多轴联动系统的运动规划与结构变形补偿
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多轴联动系统是运动控制的一个重要分支,其目的是实现末端执行器的高速高精轨迹运动,是现代制造装备的核心技术,其水平高低是衡量一个国家工业化水平的重要标志。因此,研究多轴联动系统具有重要的经济和社会效益。本文针对多轴联动系统高速高精轮廓加工中存在的关键问题,着重在速度控制、轨迹规划、轨迹跟踪和误差补偿等方面进行了研究。主要研究工作如下:
     针对在高速加工、快速检测等高速进给条件下,传统速度控制方法容易导致工件过切、机床抖动等问题,分析了S曲线加减速控制算法,应用5次样条曲线拟合离散衔接点得到各衔接点的曲率,提出了基于离散衔接点曲率加权累加的速度前瞻程序段数动态选择的方法。仿真结果表明动态速度前瞻避免了前瞻路径过短不能完成减速要求和前瞻段数过多占用系统资源,一定程度上解决了速度和精度的冲突问题,提高了系统的性能和加工效率。
     在轨迹规划方面,应用三次样条曲线拟合路径点得到位置运动路径,提出了基于Rodrigues参数的末端执行器平滑姿态路径规划方法,给出了插值原理性误差的计算方法,提出了基于原理性误差预估的具有姿态约束的空间曲线路径规划算法。仿真结果表明,该方法能够有效用于复杂轨迹的位姿规划。
     针对多轴联动系统动力学动态方程中出现的摩擦阻尼以及干扰等不确定情况,介绍了神经网络结构类型和算法,提出了基于多模块RBF神经网络进行模型分块逼近的自适应控制方法,以Lyapunov方法证明了系统渐进稳定,仿真验证了RBF神经网络进行模型分块逼近进行轨迹跟踪的有效性;考虑死区非线性对动力学模型的影响,提出了基于死区模糊补偿器的不确定模型神经网络自适应控制器,应用Lyapunov方法证明了系统的稳定条件,并验证了控制系统的有效性。
     针对连杆位置与负载变形非线性特性,对支持向量机的原理进行分析,提出了基于支持向量机回归的构件位置与负载变形误差建模方法,仿真实验表明基于RBF核函数的ε-支持向量回归精度高于最小二乘法建模精度,基于支持向量回归的结构误差模型能够实现误差闭环补偿。通过对2R机械手结构变形误差建模与运动补偿仿真实验,表明支持向量回归方法能够有效用于刚度变形误差补偿。
Multi-axis contour control system is an important branch of motion control. Itsmain use is to accomplish high-speed and high-precision contour control. Multi-axissystem, as the key technology of modern manufacturing equipments, to a great extent,indicates the industrialization level of a country. Therefore, it provides great economicand social benefits to do research on multi-axis system. To solve key issues duringhigh-speed and high-precision contour control for multi-axis systems, this dissertationmainly focuses on speed control, trajectory planning, trajectory tracking, and errorcompensation. The main works are as follows:
     During high-speed machining and rapid detecting under fast feed condition,over-cutting of work piece and tool chattering often occur when traditional speedcontrol strategy is employed. To solve this problem, the S-shape acceleration anddeceleration control algorithm is analyzed, and the discrete path point curvature isobtained by fifth-order spline curve fitting for discrete path point, and then a dynamicselecting method of blocks for velocity look-ahead control based on accumulation ofweighted curvatures of discrete points is proposed. Simulation results show that theproblems that required deceleration could not be finished with shorter look-ahead pathand more system sources are occupied with more look-ahead paths can be avoidedwhen the proposed dynamic velocity look-ahead control method is employed.Moreover, the problem between speed and accuracy, to some extent, is solved. And,system performance and machining efficiency are also improved.
     Cubic spline curve is used to fit path points and then position motion path isobtained. The Smooth posture path planning for end-effector is executed by use ofRodrigues parameters method. A path planning algorithm for complex space curvewith pose constraints is proposed based on prediction of principle error. Theeffectiveness of the proposed method for pose planning of complex trajectory isverified through simulations.
     To solve the uncertainties induced by friction and disturbances present in dynamicequations of digital equipments, the structure types and algorithm of neural network(NN) are introduced. An adaptive control algorithm is proposed based onsegmentation approximating for models by use of RBF NN, and asymptotic stabilityof the system is proved by Lyapunov method. Effectiveness of the proposed trajectorytracking method is verified by taking a2-DOF planar articulated robot as an example. To consider the influence of the dead zone nonlinear dynamic model, uncertaintymodel adaptive neural network controller is proposed based on the dead zone fuzzycompensator. The stability conditions of the system are proved by Lyapunov method,and the effectiveness of the control system is verified.
