高压配电网无功补偿控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪,能源成本的不断上升,清洁能源使用和绿色生产技术应用对环境的影响备受关注,在这种形势下,如何降低新建输电线路损耗,稳定输送容量成为电力工业界的重点课题。随着柔性交流输电系统(FACTS)技术的应用和不断升级,对输电线路既可以进行有功功率控制,也可以进行无功功率控制,有效的解决了输电通道上发生功率阻塞,造成对可传输容量的限制,从而减少了人力不和物力的浪费。因此,研究FACTS控制装置设计已经变得越来越重要。
     无功补偿设备对电力系统的控制有几种类型,一是控制系统的电压,使系统的电压稳定在期望值内,二是控制系统的无功电流或者无功功率,使电力系统的无功电流或者无功功率控制在期望的范围内,三是综合控制,使电力系统的电压和无功电流或者无功功率、静态和暂态稳定性、阻尼振荡等控制在期望的范围内。
     无功补偿设备的更新换代,实际是控制策略的提升。因此,设计出科学的,有效的控制策略是关键。本文研究了FACTS历代的控制策略及方法,以鞍山变电所为试验基地,设计SVC仿真控制策略,通过利用RTDS系统元件库中的元件模型搭建变电所的等值电路,用实际SVC装置的调节单元来产生触发脉冲信号,并通过RTDS的输入通道将信号输入,控制模型中TCR晶闸管的导通。同时,RTDS系统将模型中35kV、66kV母线电压值经D/A转换,以模拟量形式通过输出端子实时输入进实际装置,构成一个闭环的物理一数字仿真环节。试验中通过设定时序控制投切66kV母线电压上负载引起母线电压波动,从而验证实际SVC装置的控制策略在维持66kV母线电压值在65.3kV~66.6kV范围内的有效性。根据红一变在系统中的地位及红一变的负荷特性,经过研究得出红一变安装的SVC可以降低网络损耗、调节电压、抑制电压波动以及平抑冲击负荷影响等方面可以发挥较大作用,能较好的改善电能质量。通过对STATCOM仿真控制策略设计,研究得出STATCOM的运行范围和调节速度比SVC仿真控制更宽、更快。通过对三相电力系统的暂态仿真设计研究得出TCSC可以控制线路潮流,提高电力系统暂态稳定性,并能阻尼线路功率振荡。同SVC相比,具有灵活的控制能力。通过对电力系统稳定性和控制问题分析得出,SSSC作为纯无功补偿时,电压源的相位总与线路电流相垂直。因此,线路中实时因注入一个正负交变的虚拟有功阻抗,吸收或提供与起主要作用的机械振荡相对应的有功功率,SSSC 的重要优点是它不会引起SSR,并能够帮助阻尼白由输电网络中其他串联电容器引起的次同步谐振。通过对PID模糊控制方法研究得出,UPF0可以完成有功和无功潮流控制,使输电线路以较小的损耗传输更大的功率。
     通过以上几种控制装置的比较,可以看出,FACTS控制装置的设备和电力系统中控制设计方法是关键。降低控制设备成本和建立有效的控制方法对未来电力系统输出损耗将起到至关重要的作用。其中,以辽宁省鞍山市红一变为试验基地,仿真模拟SVC控制,更是填补了我国自主研发电力输出能耗补偿的空白,缩小了同世界领先水平的差距,为我国电力系统节能研发提供科学依据和积累设计经验,促进我国电力行业又好又快发展。
In the 21st century, with the energy costs rising. clean energy and green production technology impact on the environment are of concern. In this situation.how to reduce the new transmission line losses, how to stabilize the power transmission capacity become the electric power industry's key issues. With the application and upgrade of the flexible AC transmission (FACTS) technology, which can control the transmission lines' rces. Therefore, the study design of FACTS control devices have become increasingly important.
     Reactive power compensation devices control the power system in several ways. First, controling the system voltage,which make the system voltage stable within the expected. Second,controling the reactive current or power,which make they stable within the expected. The third one is a comprehensive control,making the power system voltage,reactive current or power, static transient stability, and damping oscillation stable in the desired range.
