-365.
    [130]Coradin T,Coupé A,Livage J. Interactions of bovine serum albumin and lysozyme withsodium silicate solutions[J]. Colloid Surface B,2003,29:189-196.
    [131]Gao F,Lu Q,Komarneni S. Protein-assisted synthesis of single-crystal nanowires ofbismuth compounds[J]. Chem Commun,2005,4:531-533.
    [132]Ramqvist L,Hamrin K,Johansson G,et al. Charge transfer in transition metal carbidesand related compounds studied by ESCA[J]. J Phys Chem Solids,1969,30(7):1835-1847.
    [133]Gao G,Wu H,He R,et al. Corrosion inhibition during synthesis of Cu2O nanoparticles by1,3-diaminopropylene in solution[J]. Corros Sci,2010,52(9):2804-2812.
    [134]Xi Z,Xu Y,Zhu L,et al.A facile method of surface modification for hydrophobic polymermembranes based on the adhesive behavior of poly(DOPA) and poly(dopamine)[J]. JMembrane Sci,2009,327:244-253.
    [135]Zeng T,Zhang X,Ma Y,et al.A novel Fe3O4-graphene-Au multifunctional nanocomposite:green synthesis and catalytic application[J]. J Mater Chem,2012,22:18658-18663.
    [136]Kim D,Huh Y. Morphology-dependent photocatalytic activities of hierarchicalmicrostructures of ZnO[J]. Mater Lett,2011,65(14):2100-2103.
    [137]Li N,Gao F,Hou L,et al. DNA-templated rational assembly of BaWO4nano pair-lineararrays[J]. J Phys Chem C,2010,114(39):16114-16121.
    [138]Labean T H,Li H. Constructing novel materials with DNA[J]. Nano Today,2007,2(2):26-35.
    [139]Iyer K S,Bond C S,Saunders M,et al. Confinement of silver triangles in silver nanoplatestemplated by duplex DNA[J]. Cryst Growth Des,2008,8(5):1451-1453.
    [140]Lukeman P S,Stevenson M L,Seeman N C. Morphology change of calcium carbonate inthe presence of polynucleotides[J]. Cryst Growth Des,2008,8(4):1200-1202.
    [141]Eskilsson K,Leal C,Lindman B,et al. DNA-Surfactant Complexes at Solid Surfaces[J].Langmuir,2001,17(5):1666-1669.
    [142]Arya D P,Coffee R J,Willis B,et al. Aminoglycoside-nucleic acid interactions:remarkable stabilization of DNA and RNA triple helices by neomycin[J]. J Am Chem Soc,2001,123(23):5385-5395.
    [143]Horne J C,Blanchard G J,Legoff E. Rotational isomerization barriers of thiopheneoligomers in the ground and first excited electronic states. A1H NMR and fluorescencelifetime investigation[J]. J Am Chem Soc,1995,117(37):9551-9558.
    [144]Dias R S,Innerlohinger J,Glatter O,et al. Coil-globule transition of DNA moleculesinduced by cationic surfactants:A dynamic light scattering study[J]. J Phys Chem B,2005,109(20):10458-10463.
    [145]Dias R,Mel'Nikov S,Lindman B,et al. DNA phase behavior in the presence of oppositelycharged surfactants[J]. Langmuir,2000,16(24):9577-9583.
    [146]Chang Y,Teo J J,Zeng H C. Formation of colloidal CuO nanocrystallites and theirspherical aggregation and reductive transformation to hollow Cu2O nanospheres[J]. Langmuir,2005,21(3):1074-1079.
    [147]Li S,Zheng Y,Qin G W,et al. Enzyme-free amperometric sensing of hydrogen peroxideand glucose at a hierarchical Cu2O modified electrode[J]. Talanta,2011,85(3):1260-1264.
    [148]Padama A A,Kishi H,Arevalo R L,et al. NO dissociation on Cu(111) and Cu2O(111)surfaces:A density functional theory based study[J]. J Phys,2012,24(17):175005-175010.
    [149]Yang L,Luo S,Li Y,et al. High efficient photocatalytic degradation of p-nitrophenol on aunique Cu2O/TiO2p-n heterojunction network catalyst[J]. Environ Sci Technol,2010,44(19):7641-7646.
    [150]Khanderi J,Contiu C,Engstler J,et al. Binary [Cu2O/MWCNT] and ternary[Cu2O/ZnO/MWCNT] nanocomposites: formation, characterization and catalyticperformance in partial ethanol oxidation[J]. Nanoscale,2011,3(3):1102-1112.
    [151]Kuo C H,Chen C H,Huang M H. Seed-mediated synthesis of monodispersed Cu2Onanocubes with five different size ranges from40to420nm[J]. Adv Funct Mater,2007,17(18):3773-3780.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.