     As the nonlinear characteristics of link position and loading deformation, principleof support vector machine (SVM) is analyzed and a novel method for modelingdeformations of loaded components based on SVM is presented. Both ε-supportvector regression method and least square method are employed to model errorsintroduced by deformations. The simulation results show that the support vectorregression method is better than least square method, and structural error model basedon support vector regression is able to realize the error of the closed-loopcompensation. The simulation of2R manipulator structure deformation errormodeling and motion compensation show the SVR method could be used to modeldeformation errors effectively.
引文
[1]丛爽,李泽湘,实用运动控制技术,北京:电子工业出版社,2006,21~25
    [2]郑魁敬,高建设,运动控制技术及工程实践,北京:中国电力出版社,2009,1~10
    [3]张曙,U Heisel,并联运动机床,北京:机械工业出版社,2003,128~158
    [4]吴宏,蒋仕龙,龚小云,等,运动控制器的现状与发展,制造技术与机床,2004(1):24~27
    [5]廖伟志,古天龙,李文敬,等,模糊柔性制造系统的混杂Petri网建模与调度,计算机集成制造系统,2008,14(11):2134~2141
    [6]王英晨,惠晶,基于伺服传动的新型冲齿机柔性控制系统,电气传动,2007,37(8):56~59
    [7]万鸿俊,魏天水,刘莉,直线电机伺服系统的设计与应用研究,机械设计与制造,2006(12):9~11
    [8]周延祐,宋业钧,挖掘潜在比较优势、努力创造世界品牌——对精密机械类功能部件企业的建议,制造技术与机床,2003,(9):93~94
    [9]孙广山,超精密机械加工技术及其发展动向,中国机械工程,1996,7(1):58
    [10]赵一心,论检测传感技术在机电一体化中现状、制造业自动化,2010,32(11):186~188
    [11]樊红朝,钱晋武,章亚男,等,柔性曲面形状检测传感网络设计,光学精密工程,2008,16(6):1087~1092
    [12]金纪东,彭静,范新南,用FPGA控制的磁致伸缩效应检测传感器,仪表技术与传感器,2007(10):4,9
    [13]蒋启龙,姚卫丰,连级三,差动变压器式电磁轴承位置检测传感器研究,传感器技术,2005,24(5):8~9,12
    [14] Tsuruta K, Sato K, Ushimi N, et al, High-speed and high-precision positioncontrol using a sliding mode compensator, Electrical Engineering in Japan,2011,174(2):65~71
    [15] Jiang Alan, Yao Changjian, Application of adaptive control system in high speedrailway bridge construction control, Advanced Materials Research,2011,163-167:2751~2755
    [16] Ece Dogan G khan, Baaran Murat, Condition monitoring of speed controlledinduction motors using wavelet packets and discriminant analysis, ExpertSystems withApplications,2011,38(7):8079~8086
    [17] Senthilkumar T, Balasubramaniam P, Delay-dependent robust H∞control foruncertain stochastic T-S fuzzy systems with time-varying state and input delays,International Journal of Systems Science,2011,42(5):877~887
    [18] Biglarbegian M, Melek W W, Mendel J M, Design of Novel Interval Type-2Fuzzy Controllers for Modular and Reconfigurable Robots, Theory andExperiments, IEEE Transactions on Industrial Electronics,2011,58(4):1371~1384
    [19] Wu M X, Zhang J W, Lu T L, et al, Research on optimal control for drydual-clutch engagement during launch, Journal of Automobile Engineering,2010,224(D6):749~763
    [20] SeungHoon Lee, ChengJie Li, DongHyung Kim, et al, The direct teaching andplayback method for robotic deburring system using the adaptive force-control,Proceedings of the2009IEEE International Symposium on Assembly andManufacturing (ISAM2009),2009.235~41
