双相不锈钢表层沉淀相的特征及相变晶体学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变晶体学是定量描述相变后材料组织的知识。双相不锈钢相变系统是具有表面浮突现象的扩散型相变,对其复杂的形貌和相变晶体学特征的定量分析,有助于人们加深对沉淀相变晶体学规律的理解,相变过程中的组织形貌为分析和控制组织提供工具。
     本论文工作深入研究了00Cr25Ni7Mo3双相不锈钢合金系统奥氏体在铁素体基体表面沉淀析出的相变晶体学,综合应用扫描电子显微镜、背散射电子衍射、原子探针研究了表层奥氏体沉淀相的三维形貌和表面浮突现象,实验发现针状形貌是表面沉淀相的基本单元,复杂形貌的分枝均呈针状。应用透射电子显微镜对表层有代表性的3种针状沉淀相与基体的位向关系、长轴方向、界面取向等进行了表征。定量分析结果表明丰富多变的表面沉淀相的形貌及其晶体学特征与样品表面取向密切相关。
     本工作将表面因素引入O线模型,提出表面约束判据。运用扩展O线模型结合位移分解的方法对3种针状沉淀相的晶体学做出了合理的定量解释,特别是解释了表面特有的现象比如两相中相关柏氏矢量偏离、界面位错与长轴方向偏离以及带有“缓冲层”的双惯习面现象等。扩展O线方法具有普适性,可以用于其它约束条件的相变系统中。
     本工作的分析表明,在表层沉淀相与基体之间可以构成V型双惯习面,这是表层特有的三维形貌。双惯习面可以以不同的方式实现,例如孪晶对片条的基体/沉淀相1/沉淀相2/基体的结构,以及带有缓冲层片条的基体1/沉淀相/基体2的三明治结构。本工作还提出了基体倾转参与组织演化的模型,解释了“缓冲层”结构产生的原因,证实了相变系统在相变应力作用下由有理向无理位向关系转变的组织演化猜测。
     奥氏体析出时会在表面形成单倾或者双倾性的表面浮突。本工作应用背散射电子衍射技术和原子探针技术定位观测了表面浮突的结构。发现双倾型浮突由一对呈孪晶关系的片条组成而单倾型的浮突是单晶片条。
Crystallography of the phase transformation is a key aspect for understanding the microstructure, and is essential to theory-based materials design. In the present work the phase transformation near surface of a duplex stainless steel is investigated for understanding the complex morphology. The theoretical model has been extended to give reasonable explanations of the observed crystallographic features. This in-depth study has enriched the knowledge of the precipitate crystallography.
     3D morphology and the crystallography in 00Cr25Ni7Mo3 has been systematically measured with scanning electron microscope (SEM), electron backscattering diffraction (EBSD) and atomic force microscope (AFM). The basic unit of the precipitates transformed near the surface is for single needle as well as for complex dendrite shaped precipitates. The detailed crystallographic features of the needle shaped precipitates vary with the surface orientation. Three types have been identified, according to the orientation relationship (OR), the long axis and the interface orientation, as measured with transmission electron microscope (TEM): the OR for the first type is near the K-S OR, and the Burgers vector is the near parallel close packed direction (CPD), and a pair of twin precipitates is often observed; the second is also near K-S OR, while the Burgers vector is not the near parallel CPD; the third is near N-W OR.
     Surface effect has been taken into consideration to modify the O-line model and a new criterion is proposed: the deviation of the invariant line from the surface should be minimized (Smin). The O-line solution of the Smin provide good explanation of the typical phenomena only observed on the surface, such as the deviation of the corresponding Burgers vectors, the deviation of the interfacial dislocation and the long axis, and the double habit plane with“buffer matrix”and so on. The“buffer matrix”was proposed to be the result of recovery in the local matrix nearby the interface, during the evolution of microstructure from a rational OR to the irrational OR.
     The“double habit planes”structure is a unique phenomenon in the surface layer between the precipitates and the matrix, which can be achieved in different way: such as the structure matrix / precipitate 1 / precipitate2 / matrix of the twining laths and the the structure matrix1 / precipitate / matrix2 of the lath with“buffer matrix”. The precipitation of austenite on the surface is associated with the surface relief.
     A tracking measurement combining EBSD with AFM reveals the structure of the surface relief: the double-tilt surface relief is related with the twinning austenite pair and the single-tilt surface relief is related with the single precipitate, no matter the OR is near K-S or near N-W.