     The replacement of the reactive power compensation equipment,actually is the promotion of the controling strategy. Therefore,the design of scientific. effective control strategy is the key. This paper studies the control strategy and methods of ancient FACTS, make the substation in Anshan as the test base, designs simulation of SVC control strategy builds substation equivalent circuit model, through using the components in RTDS system component library.use actual SVC device regulation unit to generate the trigger pulse signal, and input signal through the RTDS input channel, control the TCR thyristor conduction. Meanwhile, the model 35kV,66kV bus voltage value in the RTDS system via D/A converter,it real-time input into the actual device through the output terminal by the form of analog, form a closed loop of the physical-aspects of digital simulation.In the test, by setting the timing control switching load which caused 66kV bus voltage fluctuations verify that the actual SVC device control strategy is validity in maintaining the 66kV bus voltage among 65.3kV to 66.6kV. According to the status of the first red in the power system and its load characteristics, the study obtained that the SVC of red substation can reduce system losses,adjust the voltage inhibit voltage fluctuations and stabilize the load shock.It can improve the power quality. Through the design simulation of the STATCOM control strategy, the study obtained that STATCOM's operating range and adjusting rate are faster and wider than SVC. Through the three-phase power system transient simulation design, the study obtained that TCSC can control the line trend, improve power system transient stability, and can hinder the line power oscillation. Compared with SVC, it has a flexible controling ability. Through analysis the power system stability and control performance,it obtained that SSSC as a pure reactive power compensation, the voltage source phase is always perpendicular to the line current. Therefore, injecting a real-time alternating positive and negative virtual active resistance into a line,it can sink or provide active power which corresponding to the mechanical oscillations that play a major role.The important is that SSSC does not cause SSR, and can hinder sub-synchronous resonance that causes by other series capacitor in transmission network. By studying PID fuzzy control method.it shows UPFC can be complete to control active and reactive power flow, transmission lines can transmit more power with a smaller loss.
     Through the above comparison of several control devices, it can be seen.that FACTS devices and power system control design method is the key. Reducing control equipment costs and establishing an effective control method for the future power systems will play a crucial role in the output loss. Among them, this paper takes the red substation in Anshan of Liaoning Province as an example,make a SVC operation simulation. SVC fill the gap,which invent power output compensation device by our own. narrow the gap with the world's leading, provide a scientific basis and accumulate design experience for our energy power system,promote a good and fast development of China's power industry.
引文
1. ABB Power Systems. Multiple SVC installations for traction load balancing in Central Queensland [EB/OL].www.ABB.com.
    2. ABB Power Systems. Relocatable Static Var Compensators for the national grid company 400 275 kV network [EB/OL]. www.ABB.com.
    3. ABB Power Systems. SVC for operation of EAF based steel plant from weak local power supply [EB/OL].www.ABB.com.
    4. ABB Power Systems. SVC for voltage control of weak sub-transmission and distribution network [EB/OL].www.ABB.com.
    5. ABB Power Systems. The ABB Static Var Compensator For increased efficiency in power systems [EB/OL].www.ABB.com.
    6. ALSTOM. Static Var Compensator for St. John's Wood, UK[EB/OL]. www.ALSTOM.com.
    7. ALSTOM. Relocatable SVCs——Flexible Compensation For Modern Power Systems[EB/OL]. www.ALSTOM.com.
    8. ALSTOM. Static Var Compensator for Christcherch, New Zealand[EB/OL].www.ALSTOM.com.
    9. ALSTOM.Static Var Compensator for St.John's Wood.UK[EB/OL].www.Al.STOM.com.
    10. ALSTOM.Static Var Compensator for Watertown.S.D..USA[EB/OL].www.ALSTOM.com.
    11. ALSTOM.StaticVarCompensatorforChristcherch,NewZealand[EB/OL].www.ALSTOM.com.
    12. Anthony S Cook. Mike Wyckmans. Lars Weimers,Kjell Eriksson. Network interconnection using HVDC Light. Distribution 2000 Conference. Brisbane, Australia, November 1999.
    13. Asplund G. Eriksson K et al. Dc Transmission Based ON Voltage Source Converters. CIGRE.1998; Paris.
    14. Atsukawa T, Masada E, Miyatake M. Shutoh K. Control and performance of DC transmission system with self-commutated converters without transformers. Power Electronics and Motion Control Conference, PIEMC 2000:862-867.