    [21] Dong Yu, Li Deng, Deep Learning and Its Applications to Signal andInformation Processing, IEEE Signal Processing Magazine,2011,28(1):145~149,154
    [22] Munoz L M, Casals A, Frigola M, et al, Motor-Model-Based Dynamic Scalingin Human-Computer Interfaces, IEEE Transactions on Systems, Man andCybernetics, Part B (Cybernetics),2011,41(2):435~447
    [23] Shi Junxiang, Xue Xingjian, Optimization design of electrodes foranode-supported solid oxide fuel cells via genetic algorithm, Journal of theElectrochemical Society,2011,158(2):143~151
    [24] Campos Julio Garrido, Miguez Luis Rodriguez, Standard process monitoringand traceability programming in collaborative CAD/CAM/CNC manufacturingscenarios, Computers in Industry,2011,62(3):311~322
    [25] Tohidi Hamid, Review the benefits of using value engineering in informationtechnology project management, Procedia Computer Science,2011,3:917~924
    [26]吴琳,谭营,唐建,运动控制技术发展与展望,机床与液压,2007(7):231~233,216
    [27]郑贤瀛,应用AT89C52的步进电动机多轴运动控制,现代制造工程,2009(2):128~130,100
    [28]富历新,董春,朱勇,用于步进电机控制的独立式四轴运动控制器,微特电机,2002,30(3):36~38
    [29]黄国华,俞涛,王文斌,基于MPC5200的运动控制器设计,微计算机信息,2008,24(28):43~44,54
    [30]王立柱,罗焕佐,基于MCX314as的运动控制器设计,微计算机信息,2008,24(28):29~30,181
    [31]陈勇,陈泉,吕恩建,基于SOPC技术的嵌入式数控运动控制器的研究,微计算机信息,2008,24(25):58~59,33
    [32]邓欣伟,彭武良,基于DSP芯片的多轴运动控制系统的开发,微计算机信息,2008,24(26):105~107
    [33]李伦波,马广富,赵建亚,基于DSP和FPGA的运动控制卡的设计与实现,控制工程,2007,14(3):260~262
    [34]王保胜,马跃,吴文江,等,开放式数控系统任务调度模型,控制与检测,2010,(6):37~39
    [35]程涛,吴波,杨叔子,等,支持分布式网络化制造的智能数控系统的研究,中国机械工程,2004,15(8):688~693
    [36]兰红波,刘日良,张承瑞,基于STEP-NC智能数控系统的研究,中国机械工程,2007,18(6):692~696
    [37]胡世广,王太勇,赵丽,等,基于网络与状态监测的智能数控技术,计算机工程与应用,2007,43(33):200~202
    [38]陈明,薛庆,蔡颖,等,PDM集成环境下智能数控自动编程系统的研究,北京理工大学学报,2002,22(4):429~432
    [39]雷为民,乔建中,李本忍,等,智能数控实现技术分析,小型微型计算机系统,1999,20(8):593
    [40] Kaan Erkorkmaz, Yusuf Altintas, High speed CNC system design, Part I: jerklimited trajectory generation and quintic spline interpolation, Int. J. Mach. ToolsManufact.,2001,41:1323~1345
    [41] Rou Chi Wei, Shih Ching Long, Lee Wen Yo, Planning S-curves in theCoordinated PTP Motion of Multiple-axis Machines under VelocityAcceleration and Jerk Constrains, Journal of the Chinese Institut of ElectricalEngineering,2003,10(3):221~234
    [42]陈友东,王田苗,魏洪兴,等,数控系统的直线和S形加减速研究,中国机械工程,2006,17(15):1600~1604
    [43]张莉彦,基于数据采样插补的加减速控制的研究,北京化工大学学报,2002,29(3):91~93
    [44][加]YusufAltintas,数控技术与制造自动化,罗学科,译,北京:化学工业出版社,2002.153~162
    [45]冷洪滨,邬义杰,潘晓弘,三次多项式型微段高速加工速度规划算法研究,计算机集成制造系统,2008,14(2):336~340,397
    [46]盖荣丽,林浒,郑飂默,等,高速加工中速度规划算法的研究与实现,小型微型计算机系统,2009,30(6):1067~1071
    [47] Jakubiak J, Tchon K, Magiera W, Motion planning in velocity affine mechanicalsystems, International Journal of Control,2010,83(9):1965~1974