引文
[1] Jiao HS, Aindow M, Pond RC, et al. The observations of Widmanstatten gamma precipitates in a duplex stainless steel. Electron Microscopy and Analysis 2001, 2001.361-364.
    [2] Jiao HS, Aindow M, Pond RC. Precipitate orientation relationships and interfacial structures in duplex stainless steel Zeron-100. Philos. Mag. A 2003; 83: 1867-1887.
    [3] Qiu D, Zhang W-Z.双相不锈钢中表面浮突的测量与表征.金属学报2005; 41: 897-904.
    [4] Qiu D, Zhang W-Z. A TEM study of the crystallography of austenite precipitates in a duplex stainless steel. Acta Mater. 2007; 55: 6754-6764.
    [5] Headley TJ, Brooks JA. A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels. Metall. Mater. Trans. A 2002; 33: 5-15.
    [6] Shek C, Lai J, Wong K, et al. Early-stage widmanstatten growth of theγphase in a duplex steel. Metall. Mater. Trans. A 2000; 31: 15-19.
    [7]罗英辉.晶体学理论及00Cr25Ni5Mo2双相不锈钢的研究. [硕士学位论文].广州:华南理工大学, 1992.
    [8] Lo KH, Shek CH, Lai JKL. Recent developments in stainless steels. Materials Science and Engineering: R: Reports 2009; 65: 39-104.
    [9] Liang Q, Reynolds W. Determining interphase boundary orientations from near-coincidence sites. Metall. Mater. Trans. A 1998; 29: 2059-2072.
    [10] Wayman CM. Introduction to the crystallography of martensitic transformations. New York: Macmillan, 1964: 391.
    [11] Wechsler MS, Lieberman DS, Read TA. On the Theory of the Formation of Martensite. Trans. AIME 1953; 197: 1503.
    [12] Lieberman DS, Wechsler MS, Read TA. Cubic to Orthorhombic Diffusionless Phase Change- Experimental and Theoretical Studies of AuCd. J. Appl. Phys. 1955; 26: 473.
    [13] Bowles JS, Mackenzie JK. The crystallography of martensite transformations I. Acta Metall. Mater. 1954; 2: 129-137.
    [14] Mackenzie JK, Bowles JS. The crystallography of martensite transformations II. Acta Metall. Mater. 1954; 2: 138-147.
    [15] Wayman CM. The Phenomenological Theory of Martensite Crystallography - Interrelationships. Metall. Mater. Trans. A 1994; 25: 1787-1795.
    [16]邓永瑞.马氏体转变理论.北京:科学出版社, 1993.
    [17]徐祖耀.材料中的相变第三章相变晶体学.北京:高等教育出版社,待出版: 10.
    [18] Bhadeshia HKDH. Worked examples in the Geometry of Crystals. London: the Institute of Materials, 2001: 61.
    [19] Bowles JS, Mackenzie JK. The crystallography of the (225)f transformation in steels. Acta Metall. Mater. 1962; 10: 625-636.
    [20] Bowles JS, Morton AJ. The shape strain in the (225)f martensite transformation. Acta Metall. Mater. 1964; 12: 629-640.
    [21] Dahmen U. Orientation relationships in precipitation systems. Acta Metall. Mater. 1982; 30: 63-73.
    [22] Dahmen U. The role of the invariant line in the search for an optimum interphase boundary by O-lattice theory. Scripta Metall. Mater. 1981; 15: 77-81.
    [23] Dahmen U, Ferguson P, Westmacott KH. Invariant line strain and needle-precipitate growth directions in Fe-Cu. Acta Metall. Mater. 1984; 32: 803-810.
    [24] Dahmen U, Westmacott KH. Role of invariant line in the nucleation and growth of precipitates. Pittsburgh, PA, USA: Metallurgical Soc of AIME, Warrendale, Pa, USA, 1982.433-437.
    [25] Xiao SQ, Howe JM. Analysis of a two-dimensional invariant line interface for the case of a general transformation strain and application to thin-film interfaces. Acta Mater. 2000; 48: 3253-3260.
    [26] Luo CP, Weatherly GC. The invariant line and precipitation in a Ni-45 wt% Cr alloy. Acta Metall. Mater. 1987; 35: 1963-1972.
    [27] Bollmann W. Crystal defects and crystalline interfaces. New York: Springer-Verlag, 1970: 149-150,16.
