可控串联补偿装置的控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可控串补(Thyristor Controlled Series Compensation,简称TCSC)是灵活交流输电(Flexible AC Transmission System,简称FACTS)技术的一种,它通过改变晶闸管的触发角来实现对TCSC阻抗的大范围平滑调节,这对于电力系统具有重要意义。利用TCSC可以提高电力系统某一输电走廊的输送能力和改善输电走廊上的电压分布;在网状电网中,TCSC可根据系统运行条件控制线路潮流,从而降低网损,改善潮流分布;如果安装位置合适,TCSC能够减少机组间电气距离,增加同步力矩,提高稳定水平;利用TCSC可以改善互联电网或地区电网之间对某些振荡模式存在的弱阻尼或负阻尼现象,从而提高电力系统的动态稳定性;通过一定的触发规律,TCSC能够控制串联电容器和气轮发电机轴系之间的能量交换,抑制系统中的次同步分量,从而避免发生次同步谐振的风险。
     本文对TCSC的研究及工程现状进行了阐述和分析,并决定把TCSC国产化设计中发现的两个疑难技术问题作为本文研究的重点:一个是考虑晶闸管导通特性和电抗器本身具有的电阻影响时的触发角和基波阻抗的关系曲线,一个是模式切换控制策略。
     本文建立了较为接近实际的TCSC离散数字仿真模型,对TCSC的分层式控制系统进行了深入地分析和探讨,得出了一系列较为实用的控制方法。本文的研究工作主要包括以下四个方面:
     第一 TCSC的底层触发控制
     底层触发控制是实现TCSC功能的前提和基础,底层触发控制的关键是建立基波阻抗和触发角的关系曲线。为了解释低压模拟实验和动模实验中TCSC阻抗与理论分析阻抗存在的较明显差距,本文对TCSC电抗器支路晶闸管导通特性以及电抗器本身具有的电阻对底层控制的影响进行了分析和探讨,提出在小容量模拟实验和动模实验时,用恒电阻等效处理该影响,而在实际工程中根据其负载轻重、电抗器感抗大小,采用忽略不计、用恒电阻等效、用恒电阻加恒电压(和晶闸管电流同向)等效三种方法来等效处理该影响。
     本文面向TCSC开发阶段的小容量模拟实验和动模实验,把晶闸管导通特性、电抗器本身具有的电阻以及其它接触电阻等效为恒电阻,通过严密的数学推导,
TCSC (Thyristor Controlled Series Compensation) is one type of FACTS (Flexible AC Transmission System) device. It can realize the large-scale smooth regulation of the TCSC impedance through changing the trigger angle of thyristor, which is of significance for electric power system. TCSC can be used to improve the transmission capacity and voltage distribution of some transmission aisle. In the netlike power network, TCSC can be used to control power flow based on the system operation condition, therefore the network loss can be reduced and the distribution of power flow can be optimized. If located on appropriate transmission lines, TCSC can make the transmission line appear electrically shorter which results in increasing the synchronizing torques between the generators and thus improves the transient stability margin of the power system. TCSC can also be used to ameliorate the weak damp or negative damp status between inter-network or local network, accordingly improve the dynamic stability. Through a certain trigger rule, TCSC has the capability to control the energy conversion between the series capacitor and the turbine-generator shaft, restrain the subsynchronous heft, and thus, avoid the risk of potential subsynchronous resonance problems.After introducing and analyzing the development and research status of TCSC, this dissertation focuses on two technological problems which are encountered during the domestic design of TCSC: one is relation curve of trigger angle and fundamental frequency impedance considering thyristor conduction characteristic and resistance of the reactor; the other is mode switch control policy, which will be the emphases to be studied in this dissertation.After a discrete digital simulation model is constituted in this paper, an in-depth analysis of hierarchical control system is made and a series practical control methods are derived. The main research tasks of this dissertation include the following four aspects: 1. Bottom Layer Control of TCSCThe bottom control is the basis and prerequisites for TCSC applications. The key
    problem of the bottom control is to establish the relation curve between fundamental-frequency impedance and trigger angle. To explain distinct difference between the theoretic impedance and the practical impedance in low voltage simulation and dynamic simulation, this dissertation thoroughly discusses the influence of thyristor conduction characteristic and the resistance of the reactor in reactor branch of TCSC on the bottom control, and proposes the following methods to deal with this influence: using the constant resistance in the little capacity mode simulation and the dynamic simulation, and using ignoring, constant resistance and constant resistance plus constant voltage (same direction with the thyristor current) in the engineering reality according to the load and the inductance of reactor.Adapting to the little capacity and dynamic simulation experiment in the development stage of TCSC, this dissertation regards the thyristor conduction characteristic, resistance of the reactor and other contacting resistances as constant resistance. Through rigorous mathematic deducing, the relation curve of fundamental-frequency impedance and trigger angle is obtained. It is the first time to put forward the dual solution theory of fundamental-frequency impedance in this study, which has significant meaning to the engineering reality. The conclusion includes:1) Through deducing of the fundamental-frequency impedance, it is found out that there is one inductive solution and a capacitive solution corresponding to the same trigger angle in most of the steady operation area of TCSC, so there are two branches in fundamental-frequency impedance curve of TCSC. When the equivalent impedance of reactor branch is large enough, the impedance and slop of these two branch curves will not be too large. If the voltage redundancy of TCSC is good enough, both solutions can stay in steady state. Which steady solution will be chosen is determined based on the phase relationship between capacitor voltage and line current before trigger regulation.2) Using simulation approach, this dissertation study has approved for the first time that the region stepping is possible to happen in TCSC under large disturbance when the quality factor is lower, which also has important meaning to design and experiment of TCSC. This dissertation also points out that TCSC can just move
