双压电片变形反射镜研制与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应光学系统能够实时测量并补偿各种干扰引起的光学系统的波前畸变,使光学系统具有自动适应外界条件变化从而保持最佳工作状态的能力。基于这样的优点,自适应光学一直以来被广泛应用于天文观测和激光传输等领域,获得了极大的认同。而本世纪初随着其它领域对自适应光学的逐渐增长的兴趣,其应用范围开始扩展,包括人眼视网膜成像系统、激光通信系统等。但是整个自适应光学系统中最核心的器件——波前校正器特别是变形反射镜——由于技术复杂、造价昂贵几乎成为限制自适应光学系统应用范围的主要因素。于是各种低成本的替代技术的成为自适应光学发展的新热点,双压电片变形反射镜正是其中之一。开展双压电片变形镜的相关研究工作对促进我国自适应光学技术的发展有着重要的意义。
     本论文的研究工作主要包括:在理论分析的指导下,利用有限元方法设计了单层压电材料,镜面圆周紧支撑的双压电片变形镜结构;制定合理的工艺流程制作了20单元的双压电片变形镜样镜并对其进行了详细的性能测试和分析,结果验证了工艺的可行性和分析模型的有效性;研制了两个分别为9单元和35单元的双压电片变形反射镜用于人眼视网膜自适应光学成像系统,分析表明其对前20项Zernike像差的校正效果优于传统的37单元分立式变形反射镜,并且用该系统获得了对视网膜血管和视细胞的清晰成像结果;还利用9单元双压电片变形反射镜开展了用于工业激光加工的低成本自适应光学系统试验,结果表明这套自适应光学系统能够有效改善激光加工设备中飞行光路引入的焦点变化问题并对最终的激光聚焦强度有改善作用。
     本文的主要创新点是:
     1、制订了合理的研制工艺路线,研制出了能够投入实际使用的双压电片变形镜,为开拓我国的自适应光学的民用市场奠定了基础。
     2、采用有限元法和实验测量相结合的方式对双压电片变形镜展开研究,建立了合理的有限元模型,为实际双压电片变形镜的设计优化提供可靠依据和有效手段;验证了双压电片变形镜适合校正低阶像差的特性。
     3、证明了双压电片变形镜用于人眼视网膜自适应光学成像系统的适应性和优越性,并使之成为设备小型化并得到性能提升的核心器件;首次为工业激光加工系统设计了低成本的自适应光学系统和校正方案,初步证明了其有效性,为进一步的双压电片变形镜投入实际系统使用奠定了基础。
The Adaptive Optics(AO) can compensate the dynamical interference caused by theoptical wave-front distortion in real-time. With an AO system, the regular optical systemhas the ability to automatically adapt to external conditions to maintain optimumworking performance. At the beginning of this century, many other optical systemsbesides to astronomy are intrested in adaptive optics, including human retinal imagingsystems, laser communication system,etc. But the cost of deformable mirrors(DM)-dueto its technical complexity, become the main obstacle to expand the field of applicationof adaptive optics. So a variety of low-cost alternative technologies become the new hottopic of the adaptive optics. Bimorph deformable mirror is one of them. Research onbimorph deformable mirror is of great significance to the promotion of the developmentof domestic adaptive optical system.
     This thesis describes the modeling and manufacture of bimorph deformablemirrors as well as two example of their applications.A general review of adaptive opticsand deformable mirrors is provided, paying particular attention to those technologieswhich would allow adaptive optics to be employed in non-astronomical low-costsituations. Reasonable finite element model of the bimorph deformable mirror wasestablished. The process of manufacturing bimorph deformable mirrors is described insome detail, and results of this peocedure are presented. Design and fabricate a20-element prototype Bimorph DM, and detail test results proved the accuracy of ourFEA model and fabrication process. Based on this, a pair of bimorph deformablemirrors for dual-deformable mirror human retinal imaging system are designed andfabricated. A novel full function adaptive optics system applied to laser cutting systemis proposed, including wavefront-less control algorithm and low cost bimorphdeformable mirror are used. The effectiveness of this system is demonstrated by twosets of closed loop experiments.
     The main results of this paper are following:
     1, Formulate a reasonable design and fabricate process and the first practicalbimorph deformable mirror in the domestic was manufactured;
     2, A combination of FEM analysis and experimental verification of bimorphdeformable mirror are established; The characteristics of bimorph deformable mirrorthat suitable for correction of low-order aberrations are verified;
     3, Two different bimorph deformable mirrors for dual-deformable mirror human retinal imaging system are manufactured. Measurement results indicate that they satisfythe requirement and are better for human retinal imaging adaptive optical system thanconventional stack actuator deformable mirror. A novel full function adaptive opticssystem applied to laser cutting system is proposed. The validity of this system isdemonstrated by two sets of closed loop experiments.
引文
[1]周仁忠,阎吉祥.自适应光学[M].北京:国防工业出版社,1996.
    [2] Babcock, H.W. The possibility of compensating astronomical seeing[J]. AstronomicalSociety of the Pacific,1953.65(386):229-236.
    [3] Hardy, J.W. Active optics: a new technology for the control of light[J]. IEEE,1978.66(6):651-697.