    [28]张文征. O点阵模型及其在界面位错计算中的应用. Acta Metallrugica Sinica 2002.
    [29] Bollmann W. Crystal Lattice, Interface, Matrices. Geneva, 1982: 118.
    [30] Zhang W-Z, Purdy GR. O-lattice analyses of interfacial misfit. I. General considerations. Philos. Mag. A 1993; 68: 279-290.
    [31] Christian JW. The theoty of transformation in metals and alloys. Oxford: Pergamon Press, 1975: 43,995.
    [32] Fujii T, Mori T, Kato M. Crystallography and morphology of needle-like [alpha]-Fe precipitate particles in a Cu matrix. Acta Metall. Mater. 1992; 40: 3413-3420.
    [33] Hall MG, Aaronson HI, Kinsma KR. The structure of nearly coherent fcc: bcc boundaries in a Cu---Cr alloy. Surf. Sci. 1972; 31: 257-274.
    [34] Hall MG, Rigsbee JM, Aaronson HI. Application of the "0" lattice calculation to f.c.c./b.c.c. interfaces. Acta Metall. Mater. 1986; 34: 1419-1431.
    [35] Rigsbee JM, Aaronson HI. A computer modeling study of partially coherent f.c.c.:b.c.c. boundaries. Acta Metall. Mater. 1979; 27: 351-363.
    [36] Weatherly GC, Humble P, Borland D. Precipitation in a Cu-0,55 wt.% Cr alloy. Acta Metall. Mater. 1979; 27: 1815-1828.
    [37] Zhang W-Z, Purdy GR. O-lattice analyses of interfacial misfit. II. Systems containing invariant lines. Philos. Mag. A 1993; 68: 291-303.
    [38] Weatherly GC, Zhang W-Z. The invariant line and precipitate morphology in Fcc-Bcc systems. Metall. Mater. Trans. A 1994; 25: 1865-1874.
    [39] Zhang W-Z, Weatherly GC. A Comparative Study of the Theory of the O-lattice and the Phenomenological Theory of Martensite Crystallography to Phase Transformations. Acta Mater. 1998; 46: 1837-1847.
    [40] Qiu D, Zhang W-Z. A systematic study of irrational precipitation crystallography in fcc-bcc systems with an analytical O-line method. Philos. Mag. A 2003; 83: 3093.
    [41] Furuhara T, Aaronson HI. Computer modeling of partially coherent B.C.C.:H.C.P. boundaries. Acta Metall. Mater. 1991; 39: 2857-2872.
    [42] Chen JK, Purdy GR, Weatherly GC, et al. Atomic arrangement and the formation of partially coherent interfaces in the Ti-V-N system. Metall. Mater. Trans. A 1998; 29: 2049-2058.
    [43] Furuhara T, Wada K, Maki T. Atomic structure of interphase boundary enclosing bcc precipitate formed in fcc matrix in a Ni-Cr alloy. Metall. Mater. Trans. A 1995; 26: 1971-1978.
    [44] Russel KC, Hall MG, Kinsman KR, et al. The nature of the battier to growth at partially coherent fcc/bcc boundaries Metall Trans A 1974; 5: 1503-1505.
    [45] Hall MG, Furuhara T, Aaronson HI, et al. On misfit-compensating ledges/disconnections. Acta Mater. 2001; 49: 3487-3492.
    [46] Miyano N, Ameyama K, Weatherly GC. HRTEM observation and atomic modeling ofα/βinterphase boundary in a Ti-22V-4Al alloy : Special issue on grain boundaries, interfaces, defects and localized quantum structures in ceramics. Sendai, JAPON: Japan Institute of Metals, 2002.
    [47] Miyano N, Ameyama K, Weatherly GC. Three Dimensional Near-Coincidence Site Lattice Modeling ofα/βInterface Boundary Structure in Two Phase Titanium Alloy. ISIJ International 2000 40 S199-S203.
    [48] Miyano N, Fujiwara H, Ameyama K, et al. Preferred orientation relationship of intra- and inter-granular precipitates in titanium alloys. Materials Science and Engineering A 2002; 333: 85-91.
    [49] Reynolds WT, Nie JF, Zhang WZ, et al. Atomic structure of high-index [alpha]2:[gamma]m boundaries in a Ti-46.54 at.%Al alloy. Scripta Mater. 2003; 49: 405-409.