    along one branch of fundamental-frequency impedance curve and will not step to the other one if only the trigger angle is changed. Therefore, the mode switch cannot be simply realized through adjusting trigger angle, but must be realized through a certain control strategy.3) This fundamental-frequency impedance curve has been validated precisely by digital simulation results. The quality factor of the reactor branch in TCSC dynamic simulation system is deduced to be 1.9 around by fitting the result data of dynamic simulation experiment with the impedance curve put forward in this paper. Then the digital simulation of open-loop impedance control is accomplished, using the impedance curve with this quality factor. The results comparison between the digital simulation and the dynamic simulation experiment proves the advantage of the impedance curve introduced by this dissertation. II. Mode Switch Control of TCSCMode switch of TCSC belongs to the bottom control, which is the key issue with TCSC whether it can work in the stabilization control of power system or not. At the same time, it can protect MOV (Metal Oxide Varistor) through bypassing MOV when it is overloaded. This dissertation discusses the mode switch process deeply and obtains a whole practical set of mode switch method. The research outcome of this aspect includes:1) After simulation waveforms are compared when TCSC is switched to Block (thyristor blocked) mode from different impedance values, this dissertation presents a switching method in which TCSC is switched from high impedance value to a low value first, and then switched to Block mode, so the direct current float is avoided, which is brought by the discharging of the capacitor.2) Moreover, after comparing the influence of the quality factor of reactor branch on switch from capacitive vernier mode or Block mode to Bypass (thyristor full conduction) mode, this paper discovers the limitation of traditional hardware bypass method and proposes a more practical switch scheme from other mode to Bypass mode. By this policy TCSC can be switched from one mode to the other mode quickly, with smooth transition, so it can fulfill the reality requirement. In
    this method, the trigger pulse is demanded to be given out at the zero crossing instant of line current, so the common method to judge zero crossing is not applicable before. This paper puts forward a method to predict the zero crossing instant of line current, which can meet the demand very well.3) In this dissertation, an improved main connection structure of TCSC is also brought forward in which a small resistance is in series with the reactor in the reactor branch and a pair of thyristor is in parallel with it. At usual time, all of the pairs trigger and break synchronously which will have no influence on TCSC; while Bypass mode is required, this pair of thyristor is opened, then the switching can be realized using hardware bypass method. This method is simple in logic and takes full consideration of voltage resistance requirement of the thyristor, so it has certain practicability.4) An improved compel-current-synchronization method is also introduced in this dissertation to realize switch from the capacitive vernier mode or Block mode to the inductive vernier mode.HI. Impedance Control of TCSCThe impedance control belongs to middle-layer control. It can accept target impedance (the impedance which is demanded for TCSC to take on) from superstratum control and correct ordering impedance according to impedance regulation error or directly correct trigger delay time. So the close loop control is realized and TCSC can operate better under the ordering impedance. It is an intermediate link bridging the preceding course and the following course in TCSC hierarchical control. And it is the key problem in the realization of the impedance control.This dissertation proposes a kind of PID method on impedance control using impedance error to correct the trigger time instead of the order impedance to avoid checking the impedance form frequently. The influences on the results of impedance control by the synchronization manner through line current and capacitor voltage are compared by digital simulation, and the advantages of synchronization manner through line current is proved.This dissertation also discusses the reason why the robustness of the traditional PID
引文
[1] 中国电力科学研究院.超高压输电系统中灵活交流输电(可控串补)技术技术总结报告第一篇———可控串补的电力系统分析.1999年12月.