    15. Aurelio Garcia-Cerrada, Pablo Garcia-Gonzalez, Rafael Collantes, Tomas Gmoez Javier Anzola. Comparison of Thyristor-Controlled Reactors and Voltage-Source Inverters for Compensation of Flicker Caused by Arc Furnaces [J]. IEEE Transactions on Power Delivery,2000,15(4):1225-1231
    16. B. M. Han, G. G. Karady, J. K. Parlt, and S. I. Moon. Interaction analysis model for transmission static compensator with EMTP. IEEE Trans. on Power Delivery, Vol.13, No.4, pp.1297-1302, Oct.1998.
    17. B. Mumyakmaz, Xianhe Jin, Changchang Wang. Static var compensator with neural network control. Transmission and Distribution Conference.1999 IEEE Vol.2, Page:542-549
    18. Bernet S.Recent developments of high power converters for industry and traction applications.IEEE Transactions on Power Electronics, Volume:,2000,15(6):1102-1117.
    19. Chen Yiqiang, Ooi Boon-Tecj. Statcom based on multimodules of multilevel converters under multriple regulation feedback control [J],IEEE Trans Power Electronics,1999,14(5):959-965.
    20. CIGRE Task Force 14-27, "Unified Power Flow Controller,"CIGRE Technical Brochure,1998.
    21. DYNEX Power Electronic Group, Preliminary Specification And Technical Details of Thyristor Drive System for Shunde Transformer Co.2002.2
    22. F. Schettler, H. Huang, N. Chrisrtl. HVDC transmission systems using voltage sourced converters design and applications[C]. IEEE Power Engineering Society Summer Meeting,2000, Vol.2:715-720.
    23. F.Z. Peng. J.W. McKeever. D.J. Adams. A power line conditioner using cascade multilevel inverters for distribution systems. IEEE Trans on (?)A.1998.34(6):1243-1298.
    24. Fidel S Correa. Leif R Wilhelmsson. Jacques F Allaire. Suplly to rapidly growing cities and areas. Cigre Symposium. Kuala Lumpur. Malaysia. September 1999.
    25. Gaber El-Saady. Adaptive static VAR controller for simultaneous elimination of voltage flickers and phase current imbalances due to are furnaces loads [J|. Electric Power Systems Research.2001,58:133-140
    26. Gibo N. Takenaka K. et al. Enhancement of continuous operation performance of HIVDC with self-commutated converter. Power Systems. IEEE Transactions on.2000,15(2);552-558.
    27. Gole. A.M.. Meisingset M An AC active filter for use at capacitor com mutated HVDC converters. IEEE Transactions on Power Delivery.2001, 16(2):335-341.
    28. Gunnar Asplund,Kjell Eriksson. Ove Tollerz. HVDC Light, a tool for electric power transmission to distant loads [C]. VI Sepope Conference. Salvador. Brazil. May 1998.
    29. Huang A.Q., Motto K., Yuxin Li. Development and comparison of high-power semiconductor switches. Power Electronics and Motion Control Conference.. Proceedings. PI EMC 2000. The Third International,2000, vol.1:70-78.
    30.IEC 61954-1999 Power electronics for electrical transmission and distribution systems—Testing of Thyristor valves for static var compensators[S]
    31. IEEE Std 1031-2000 IEEE Guide for the Functional Specification of Transmission Static Var Compensators [S]
    32. IEEE Std.1303-1994 IEEE Guide For Static Var Compensator Field Tests [S]
    33. J. M. Ramirez-Arredondo and R. Davalos-Marin. TCSC control based on passivity for power system damping enhancement. Electrical Power & Energy Systems. Vol.23. No.2. pp.81-90, Feb.2001.
    34. Jiang Hongbo et al. Multiterminal HVDC Systems in Urban Areas of Large Cities. IEEE Trans on Power Delivery,1998; 13(4):1278-1284
    35. Kjell Eriksson. Tomas Jonsson. Ove Tollerz. Small scale transmission to AC networks by HVDC light. The 12th Cepsi Conference in Pattaya.Thailand.November 1998.