    [48] Haddad M, Khalil W, Lehtihet HE, Trajectory planning of unicycle mobilerobots with a trapezoidal-velocity constraint, IEEE Transactions on Robotics,2010,26(5):954~962
    [49] Hongbin LENG, Yijie WU, Xiaohong PAN, Research on cubic polynomialacceleration and deceleration control model for high speed NC machining,Journal of Zhejiang University Science A,2008,9(3):358~365
    [50] Tsai Meng Shiun, Nien Hao Wei, Yau Hong Tzong, Development of anintegrated look-ahead dynamics based NURBS interpolator for high precisionmachinery, CAD Computer Aided Design,2008,40(5):554~566
    [51]刘凯,陆永华,赵东标,参数曲线自适应加减速控制方法在弧齿锥齿轮数控加工中的应用,机械工程学报,2009,45(12):199~204
    [52] Du Daoshan, Liu Yadong, Guo Xingui, et al, An accurate adaptive NURBScurve interpolator with real-time flexible acceleration/deceleration control,Robotics and Computer-Integrated Manufacturing,2010,26(4):273~281
    [53]尚伟伟,丛爽,提高控制精度的并联机构速度规划算法,中国科学技术大学学报,2006,36(8):822~827
    [54]章永年,赵东标,刘凯,等,一种实时前瞻的微线段直接插补算法,东南大学学报,自然科学版,2010,40(4):726~730
    [55]郑魁敬,钟海娜,5轴联动数控系统速度控制方法,计算机集成制造系统,2007,13(5):950~954,966
    [56]曹宇男,王田苗,陈友东,等,插补前S加减速在CNC前瞻中的应用,北京航空航天大学学报,2007,33(5):594~599
    [57]刘青山,高霖,基于运动控制卡的PC数控进给速度前瞻控制,机械科学与技术,2009,28(9):1194~1197
    [58]陈良骥,冯宪章,五轴NURBS插补中的速度前瞻控制方法,计算机集成制造系统,2009,15(12):2399~2404
    [59] Chen Chun Ta, Liao Te Tan, A hybrid strategy for the time and energy efficienttrajectory planning of parallel platform manipulators, Robotics and ComputerIntegrated Manufacturing,2011,27(1):72~81
    [60] Zhang Yong De, Jiang Ji Xiong, Trajectory planning of robotic orthodonticwires bending based on finite point extension method, Advanced MaterialsResearch,2011,201-203:1873~1877
    [61] Gasparetto A, Zanotto V, Optimal trajectory planning for industrial robots,Advances in Engineering Software,2010,41(4):548~56
    [62] Kim Joonyoung, Kim Sung Rak, Kim Soo Jong, et al, A practical approach forminimum-time trajectory planning for industrial robots, Industrial Robot,2010,37(1):51~61
    [63] Chesi Graziano, Planning image trajectories for visual servoing via LMI-basedoptimization, Lecture Notes in Electrical Engineering,2011,85:159~172
    [64]耿聪,于东,张晓辉,五轴联动数控加工中的刀具轨迹控制算法,中国机械工程,2010,21(24):2904~2909
    [65] Li Yuyao, Wang Yuhan, Feng Jing chun, et al, The Research of Dual NURBSCurves Interpolation Algorithm for High-speed Five-axis, Intelligent Roboticsand Applications,2008,5315(2):983~992
    [66]马方魁,郇极,数控机床NURBS曲线插补运动误差分析与仿真,中国机械工程,2008,19(20):2446~2449
    [67]罗建国,陆震,冗余驱动直角坐标串并联机器人位姿误差分析,机械设计,2007,24(1):66~69
    [68]丁希仑,周乐来,周军,机器人的空间位姿误差分析方法,北京航空航天大学学报,2009,35(2):241~245
    [69]石宏,蔡光起,李景奎,混联机床五轴联动加工时刀摆的非线性误差分析与控制,中国机械工程,2008,19(6):675~677,682
    [70]邹豪,王启义,余晓流,等,并联Stewart机构位姿误差分析,东北大学学报,自然科学版,2000,21(3):301
    [71]汪苏,苗新刚,李晓辉,基于模糊控制的焊接机器人焊枪姿态规划,北京航空航天大学学报,2010,36(7):771~775
    [72]刘松国,朱世强,王宣银,等,基于四元数和B样条的机械手平滑姿态规划器,浙江大学学报,工学版,2009,43(7):1192~1196,1202