    [2] 赵贺.电力电子学在电力系统中的应用———灵活交流输电系统.中国电力出版社.2001年1月.
    [3] 周孝信,赵贺,武守远.可控串联补偿技术.电力设备,第4卷,第2期,2003年4月.
    [4] Hingorani N G et al. Network access and the future of power transmission. EPRI Journal, April-May, 1986.
    [5] A. H. Montoya, D. R. Torgerson, B. A. Vossler, et al. 230 kv Advanced Series Compensation Kayenta Substation (Arizona), Project Overview, EPRI Workshop (FACTS), Cincinnati, Ohio, November 1990.
    [6] 郑键超.灵活的交流输电系统.电网技术,第15卷,第3期,1991年.
    [7] 赵贺.电力电子技术对电力系统的影响.电力系统分析与控制学术年会,1992.
    [8] D. J. McDonald, J. Urbanek, B. L. Damsky. Modeling and Testing of A Thyristor for Thyristor Controlled Series Compensation (TCSC). IEEE Transactions on Power Delivery, Vol. 9, No. 1, January 1994.
    [9] John J. Paserba, Nicholas W. Miller, Einar V. Larsen, Richard J. Piwko. A Thyritor Controlled Series Compensation Model for Power System Stability Analysis. IEEE Transactions on Power Delivery, Vol. 10, No. 3, July 1995.
    [10] W. Zhu, R. Spee, R. R. Mohler, G. C. Alexander, et al. An EMPT Study of SSR Mitigation Using the Thyristor Controlled Series Capacitor. IEEE Transactions on Power Delivery, Vol. 10, No. 3, July 1995.
    [11] Paolo Mattavelli, George C. Verghese, Aleksandar M. Stankovic. Phasor Dynamic of Thyristor-Controlled Series Capacitor Systems. IEEE Transactions on Power Systems, Vol. 12, No. 3, August 1997.
    [12] R. Billinton, M. Fotuhi-Firuzabad, S. O. Faried, Power System Reliability Enhancement Using A Thyristor Controlled Series Capacitor. IEEE Transactions on Power Systems, Vol. 14, No.1, February 1999.
    [13] C. R, Fuerte-Esquivel, E. Acha, H. Ambriz-Peres. A Thyristor Controlled Series Compensation Model for The Power Flow Solution of Practical Power Networks. IEEE Transactions on Power Systems, Vol. 15, No.1, February 2000.
    [14] T. Venegas and C. R. Fuerte-Esquivel. Steady-State Modeling of an Advanced Series Compensator for Power Flow Analysis of Electric Networks in Phase Co-Ordinates. IEEE Transactions on Power Delivery, Vol. 16, No. 4, October 2001.
    [15] 张东霞,童陆园,尹忠东,王仲鸿.描述可控串补装置暂态特性的数学模型.中国电机工程学报,第19卷,第5期,1999年5月.
    [16] 林集明,郑健超,吴承琦,刘长,陈葛松.TCSC的基本控制与过压保护数字仿真.电力系统自动化,第24卷,第8期,2000年4月.
    [17] 田杰,尹建华.可控串联补偿(TCSC)的分析研究(上)———计及TCSC详细模型的电力系统稳态、暂态仿真研究.电力系统自动化,第21卷,第10期,1997年10月.