    [50] Kelly PM, Zhang MX. Edge-to-edge matching - a new approach to the morphology and crystallography of precipitates. Mater. Forum 1999; 23: 41-62.
    [51] Zhang MX, Kelly PM. Crystallographic features of phase transformations in solids. Prog. Mater. Sci. 2009; 54: 1101-1170.
    [52] Zhang MX, Kelly PM. Edge-to-edge matching and its applications: Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys. Acta Mater. 2005; 53: 1085-1096.
    [53] Zhang MX, Kelly PM. Edge-to-edge matching model for predicting orientation relationships and habit planes--the improvements. Scripta Mater. 2005; 52: 963-968.
    [54] Zhang MX, Kelly PM. Edge-to-edge matching and its applications: Part I. Application to the simple HCP/BCC system. Acta Mater. 2005; 53: 1073-1084.
    [55] Zhang W-Z, Weatherly GC. On the crystallography of precipitation. Prog. Mater. Sci. 2005; 50: 181-292.
    [56] Wu J, Zhang W-Z, Gu X-F. A two-dimensional analytical approach for phase transformations involving an invariant line strain. Acta Mater. 2009; 57: 635-645.
    [57] Christian JW. Crystallographic theories, interface structures, and transformation mechanisms Metall. Mater. Trans. A 1994; 25A: 1821-1839.
    [58] Muddle BC, Nie JF, Hugo GR. Application of the theory of martensite crystallography to displacive phase transformations in substitutional nonferrous alloys. etallurgical and Materials Transactions A 1994; 25A: 1841-1856.
    [59] Watson JD, McDougall PG. Crystallography of Widmanstatten Ferrite. Acta Met. 1973; 21: 961-973.
    [60] Hall MG, Aaronson HI. The fine structure f.c.c./b.c.c. boundaries in a Cu-0.3% Cr alloy. Acta Metall. Mater. 1986; 34: 1409-1418.
    [61] Luo CP, Dahmen U. Interface structure of faceted lath-shaped Cr precipitates in a Cu-0.33 wt% Cr alloy. Acta Mater. 1998; 46: 2063-2081.
    [62] Furuhara T, Kawata H, Morito S, et al. Crystallography of upper bainite in Fe-Ni-C alloys. Mat. Sci. Eng. A-Struct. 2006; 431: 228-236.
    [63] Moritani T, Miyajima N, Furuhara T, et al. Comparison of interphase boundary structure between bainite and martensite in steel. Scripta Mater. 2002; 47: 193-199.
    [64] Howell PR, Southwick PD, Ecob RC, et al. The observation of dislocation arrays in partially coherent f.c.c./b.c.c. interfaces in a duplex strainless steel. In: Aaronson HI, Laughlin DE, Sekerka RF, Wayman CM, editors. solid-solid phase transformations, vol. 1. Carnegie-Mellon University, Pittsburgh, Pennsylvania, U.S.A.: The Metallurgical soiety of AIME, 1982.591-597.
    [65] Ohmori Y, Nakai K, Ohtsubo H, et al. Mechanism of Widmanst?tten Austenite Formation in aδ/γDuplex Phase Stainless Steel. ISIJ International 1995; 35: 969-975
    [66] Pond RC, Jiao H, Zhang LC, et al. Accommodation of angular Incompatibilities between interfacial facets during precipitate growth. Metall. Mater. Trans. A 2006; 37: 901-909.
    [67] Qiu D, Zhang W-Z. An extended near-coincidence-sites method and the interfacial structure of austenite precipitates in a duplex stainless steel. Acta Mater. 2008; 56: 2003-2014.
    [68]邱冬.双相不锈钢系统奥氏体沉淀相的相变晶体学研究. [博士学位论文].北京:清华大学, 2005.
    [69] Shek CH, Wong KW, Lai JKL. Review of temperature indicators and the use of duplex stainless steels for life assessment. Materials Science and Engineering: R: Reports 1997; 19: 153-200.
    [70] Hirth JP, Spanos G, Hall MG, et al. Mechanisms for the development of tent-shaped and invariant-plane-strain-type surface reliefs for plates formed during diffusional phase transformations. Acta Mater. 1998; 46: 857-868.
    [71]吴玖.双相不锈钢.北京冶金工业出版社, 1999: 9-10.
    [72]杨平.电子背散射衍射技术及其应用.北京:冶金工业出版社, 2007: 59.
    [73]王英华. x光衍射技术基础.北京:原子能出版社, 1993: 104.