    36. LEE S Y, Wu C J. Combined compensation of a static var compensator and an active filter for unbalanced three-phase distribution feeders with harmonic distortion[J].Electric Power System Research, 1998,46:243-250.
    37. Lester Hart, Max Wiestner2, Claes Hillberg. SVC's WITH ARC-COMP FOR MINIMAL FLICKER AND HIGHER PRODUCTION WITH DC FURNACES.[EB/OL]. www.ABB.com.
    38. Lianxiang Tang, Boon-Teck Ooi. Impact of zero sequence component on voltage-source converters. PCC-Osaka,2002:184-189.
    39. Lianxiang Tang, Boon-Teck Ooi. Impact of zero sequence component on voltage-sourceconverters. PCC-Osaka,2002:184-189.
    40. Lianxiang Tang, Boon-Teck Ooi. Protection of VSC-multi-terminal HVDC against DC faults.Power Electronics Specialists Conference,2002. pesc 02.2002 IEEE 33rd Annual, Vol.2:719-724.
    41. Lianxiang Tang, Boon-Teck Ooi. Protection of VSC-multi-terminal HVDC against DC faults.Power Electronics Specialists Conference,2002. pesc 02.2002 IEEE 33rd Annual, Vol.2:719-724.
    42. Lihua Hu. Sequence impedance and equivalent circuit of HVDC systems. IEEE Trans. on Power Systems, Vol.13, No.2, pp.354-360, May 1998.
    43. Lips, H.P. Technology trends for HVDC thyristor valves. Power System Technology,POWERCON'98, 18-21 Aug 1998,(1):451-455.
    44. M. Mohaddes, A. M. Gole, and Sladjana Elez. Steady state frequency response of STATCOM. IEEE Trans, on Power Delivery, Vol.16, No. 1,pp.18-23, Jan.2001.
    45. M.EI-Habrouk. M.K. Darwish. Design and implementation of a modi lied Fourier analysis harmonic current computation technique for power active filters using DSPs[J].IEE Proc.-Electr. Power Appl., 2001. 148(1):21-28
    46. Makoto Hagiwara. Hirofumi Akagi. Hideaki Fujita. Performance of a self-commulated BTB system under a single-line-to-ground fault condition. PCC-Osaka.2002:1124-1131.
    47. Matt Matele. Jan Wasborg. Bruno Halvarsson. Jan Sundin. Modular Back-to-Back HVDC.with capacitor commutated converters (CCC). PowerTech Conference. Mumbai. India.October 1999.
    48. N. G. Hingorani. High power electronics and flexible AC transmission system.IEEE Power Engineering Review.pp.3-4. July 1998.
    49. N.G. Hingorani and L. Gyugyi, Understanding FACTS, IEEE Press. New York,1999.
    50. Niedernostheide F.-J.,Schulze H.-J. et al. Light-triggered thyristors with integrated protection functions. The 12th International Symposium on Power Semiconductor Devices and ICs.2000:267-270.
    51. Nits Horle. Asmund Maeland.Kjell Eriksson. Tom Nestli. Electrical supply for offshore installations made possible by use of VSC technology. Cigre 2002 Conference, Paris, Prance Aug 25-30,2002.
    52. Paolo Mattavelli, Aleksandar M. Stankovic. and George C. Verghese. SSR analysis with dynamic phasor model of Thyristor-Controlled Series Capacitor. IEEE Trans. on Power Systems, Vol.14, No. 1,pp. 200-208. Feb.1999.
    53. Pranesh Rao. M. L. Crow, and Zhiping Yang. STATCOM control for power system voltage control applications. IEEE Trans. on Power Delivery. Vol.15 No.4. pp.1311-1317. Oct.2000.
    54. S. A. Khaparde and V. Krishna. Simulation of unified Static Var Compensator and Power System Stabilizer for arresting subsynchronous resonance. IEEE Trans. on Power Systems. Vol.14. No.3. pp. 1055-1062. Aug.1999.
    55. Sadek K, Pereira M et al. Capacitor commutated converter circuit configurations for DC51 transmission, IEEE Transactions on Power Delivery.1998.13(4):1257-1264.
    56. Sakamoto K, Yajima M,Ishikawa T, et al. Development of a control system for a high-performance self-commutated AC/DC converter. Power Delivery. IEEE Transactions on,1998,13(1):225-232.