    [18] 曹路,李海峰,陈珩,曹然.可控串联补偿装置器件级数字仿真研究.电网技术,第24卷,第5期,2000年5月
    [19] 林集明等.伊冯可控串联补偿阻抗控制暂态特性的数字仿真.电网技术,第21卷,第7期,1997年7月.
    [20] 李晓露,段献忠等.用基频动态等值模型研究TCSC暂态.清华大学学报(自然科学版),第39卷,第3期,1999年.
    [21] 张东霞等.暂态稳定计算中可控串补装置的动态特性仿真.电网技术,21卷,第3期,1997年3月
    [22] 唐勇等.超高压输电系统可控串补(TCSC)动态模拟.电力系统自动化,第23卷,第6期,1999年3月.
    [23] 武守远,周孝信,李亚健,曾昭华.可控串补控制器的物理模型设计与基本特性试验.电网技术,第22卷,第6期,1998年6月.
    [24] 杨勇,解大,刘晓冬,陈陈.可控串联补偿装置动态模拟实验研究(上)———稳态阻抗特性.电力系统自动化,第23卷,第4期,1999年2月.
    [25] 解大,刘晓冬,杨勇,陈陈.可控串联补偿装置动态模拟实验研究(下)———潮流控制和电磁暂态过程.电力系统自动化,第23卷,第5期,1999年3月.
    [26] 郑文斌,胡国文,王仲鸿.伊敏—冯屯输电线TCSC动态模拟实验装置的特性研究.清华大学学报(自然科学版),第37卷,第7期,1997年
    [27] 武守远,蒋卫平,李亚健等.可控串补用于暂态稳定控制的模拟试验研究.电网技术,第24卷,第3期,2000年3月.
    [28] 武守远,李亚健,周孝信等.用TNA模拟试验研究可控串补控制器.中国电机工程学报,第20卷,第5期,2000年5月.
    [29] 汪冰,解大,董惠康,陈陈.TCSC系统暂态稳定控制的动态模拟实验研究.电力系统自动化,第25卷,第19期,2001年9月.
    [30] 李亚健,周孝信,武守远,蒋卫平.以可控串补抑制次同步谐振的物理模拟试验研究.中国电机工程学报,第21卷,第6期,2001年6月.
    [31] 胡国文,王仲鸿.基于综合同步信号控制方式的TCSC仿真与动模实验.电力系统自动化,第25卷,第20期,2001年10月.
    [32] 胡国文,王仲鸿,韩英铎.可控串补基频等效阻抗与TCR基频电抗关系的仿真和动模实验研究.电工技术学报,第17卷,第4期2002年8月.
    [33] Hak-Guhn Han, Jong-Keun Park, Byung-Ha Lee. Analysis of Thyristor Controlled Series Compensation Dynamics Using the State Variable Approach of a Periodics Model.IEEE Transactions on Power Delivery, Vol.12, No. 4, October 1997.
    [34] B. H. Li, Q. H. Wu, P. Y. Wang, and X. X. Zhou. Influence of the Transient Process of TCSC and MOV on Power System Stability. IEEE Transactions on Power Systems, Vol. 15,No. 2, May 2000.
    [35] 陈淮金.可控串联补偿在提高电力系统稳定性中的作用研究.电力系统自动化,第20卷,第10期,1996年10月.
    [36] 田杰,尹建华.可控串联补偿(TCSC)的分析研究(下)TCSC的触发控制方式对电力系统暂态特性的影响.电力系统自动化,第21卷,第12期,1997年12月.
    [37] 尹忠东,童陆园,郭春林,王仲鸿.基于暂态稳定控制的TCSC装置特性研究.电力系统自动化,第23卷,第6期,1999年3月.
    [38] 耿俊成,葛俊,童陆园,韩光.基于线电流同步方式的TCSC暂态特性分析.电力系统自动化,第23卷,第6期,2001年8月.
    [39] 葛俊,童陆园,耿俊成.基于电容电压同步下TCSC暂态特性的数学描述.中国电机工程学报,第21卷第3期,2001年3月.
    [40] 田杰,尹建华,韩祯祥.TCSC装置的动态特性及其控制策略研究.电力系统自动化,第20卷,第6期,1996年6月.