    [73]刘永,王克鸿,杜栅栅,弧焊机器人空间焊缝焊接参数与姿态规划研究,南京理工大学学报,自然科学版,2003,27(2):144~147
    [74]陈强,路井荣,孙振国,等,弧焊机器人焊炬姿态规划系统的研究,中国机械工程,2002,13(11):956~958
    [75]王洪斌,李铁龙,郭继丽,机器人的神经网络鲁棒轨迹跟踪控制,电机与控制学报,2005,9(2):145~147,150
    [76]孙炜,王耀南,毛建旭,基于模糊B样条基函数神经网络控制的交流伺服系统,控制与决策,2000,15(3):290
    [77]张海荣,舒志兵,BP神经网络整定的PID在机器人轨迹跟踪中的应用,电气传动,2007,37(9):36~39
    [78]刘兴磊,王坚,邓开连,基于神经网络的机器人轨迹跟踪控制,微计算机信息,2010,26(23):136~137,150
    [79]马立,于瀛洁,程维明,等,BP神经网络补偿并联机器人定位误差,光学精密工程,2008,16(5):878~883
    [80]王东署,张文丙,机器人计算力矩不确定性的神经网络补偿控制,计算机应用研究,2008,25(2):417~419
    [81]刘艳菊,张宏烈,戴学丰,SCARA机器人自组织模糊聚类神经网络控制器,微计算机信息,2008,24(23):278~279,288
    [82]孙炜,王耀南,模糊小波基神经网络的机器人轨迹跟踪控制,控制理论与应用,2003,20(1):49~53
    [83]吴丹妮,伍铁军,基于机器视觉的虚拟雕刻轨迹跟踪系统研究,中国机械工程,2010,21(23):2821~2825
    [84]黄茹楠,顾波,挖掘机轨迹跟踪的滑模变结构控制,控制工程,2010,17(2):131~134
    [85]吴晓,朱世强,刘松国,基于PDAG算法的工业机器人轨迹跟踪,中国机械工程,2010,21(19):2302~2307
    [86]弓洪玮,郑维,机器人轨迹跟踪的自适应模糊神经网络控制,计算机仿真,2010,27(8):145~149
    [87]李琳,谭跃刚,基于目标预见时间的空间目标的轨迹跟踪控制,制造业自动化,2010,32(7):199~201
    [88]帅鑫,李艳君,吴铁军,一种柔性机械臂末端轨迹跟踪的预测控制算法,浙江大学学报,工学版,2010,44(2):259~264
    [89] Binoo K J, Ray G, Trajectory tracking of a two-link robot manipulator: Aterminal attractor approach, ICECE2010-6th International Conference onElectrical and Computer Engineering,2010.255~258
    [90] Yuming Liang, Lihong Xu, Ruihua Wei, et al, Adaptive Fuzzy Control forTrajectory Tracking of Mobile Robot,2010IEEE/RSJ International Conferenceon Intelligent Robots and Systems (IROS2010),2010.4755~60
    [91] Satoh S, Fujimoto K, On observer based stochastic trajectory tracking control ofmechanical systems, Transactions of the Society of Instrument and ControlEngineers,2010,46(2):106~113
    [92] Bong Seok Park, Sung Jin Yoo, Jin Bae Park, et al, A Simple Adaptive ControlApproach for Trajectory Tracking of Electrically Driven Nonholonomic MobileRobots, IEEE Transactions on Control Systems Technology,2010,18(5):1199~1206
    [93] Ge Xinsheng, Chang Jun, Trajectory Tracking Control of Space Rigid FlexibleManipulator, Proceedings of the2010International Conference on MeasuringTechnology and MechatronicsAutomation (ICMTMA2010),2010.1047~1049
    [94] Wang Yilin, Wang Xiaoxue, Cai Ping, The applications of fractional Fouriertransform in underwater acoustic trajectory tracking,2010IEEE InternationalConference on Information and Automation,2010.436~439
    [95] Castanedo Federico, García Jesús, Patricio Miguel A, et al, Data fusion toimprove trajectory tracking in a Cooperative Surveillance Multi-AgentArchitecture, Information Fusion,2010,11(3):243~255
    [96] Tamadazte Brahim, Piat Nadine Le Fort, Dembélé Sounkalo, Robust trajectorytracking and visual servoing schemes for MEMS manipulation, IEEE/ASMEInternational Conference onAdvanced Intelligent Mechatronics,2010.860~865
    [97]李兵,王知行,胡颖,新型并联机床的刚度计算模型,机械设计,1993,3(3):14~16
    [98]赵铁石,赵延治,边辉,等,空间并联机构连续刚度非线性映射,机械工程学报,2008,44(8):20~25