    57. Schettler F, Huang H, Christi N. HVDC transmission systems using voltage sourced converters design and applications. Power Engineering Society Summer Meeting.2000.Vol.2:715-720.
    58. Shakweh Y.New Breed of Medium Voltage Conberters. Power Engingeering Journal,2002(2):12-20.
    59. SIEMENS Industrial Solutions and Services. Static Var Compensation (SVC) for ARBED SCHIFFLINGEN. [EB/OL]. http://www.SIEMENS.com/(SIMATIC S5)
    60. SIEMENS Industrial Solutions and Services. static Var Compensation (SVC) for ELBE-STAHLWERKE FERALPI GmbH. [EB/OL].http://www. SIEMENS.com/(SIMATIC S5)
    61. SIEMENS Industrial Solutions and Services. SVC systems:we have the know-how and the best references. http://www. SIEMENS.com.
    62. SIEMENS, Guangzhou Zhujiang Steel Meitshop No.2 Expasion Project-SVC System Design, 2001.11.
    63. Sommer R,Mertens A,Griggs M. et al. New Medium Voltage Drive System Using three level neural point clamped inverter with high voltage IGBT, Proceedings of IEEE IAS Annual Meeting,1999,Phoenix,Arizona(USA),1999:1513-1519.
    64. Steimer P K, Steinke J K, Gruning H E. A Reliable、Interface-friendly Medium Voltage Drive Based on the Robust IGCT and DTC Technologies, Proceeding of IEEE IAS Annual Meeting,1999,Phoenix,Arizona(USA),1999:1505-1512.
    65. Stendius L. Eriksson K. IIVDC Light -An excellent tool for city center infeed[C].PowerGen Conference. Singapore.1999.9.
    66. T.Hiyama. W. Hubbi. T.H. Ortmeyer. Fuzzy logic control scheme with variable gain for static var compensator to enhance power system stability. IEEE Transactions on Power Systems. Vol.14 No.Ⅰ,1999. Page:186-191
    67. T.S. Sidhu. D.S. Ghotra, M.S. Scahdev. An adaptive distance relay and its performance comparison with a fixed data window distance relay. IEEE Transaction on Power Delivery[J].2002.17(3):691-697
    68. Thiringer T. Integration of large sea-based wind parks-how much power electronic devices are needed in order to avoid power quality problems on the grid. IEEE Trans. On Power Delivery.2000.1277-1279.
    69. Tomas Jonsson, Per Holmberg, Thomas Tulkiewicz. Evaluation of Classical, CCC and TCSC Converter Schemes for Long Cable Projects. Epe99. Lausanne Swizerland, September 1999.
    70. TOSHIBA Power Division. SVC:Flexible Control System [EB/OL]. http://www.atals.com/tic
    71. Urban Axelsson, Anders Holm. Christer Liljegren, Kjell Eriksson, Lars Weimers. Gotland HVDC Light Transmission - World's First Commercial Small Scale DC Transmission. CIRED Conference, May 1999, Nice, France.
    72. Wolfgang E.. Niedernostheide F.-J.. Reznik D.. Schulze H.-J.Advances in power electronic devices. Electric Machines and Drives. International Conference IEMD'99.1999:4-8.
    73. Woodford. D.A. Solving the ferroresonance problem when compensating a DC converter station with a series capacitor. Power Systems. IEEE Transactions on.1996.11(3):1325-1331.
    74. Xiao Wang. Boon-Tech Ooi. High voltage direct current transmission system based on voltage source converters [C]. PESC'90 Record volume Ⅰ:325-332.
    75. Xu Zheng. Feng Zhouyan. "A novel unified approach for analysis of small-signal stability of power systems". Proceedings of IEEE/PES Winter Meeting.2,2000:963-967.
    76. Y.H.Song and A.T.Johns. Eds.. Flexible AC Transmission Systems (FACTS). IEE Press, London,1999.
    77. Y.P. Wang, D.R. Hur, H. H. Chung. A genetic algorithms approach to design an optimal PI controller for static var compensator. Power System Technology International Conference,2000, Vol.3, Page:1557-1562
    78.IEC 871-1额定电压660V以上交流电力系统用并联电容器[S].