    [74] Kaiser U, Saitoh K, Tsuda k, et al. Application of the CBED method for the determination of lattice parameters of cubic Sic films on 6H SiC substrates. Journal of Electron Microscopy 1999; 48: 221-233.
    [75] Meng Y, Nolze G, Zhang WZ, et al. Determination of precise orientation relationships between surface precipitates and matrix in a duplex stainless steel. In: Hermanns-Sachweh A, Richter LM, Weirich S, editors. EMC 2008 14th European Microscopy Congress 1–5 September 2008, Aachen, Germany, 2008.659-660.
    [76] Zuo JM, Mabon JC. Web-based Electron Microscopy Application Software: Web-EMAPS;Microsc Microanal 10(Suppl 2). 2004.
    [77] Dunne DP, Bowles JS. Measurement of the shape strain for the (225) and (259) martensitic transformations. Acta Metall. Mater. 1969; 17: 201-212.
    [78] Greninger AB, Troiano AR. Crystallography of Austenite decomposition. Trans. Am. Inst. Min. Metall. Eng. 1940; 140: 307-331.
    [79] Wayman CM, Hanafee JE, Read TA. On the crystallography of martensite, the {225} transformation in alloys of iron. Acta Metall. Mater. 1961; 6: 391-402.
    [80] Zhou D, Shiflet G. Ferrite: Cementite crystallography in pearlite. Metall. Mater. Trans. A 1992; 23: 1259-1269.
    [81] Zhang W-Z, Purdy GR. A TEM study of the crystallography and interphase boundary structure ofαprecipitates in a Zr-2.5 wt% Nb alloy. Acta Metall. Mater. 1993; 41: 543-551.
    [82] Zhang MX, Kelly PM, Gates JD. Determination of Habit Planes Using Trace Widths in TEM. Mater. Charact. 1999; 43: 11-20.
    [83] Young C, Steele J, Lytton J. Characterization of bicrystals using kikuchi patterns. Metall. Mater. Trans. B 1973; 4: 2081-2089.
    [84] Liu Q. A new method for determining the normals to planar structures and their trace directions in transmission electron microscopy. J. Appl. Cryst. 1994; 27: 762-766.
    [85] Kelly PM, Jostsons A, Blake RG, et al. Determination of Foil Thickness by Scanning Transmission Electron Microscopy Physica Status Solidi (a) 1975; 31: 771-780.
    [86] Hirsh P, Howie A, Nicholson RB, et al. Electron microscopy of thin crystals. Malabar, Florida.: Robert E. Krieger Publishing Company, 1977: 311~315.
    [87] Edington JW. Electron diffraction in the electron microscope London: Macmillan, 1975: 54.
    [88] Zhang W-Z. Formulas for periodic dislocations in general interfaces. Appl. Phys. Lett. 2005; 86: 121919.
    [89] Golub GH, Van Loan CF. Matrix Computations. Londen: The Johns Hopkins University Press, 1989: 70-71.
    [90] Zhang W-Z. Decomposition of the transformation displacement field. Philos. Mag. A 1998; 78: 913 - 933.
    [91] Meng Y, Gu XF, Zhang W-Z. A study of a new type of deviation from the Kurdjumov-Sachs orientation relationship in face-centered-cubic/body-centered-cubic transformation system. Acta Mater. 2010; 58: 2364-2375.
    [92] Miyamoto G, Shibata A, Maki T, et al. Precise measurement of strain accommodation in austenite matrix surrounding martensite in ferrous alloys by electron backscatter diffraction analysis. Acta Mater. 2009; 57: 1120-1131.
    [93]叶飞. Ti-7.26wt%Cr合金中bcc/hcp相变晶体学的研究. [博士学位论文].北京:清华大学, 2004.
    [94]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社, 1998: 149.
    [95] Mullins WW. Theory of Thermal Grooving. J. Appl. Phys. 1957; 28: 333-339.
    [96] Mullins WW. The effect of thermal grooving on grain boundary motion. Acta Metall. Mater. 1958; 6: 414-427.
    [97] Morniroli J-P. Large-angle convergent-beam electron diffraction Applications to crystal defects. Paris: Societe Francaise des Microscopies, 2002.
    [98] Zuo JM, Kim M, Holmestad R. A new approach to lattice parameter measurements using dynamic electron diffraction and pattern matching. Journal of Electron Microscopy 1998; 47: 121-127.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.