    [99]王友渔,黄田,CHETWYND D G,等,Tricept机械手静刚度解析建模方法,机械工程学报,2008,44(8):13~19
    [100]Anatoly Pashkevich, Damien Chablat, Philippe Wenger, Stiffness Analysis ofOverconstrained Parallel Manipulators, Journal of Mechanism and MachineTheory,2009,44(5):966~982
    [101]邓耀华,刘桂雄,吴黎明,等,数控加工过程柔性工件变形预测与误差补偿方法的研究,机械科学与技术,2010,29(7):846~851
    [102]夏萍,周晓琴,周晓玲,等,深孔内圆磨床内圆磨具刚度分析及补偿方法,精密制造与自动化,2005,(4):10~11
    [103]彭志,王立鹏,王欣彦,数控机床导轨面变形预补偿的有限元分析,机床与液压,2011,39(12):26~27
    [104]Bashar S E, PLACID M F, Computation of stiffness and stiffness bounds forparallel link manipulators, International Journal of Machine Tools&Manufacture1999,39(2):321~342
    [105]Clément M Gosselin, Stiffness mapping for parallel manipulators, IEEETransactions on Robotics and Automation,1990,6(3):377~382
    [106]Charles M Clinton, Guangming Zhang, Stiffness moding of astewart-platform-based milling machine, Trans of the North AmericaManufacturing Research Institution of SME,1997,25:335~340
    [107]毕磊,肖本贤,于海滨,等,基于一次指数平滑模型预测的轮廓误差补偿方法,合肥工业大学学报,自然科学版,2010,33(8):1166~1170
    [108]姬俊锋,周来水,安鲁陵,等,考虑非线性误差补偿的五坐标数控加工走刀步长改进算法,重庆大学学报,自然科学版,2010,33(4):37~42
    [109]Chapelle O, Choosing multiple parameter for support vector machines,Machine Learning,2002,46(1):131~159
    [110]Kwok J T, Unear dependency between and the input noise in ε-support vectorregression, IEEE Transactions on Neural Networks,2003,14(3):544~553
    [111]Friedrichs F, Evolutionary tuning of multiple SVM parameters, NeuralComputation,2005,64(1):107~117
    [112]LIN W Q, XU Y Z, FU J Z, Thermal error modeling and compensation ofspindles based on LS-SVM, International Technology and InnovationConference,2006.1160~1166
    [113]Suykens J A K, Nonlinear modeling and support vector machines, IEEEInstrumentation and Measurement Technology Conference,2001.287~294
    [114]Suykens J A K, Weighted least squares support vector machines: robustness andsparse approximation, NEUROCOMPUTING,2002,48(1):85~105
    [115]YANG S S, LU W C, CHEN N Y, Support vector regression based QSPR for theprediction of some physicochemical properties of alkyi benzenes, JOURNALOF MOLECULAR STRUCTURE,2005,719(13):119~127
    [116]杨洪涛,刘勇,费业泰,等,三坐标测量机动态误差混合建模方法,仪器仪表学报,2010,31(8):1861~1866
    [117]程华,陆微微,田金文,基于最小二乘支持向量机的SAR平台定位,宇航学报,2010,31(2):489~494
    [118]林伟青,傅建中,许亚洲,等,基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略,光学精密工程,2008,16(9):1682~1687
    [119]林伟青,傅建中,许亚洲,等,基于最小二乘支持向量机的数控机床热误差预测,浙江大学学报,工学版,2008,42(6):905~908
    [120]林伟青,傅建中,许亚洲,等,基于在线最小二乘支持向量机的数控机床热误差建模与补偿,计算机集成制造系统,2008,14(2):295~299
    [121]吴德会,基于最小二乘支持向量机的铣削加工表面粗糙度预测模型,中国机械工程,2007,18(7):838~841
    [122]黄吉东,王龙山,李国发,等,基于最小二乘支持向量机的外圆磨削表面粗糙度预测系统,光学精密工程,2010,18(11):2407~2412
    [123]周江华,苗育红,王明海,姿态运动的Rodrigues参数描述,宇航学报,2004,25(5):514~519
    [124]Erkorkmaz Kaan, Altintas Yusuf, High speed CNC system design, Part I: Jerklimited trajectory generation and quintic spline interpolation, InternationalJournal of Machine Tools and Manufacture,2001,41(9):1323~1345