    79.GB12325-1990 电能质量 供电电压允许偏差[S]
    80.GB 12326-2000 电能质量 电压允许波动和闪变[S]
    81.GB/T14549-1993 电能质量公用电网谐波[S]
    82.GB/T15543-1995 电能质量 三相电压允许不平衡度[S]
    83.GB/T15945—1995 电能质量 电力系统频率允许偏差[S]
    84. R.Mohan Mathur(加拿大),Rajiv K.Varma(印度),徐政(译).2005.基于晶闸管的柔性交流输电控制装置[M],机械工业出版社,(4):120-122
    85. PSASP电力系统分析综合程序(6.1版)小干扰稳定分析用户手册.中国电力科学研究院.
    86. R.Mohan Mathur,Rajiv K Varma.2005.丛于晶闸管的柔性交流输电控制装置[M]北京机械工业出版社(,4)
    87.鞍山荣信电力电了公司.2002.首钢110kV变电站工程LF炉静止型动态无功补偿(SVC)装置技术标书,(3).
    88.程汉湘.2009.柔性交流输电系统[M].机械工业出版社,(1)
    89.陈建业,沈英魁.2000.大功率变流器冷却系统的研制和应用[J].电力系统自动化.(24).
    90.陈桂明,张明照,戚红雨.2000.应用MATLAB语言处理数字信号与数字图像[M].北京:科学出版社,(1).
    91.陈建业,赵广.2001.电力电子技术在配电网中的应用[J].国际电力,(1)
    92.丁书文等.1999.半波傅氏算法的改进——一种新的微机保护交流采样快速[J].电力系统自动化.23(5):18-20.
    93.尔桂花,窦曰轩.2002.运动控制理论[M],北京:清华大学出版社,(10).
    94.胡铭,陈珩.1999.用户电力技术在配电系统的应用[J].电力自动化设备.19(6):24-26
    95.黄恺,孙荃生.2003.继电保护傅氏中滤除直流分量的一种简使算法[J],电力系统自动化,27(4):50-52.
    96.栗时平,刘桂英.2006.静止无功功率补偿技术[M]北京 中国电力出版社,(4)
    97.刘振平.2004.静止无功补偿器在电网中应用技术的研究 鞍山 SVC国产化示范工程技术报告,(10):9-11
    98.刘晓冬.1998.可控串联补偿系统动态模型及串补系统过电压的研究:[博士学位论文].上海交通大学.
    99.李兴源.1998.高压直流输电系统的运行和控制.科学出版社.
    100.罗士萍.2001.微机保护实现原理及装置[M].中国电力出版社.(8).
    101.刘维民,周登洪,王建红.1999.国产—45Mvar--+50Mvar静止型动态无功补偿装置及其应用[J],电力电容器,(1):16-23.
    102.刘艳村,鲁铁成.2003.交流电弧炉补偿用SVC的容量计算[J],电网技术27 supplement (12):240-242.
    103.林渭勋.2002.现代电力电了电路[M].浙江大学出版社.
    104.吕润徐.1998.电力系统高次谐波[M],.北京:中国电力出版社,(5).
    105.梁旭.1998.基于大功率GTO的静止无功发生器反故障系统研究.清华大学博士学位论文.
    106.林海雪.2001.新国家标准电能质量电压波动和闪变介绍[J],供用电,18(6):4-7.
    107.马晓军.1998.系统不对称对电压源逆变器的影响及其控制研究.清华大学博士学位论文.
    108.何大愚.1999.柔性交流输电技术和用户电力技术的新发展[J]电力系统自动化,23(6)
    109.何仰赞,温增银.2002.电力系统分析(上、下册)[M],武汉:华中科技大学出版社
    110.何大愚.1999.柔性交流输电技术和用户电力技术的新进展.电力系统自动化,23(6):8-13.
    111.何大愚.1999.电力电子技术的进步与柔性交流输电技术的换代发展.电网技术,23(10):1-4.
    112.逯志宏,张军,马文静.2002.SVC静止型动态无功补偿在电网中的应用[J],冶金自动化,(4):70-71.
    113.孙树勤.1998.电压波动与闪变[M],北京:中国电力出版社.