    [41] 胡国文等.同步信号及电路参数对可控串补(TCSC)动态特性的影响.电工技术学报,第15卷,第3期,2000年6月.
    [42] 余江,段献忠,王为国等.TCSC的动态基频阻抗特性分析.电力系统自动化,第23卷,第14期,1999年7月.
    [43] 徐政.可控串补的可控范围及串容与电抗关系的研究.电工技术学报,第13卷,第3期,1998年6月.
    [44] 刘晓冬,解大,陈陈.可控串联补偿(TCSC)系统感性微调区的Pitchfork分叉现象中国电机工程学报,第19卷,第12期,1999年12月.
    [45] 徐政.可控串联补偿装置的稳态特性分析.电力电子技术,1998年第2期,1998年5月.
    [46] 余江等.可控串补(TCSC)的谐波特性分析.电力系统自动化,第23卷,第16期,1999年8月.
    [47] 葛俊,童陆园,耿俊成,韩光.TCSC暂态过程中晶闸管导通角特性的研究.电网技术,第25卷,第7期,2001年7月.
    [48] 葛俊,童陆园,耿俊成等.可控串联电容补偿器的负阻尼特性研究.电力系统自动化,第25卷,第23期,2001年12月.
    [49] Claudio A. Canizares, Zeno T. Faru. Analysis of SVC and TCSC Controllers in Voltage Collapse. IEEE Transactions on Power Systems, Vol. 14, No.1, February 1999.
    [50] Luiz A. S. Pilotto, Andre Bianco, Willis F. Long, and Abdel-Aty Edris. Impact of TCSC Control Methodologies on Subsynchronous Oscillations. IEEE Transactions on Power Delivery, Vol. 18, No.1, January 2003.
    [51] Alireza Daneshpooy, A. M. Gole. Frequency Response of the Thyristor Controlled Series Capacitor. IEEE Transactions on Power Delivery, Vol. 16, No.1, January 2001.
    [52] Hisham A. Othman, Lennart Angquist. Analytical Modeling of Thyristor Controlled Series Capacitor for SSR Studies. IEEE Transactions on Power Systems, Vol. 11, No. 1,February 1996.
    [53] R. J. Piwko, C. A. Wegner, S. J. Kinney, J. D. Eden. Subsynchronous Resonance Performance Tests of The SLATT Thyristor Controlled Series Capacitor. IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996.
    [54] Rajesh Rajaraman, Ian Dobson, Robert H. Lasseter. Yihchih Shern. Computing The Damping of Subsynchronous Oscilations due to a Thyristor Controlled Series Capacitor. IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996.
    [55] Brain K. Perkins, M. R. Iravani. Dynamic Modeling of a TCSC with Application to SSR Analysis. IEEE Transactions on Power Systems, Vol. 12, No. 4, November 1997.
    [56] Paolo Mattavelli, Aleksandar M. Stankovic, George C. Verghese. SSR Analysis with Dynamic Phasor Model of Thyristor-Controlled Series Capacitor. IEEE Transactions on Power Systems, Vol. 14, No. 1, February 1999.
    [57] D. J. Trudnowski, M. K. Donnelly. J. F. Hauer. Estimating Damping Effectiveness of BPA's Thyristor Controlled Series Capacitor by Applying Time and Frequence Domain Methods to Measure Response. IEEE Transactions on Power Systems, Vol. 11, No. 2, May1996.
    [58] Tain-Syh Luor, Yuan-Yih Hsu, Tzong-Yih Guo, et al. Application of Thyristor-Controlled Series Compensations to Enhance Oscillatory Stability and Transmission Capability of a Longitudinal Power System. IEEE Transactions on Power Systems, Vol. 14, No.1, February 1999
    [59] 包黎昕,段献忠,陈峰,何仰赞.SVC和TCSC提高电压稳定性作用的动态分析.电 力系统自动化,第25卷,第13期,2001年7月.
    [60] 刘大鹏,唐国庆,雷宪章,陈珩.选择最佳TCSC安装地点提高电力系统电压稳定性,电力系统自动化,第26卷,第5期,2002年3月.
    [61] 高俊,丁洪发.TCSC的次频阻抗特性.电力系统自动化,第25卷,第12期,2001年6月.