    [125]崔洪斌,方忆湘,张嘉钰,等,计算机辅助设计基础及应用,北京:清华大学出版社,2002,90~92
    [126]施法中,计算机辅助几何造型设计与非均匀有理B样条,北京:高等教育出版社,2001,28~30
    [127]余斌,刘荣忠,基于OpenGL的数控加工仿真系统研究,四川大学学报(工程科学版),2001,(5):16~19
    [128]郭晋峰,吴寒,刘雄伟,基于Bresenham算法的直线脉冲增量插补方法,制造技术与机床,2002,(1):27~28
    [129]施群,王小椿,开环CNC系统数据采样插补的关键技术研究,组合机床与自动化加工技术,2004,(4):20~21
    [130]Bahr B, Xiao X, Krishoan K, A real-time seheme of cubic parametric curveinterpolations for CNC systems, Computers in Industry,2001,45(3):309~317
    [131]王德春,芮健,张杰,捷联惯性导航系统姿态算法综述,战术导弹控制技术,2009(2):41~44,64
    [132]陈琦,蔡宗平,马清亮,等,一种基于平方和优化的飞行器大角度机动镇定控制器设计方法,弹箭与制导学报,2011,31(6):47~50
    [133]刘献平,空间飞行器的姿态和扰动抑制控制器设计,哈尔滨工程大学学报,2011,32(12):1637~1641
    [134]霍伟,机器人动力学与控制,北京:高等教育出版社,2005
    [135]刘金琨,机器人控制系统的设计与MATLAB仿真,北京:清华大学出版社,2008
    [136]Wen Jing Hsu, Moon Jung Chung, Das A, Linear recursive networks and theirapplications in distributed systems, Parallel and Distributed Systems, IEEETransactions on,1997,8(7):673~680
    [137]周鹏,秦树人,多层前馈网络的优化算法及其工程应用,振动与冲击,2008,27(2):61~64,68
    [138]Baohua Li, Si J, Approximate Robust Policy Iteration Using MultilayerPerceptron Neural Networks for Discounted Infinite-Horizon Markov DecisionProcesses With Uncertain Correlated Transition Matrices, Neural Networks,IEEE Transactions on,2010,21(8):1270~1280
    [139]R E Abdel-Aal, M A Elhadidy, S M Shaahid, Modeling and forecasting themean hourly wind speed time series using GMDH-based abductive networks,Renewable Energy,2009,34(7):1686~1699
    [140]赵学智,曾作钦,叶邦彦,等,基于自适应谐振理论的特征频率提取与融合,振动、测试与诊断,2010,30(1):33~38
    [141]于龙,肖建,白裔峰,等,基于批量模糊学习矢量量化的模糊系统辨识,控制与决策,2007,22(8):903~906,911
    [142]Pei S C, Chuang Y T, Chuang W H, et al, Effective Palette Indexing for ImageCompression Using Self-Organization of Kohonen Feature Map, IEEETransactions on Image Processing,2006,15(9):2493~2498
    [143]Shouhong Wang, Hai Wang, Password Authentication Using Hopfield NeuralNetworks, IEEE transactions on systems, man and cybernetics Part C,Applications and reviews,2008,38(2):265~268
    [144]徐明亮,须文波,自适应RBF网络Q学习控制,控制与决策,2010,(2):303~306
    [145]吉彩红,刘向丽,高岩,等,一类求解约束极小极大最优问题的方法,2003中国控制与决策学术年会论文集,2003:338~340
    [146]V Vapnik, The Nature of Statistical Learning Theory, New York: SpringerVerlag,2000,1~20
    [147]费仁元,张慧慧,机器人机械设计和分析,北京:北京工业大学出版社,1998,135~163
    [148]刘大同,彭宇,彭喜元,等,一种分段在线支持向量回归算法,仪器仪表学报,2010,31(8):1732~1737
    [149]胡根生,邓飞其,具有多分段损失函数的多输出支持向量机回归,控制理论与应用,2007,24(5):711~714
    [150]邓乃扬,田英杰,支持向量机—理论、算法与拓展,北京:科学出版社,2009,92~95
    [151]John Shawe-Taylor,NelloCristianini,模式分析的核方法(赵玲玲,翁苏明,曾华军等译),北京:机械工业出版社,2005,1~2
    [152]C-C Chang and C-J Lin, LIBSVM: a library for support vector machines, ACMTransactions on Intelligent Systems and Technology,2:27:1~27:27,2011
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.