    114.孙树勤.1998.无功补偿的矢量控制[M],北京:中国电力出版社,(5).
    115.苏文辉,李刚.2002.一种能够滤云衰减直流分量的改进全波傅氏算法[J],电力系统自动化,26(23):42-44.
    116.索南加乐,宋国兵,许庆强.2003.任意长度数据窗幅频特性一致的正交相量滤波器的设计,中国电机工程学报[J],23(6):58-63.
    117.王海潜.1999.超高功率电弧炉冲击负荷引起电网电压波动值和SVC补偿容量计算方法的分析[J],江苏电机工程,18(1):18-23.
    118.王毅非.2000.最小二乘算法的研究与改进[J],继电器,28(3):5-8.
    119.王群,姚为正,王兆安.1999.低通滤波器对谐波检测电路的影响,西安交通大学学报[J],33(4):5-8.
    120.王兆安,杨君.刘进军.1998.谐波抑制和无功功率补偿,机械工业出版社.
    121.王锡凡,方万良,杜正春.2003.现代电力系统分析 北京 科学出版社(1)
    122.辜承林,陈乔夫,熊永前.2002.电机学[M].武汉:华中科技大学出版社.
    123.袁宇波,陆平平,刘中平.2004.基于相量法的短数据窗怏速滤波算法[J].电力系统自动化.28(3):58-63.
    124.姚天任.江大辉.2000.数字信号处理[M].武汉:华中科技大学出版社.
    125.陶永华,尹怡欣,葛芦生.2000.新型PID控制及其应用[M],机械工业出版社,(4).
    126.薛定宇.2000.反馈控制系统设计与分析.—MATI.AB语言应用[M],清华大学出版社,(4).
    127.徐政.2000.复转矩系数法的适用性分析及其时域仿真实现,中国电机工程学报,20(6):1-4.
    128.沈东.1999.基于标幺值模型的静止同步补偿器性能分析与主电路参数评估.清华大学博士学位论文.
    129.涂春鸣,罗安.2004.新型静止无功发生器ASVG及其不对称专家PID控制[J]中南工业大学学报,(31)
    ]30.全国电压电流等级和频率标准化技术委员会.2001.电压电流频率和电能质量国家标准应用手册[M].北京:中国电力出版社,(5)
    131.韩祯祥,吴国炎.2001.电力系统分析.浙江大学出版社.
    132.王兆安,杨君,刘进军.1998.谐波抑制和无功功率补偿.机械工业出版社.
    133.王立乔.2002.错时采样空间矢量调制技术研究.浙江大学博士学位论文.
    134.王长永.2000.组合变流器相移SPWM技术及其在有源电力滤波器中的应用研究浙江大学博士学位论文.
    135.张杜斌.徐政.2000.直流输电技术的新发展.中国电力,33(3):32-35.
    136.文俊等.2003.轻型直流输电——一种新一代的HVDC技术.电网技术,27(1):47-51.
    137.翁利民,杜德军.2001.交-交变频传动的SVC系统的研制与效果评价[J],湖北电力,25(3):1-3.
    138.翁利民.2003.超高功率电弧炉的动态补偿与运行分析[J].工业加热,(5):38-41.
    ]39.徐政,罗惠群,祝瑞金.1999.电力系统次同步振荡问题的分析方法概述,电网技术,23(6):36-39.
    140.徐政.2000.复转矩系数法的适用性分析及其时域仿真实现,中国电机工程学,20(6):1-4.
    141.沈东.基于标幺值模型的静止同步补偿器性能分析与主电路参数评估:[博士学位论文].清华大学电机系.
    142.张品.1999.可控串补(TCSC)抑制次同步谐振(SSR)的仿真分析研究:[硕士学位论文].电力科学研
    究院.
    143.张红等2009.STATCOMSVC在电力系统运行中的比较分析[J].吉林电力,6(3):24-26
    144.郑建勇,巫还刚.2000.短数据窗傅氏算法在微机保护装置中的应用[J],电力系统自动化,24(18):49-52.
    145.邹伯敏.1999.自动控制理论[M],机械工业出版社,(10).
    146.中国电工技术学会.2001.电工高新技术丛书(第5分册)[M],北京:机械工业出版社,(1).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.