    [62] 吕世荣,刘晓鹏,郭强,夏道止.TCSC对抑制次同步谐振的机理分析.电力系统自动化,第23卷,第6期1999年3月.
    [63] 刘晓冬,杨煜,陈陈.基于采样—数据模型方法的可控串联补偿系统对次同步振荡抑制作用的计算分析.中国电机工程学报,第21卷,第2期,2001年2月
    [64] 葛俊,童陆园,耿俊成,陈全世,韩光.TCSC抑制次同步谐振的机理研究及其参数设计.中国电机工程学报,第22卷,第6期,2002年6月.
    [65] 韩光,童陆园,葛俊,耿俊成,TCSC抑制次同步谐振的机理分析.电力系统自动化,第26卷,第2期,2002年1月.
    [66] 吕世荣,刘晓鹏,郭强,夏道止.含TCSC的电力系统次同步谐振的复转矩系数分析法.电力系统自动化,第23卷,第12期,1999年6月.
    [67] 周孝信,李亚健,武守远,曾昭华.可控串补晶闸管阀触发控制的电容电压增量控制算法.中国电机工程学报,第21卷,第5期,2001年5月.
    [68] 曹路,陈珩.可控串联补偿抑制次同步谐振的机理.电力系统自动化,第25卷,第4期,2001年2月.
    [69] 范玲玲,李乃湖,王海风.可控串联电容补偿装置阻尼电力系统低频振荡分析.电网技术,第22卷,第1期,1998年1月.
    [70] Glauco N. Taranto, Joe H. Chow. Robust Frequency Domain Optimization Technique for Tuning Series Compensation Damping Controllers. IEEE Transactions on Power Systems, Vol. 10, No. 3, August 1995.
    [71] Ning Yang, Qinghua Liu, James D. McCalley. TCSC Contoller Design for Damping Interarea Oscillations. IEEE Transactions on Power Systems, Vol. 13, No. 4, November 1998.
    [72] J. J. Sanchez-Gasca. Coordinated Control of Two FACTS Devices for Damping Interarea Oscillations. IEEE Transactions on Power Systems, Vol. 13, No. 2, May 1998.
    [73] A. M. Stankovic, P. C. Stefanov, G. Tadmor, D. J. Sobajic. Dissipativity as a Unifying Control Design Framework for Suppression of Low Frequency Oscillations in Power Systems. IEEE Transactions on Power Systems, Vol.14, No.1, February 1999.
    [74] Kwang M. Son, Jong K. Park. On the Robust LQG Control of TCSC for Damping Power System Oscillations. IEEE Transactions on Power Systems, Vol. 15, No. 4, November 2000.
    [75] 郭强,周孝信.可控串补非线性自抗扰控制的参数优化.电网技术,第23卷,第11期,1999年11月.
    [76] 张采,周孝信.可控串补系统的稳定控制.中国电力,第31卷,第3期,1998年3月.
    [77] 张采,周孝信.可控串补自抗扰控制器.电网技术,第21卷,第5期,1997年5月.
    [78] 陈菊明,梅生伟,刘锋.多机系统TCSC多目标H∞控制器设计.电力系统自动化,第24卷,第21期,2000年11月.
    [79] 王宝华,杨成梧.可控串补电容器非线性H∞鲁棒控制器的设计.电力自动化设备,第20卷,第5期,2000年10月
    [80] 张东霞,童陆园,王仲鸿.可控串补的迭代学习控制法.清华大学学报(自然科学版),第40卷第1期2000年.
    [81] 郭春林,童陆园,朱慧瑜,王仲鸿.可控串联补偿器暂态稳定的迭代自学习控制(ILC)电力系统自动化,第24卷,第18期,2000年9月.
    [82] 谭晓波,童陆园,张乃尧,王仲鸿.可控串补多目标控制研究.清华大学学报(自然科学版),第7期,第37卷,1997年
    [83] 付蓉,鞠平,倪辉,陆小涛.可控串联电容补偿的模糊神经网络控制.电力系统自动化,第24卷,第2期,2000年1月.
    [84] 于占勋,陈德树,尹项根.可控串联补偿装置的智能变结构控制.电力系统自动化,第22卷,第6期,1998年6月.
    [85] 何丹,戴先中等.神经网络α阶逆系统TCSC非线性控制器.电力系统自动化,第23卷,第5期,1999年3月.
    [86] 王宝华,杨成梧.逆系统方法在TCSC稳定控制中的应用.电网技术,第25卷,第9期2001年9月.
    [87] 王宝华,杨成梧.微分几何法与逆系统法在TCSC稳定控制中应用.电力自动化设备,第21卷第6期,2001年6月.
    [88] 律方成,王亚玲,杨以涵,陈志业.TCSC阻尼系统低频振荡的控制策略分析.电力系统自动化,第22卷,第7期,1998年7月
    [89] 郭强,刘晓鹏,吕世荣,夏道止.10多机系统可控串联补偿电容(TCSC)非线性控制器.电力系统自动化,第22卷,第4期,1998年4月.
    [90] 郭强,刘晓鹏,吕世荣,夏道止.用于提高暂态稳定性的可控串联补偿电容器非线性控制器.电网技术,第22卷,第1期,1998年1月.
    [91] 尹建华,江道灼.可控串补的非线性控制对电力系统稳定性的影响研究.电工技术学报.第14卷,第3期,1999年6月.
    [92] 田芳,周孝信.利用留数进行可控串补控制装置参数的配置.电网技术,第23卷,第2期,1999年2月.
    [93] 陈菊明,梅生伟.卢强,刘锋.多机系统中TCSC设备与发电机励磁的分散协调控制清华大学学报(自然科学版),第41卷,第4/5期,2001年
    [94] 井元伟.李文磊,刘晓平,康爱民.TCSC的非线性逆推设计.东北大学学报(自然科学版),第24卷,第1期,2003年1月.
    [95] 汪冰,刘笙,陈陈.基于能量函数的可控串联补偿稳定控制策略,电网技术,第26卷,第2期,2002年2月.
    [96] 王智涛.梅生伟,叶俭等.基于无源控制方法的TCSC控制器及其仿真研究.电力系统自动化,第27卷,第1期,2003年1月.
    [97] 郭春林,童陆园,尹忠东,王仲鸿.暂态功率的积分用于TCSC的稳定控制.电力系统自动化,第23卷,第12期,1999年6月.
    [98] 葛俊,童陆园,耿俊成,基于电容电压同步信号的TCSC阻抗阶跃特性的研究.电力系统自动化,第25卷,第4期,2001年2月.
    [99] 曹路等.用于TCSC阻抗控制的变参数PID方法.电力系统自动化,第23卷.第24期,1999年12月.
    [100] T. F. Godart, A. F. Imece, J. C. McIver, E. A. Chebli. Feasibility of Thyristor Controlled Series Capacitor for Distribution Substation Enhancements, IEEE Transactions on Power Delivery, Vol. 10, No.1, January 1995.
    [101] K. Clark, B. Fardanesh. R. Adapa. Thyristor Controlled Series Compensation Application Study - Control Interaction Considerations. IEEE Transactions on Power Delivery, Vol. 18, No. 2, April 1995.
    [102] D. N. Kosterev, W. A. Mittelstadt, R. R. Mohler, W. J. Kolodziej. An Application Study for Sizing and Rating Controlled and Conventional Series Compensation. IEEE Transactions on Power Delivery, Vol. 11, No. 2, April 1996.
    [103] M. Fotuhi-Firuzabad, Roy Billinton, Sherif Omar Faried. Subtransmission System Reliability Enhancement Using a Thyristor Controlled Series Capacitor. IEEE Transactions on Power Delivery, Vol. 15, No.1, January 2000.
    [104] Tina Orfanogianni and Rainer Bacher. Steady-State Optimization in Power Systems With Series FACTS Devices. IEEE Transactions on Power Systems, Vol. 18, No. 1,February 2003.
    [105] Yunqiang Lu, Ali Abur. Static Security Enhancement via Optimal Utilization of Thyristor-Controlled Series Capacitors. IEEE Transactions on Power Systems, Vol. 17,No. 2, May 2002.
    [106] 丁扬.基于SIMANDYN-D的FSC和TCSC串联补偿控制技术.中国电力,第24卷,第3期,2001年3月.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.