    [4] J.W.Hardy. Adaptive optics for Astronomical Telescopes[M]. New York, Oxford: OxfordUniversity Press,1998.
    [5]姜文汉.自适应光学技术[J].自然杂志,2006.28(1):7-13.
    [6] Hardy, J.W. Adaptive optics: a progress review[C]. SPIE,1991.1542:2-17.
    [7]张雨东,姜文汉等.自适应光学的眼科学应用[J].中国科学,2007.37(增刊):68-74.
    [8]吴鑫基,温学诗.现代天文学十五讲[M].北京:北京大学出版社,2005.
    [9]温学诗.观天巨眼400年系列之五罗斯伯爵的“城堡”[J].太空探索,2002.23(5):30-32.
    [10] Newton, I. Optiks [M]. New York: Dover Publications,1952.
    [11] http://en.wikipedia.org/wiki/Reflecting_telescope.
    [12] Babcock, H. Deformable optical elements with feedback[J]. J. Opt. Soc. Am.,1958.48(7):500.
    [13]波尔.安德森.宇宙过河卒[M].成都:四川科学技术出版社,2011.
    [14] Cathey, W., Hayes, C.,et al. Compensation for atmospheric phase effects at10.6μ[J]. Appl.Opt.,1970.9(3):701-707.
    [15] Pearson, J.E. Thermal blooming compensation with adaptive optics[J]. Opt. Letters,1978.2(1):7-9.
    [16] O’meara, T. The multidither principle in adaptive optics[J]. J. Opt. Soc. Am.,1977.67(3):306-314.
    [17] Buffington, A., Crawford, F.,et al. First observatory results with an image-sharpeningtelescope[J]. J. Opt. Soc. Am.,1977.67(3):304-305.
    [18] Kern, P., Lena, P.,et al. Come-On: an adaptive optics prototype dedicated to infraredastronomy[C]. SPIE,1989.1114:54-65.
    [19] Rousset, G., Fontanella, J.,et al. First diffraction-limited astronomical images with adaptiveoptics[J]. Astron. Astrophys,1990.230: L29-L32.
    [20] Sandler, D.G. Overview of adaptive optics with laser beacons[J]. Adaptive Optics inAstronomy,1999.1:255.
    [21] Humphreys, R.,Bradley, L.,et al. Sodium-layer synthetic beacons for adaptive optics[J]. TheLincoln Laboratory Journal,1992.5(1):45-66.
    [22] Duffner, R.W., Revolutionary Imaging: Air Force Contributions to Laser Guide Star AdaptiveOptics,2008, DTIC Document.
    [23] Gaessler, W., Takami, H.,et al. First results from the Subaru AO system[C]. SPIE,2001.4494:4494-04.
    [24] Herriot, G., Morris, S.,et al. Progress on Altair: the Gemini North adaptive optics system[C].SPIE,2000.4007:115-125.
    [25] Esposito, S., Tozzi, A.,et al. First light adaptive optics system for large binoculartelescope[C]. SPIE,2003.4839:164-173.
    [26] Martin, H., Zappellini, G.B.,et al. Deformable secondary mirrors for the LBT adaptive opticssystem[C]. SPIE,2006.6272:6272-28.
    [27] Rousset, G., Lacombe, F.,et al. Status of the VLT Nasmyth adaptive optics system(NAOS)[C]. SPIE,2000.4007:72-81.
    [28] Gendron, E., Coustenis, A.,et al. VLT/NACO adaptive optics imaging of Titan[J]. Astron.Astrophys,2004.417(1):21-24.
    [29] http://www.adaptiveoptics.org/Establishments.html.
    [30]梁铨廷.物理光学[M].北京:机械工业出版社,1987.
    [31] Zernike, F. How I discovered phase contrast[J]. Science,1955.121(3141):345.
    [32] Noll, R.J. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am.,1976.66(3):207-211.
    [33]马科斯.波恩,埃米尔.沃耳夫.光学原理[M].北京:电子工业出版社,2005.
    [34] Mahajan, V.N.,Dai, G.-m. Orthonormal polynomials in wavefront analysis: analyticalsolution[J]. J. Opt. Soc. Am. A,2007.24(9):2994-3016.
    [35] Dai, G.-m. Wavefront optics for vision correction[M]. Washington: SPIE,2008.
    [36]郁道银,谈恒英.工程光学:机械工业出版社,2006.
    [37]饶瑞中.现代大气光学及其应用[J].大气与环境光学学报,2006.1(1):2-13.
    [38]杨慧珍.无波前探测自适应光学随机并行优化控制算法及其应用研究[D].成都:中科院光电技术研究所,2008.
    [39]宁禹.双压电片变形反射镜的性能分析与应用研究[D].长沙:国防科学技术大学,2008.
    [40]李新阳.自适应光学系统模式复原算法和控制算法的优化研究[D].成都:中科院光电技术研究所,2000.
    [41] Herriot, G., Morris, S.,et al. Innovations in Gemini adaptive optics system design[C]. SPIE,1998.3353:488-499.
    [42] Genimi Focus-Newsletter of Gemini Obseratory,2006.
    [43] Wizinowich, P., Acton, D.,et al. First light adaptive optics images from the Keck II telescope:a new era of high angular resolution imagery[J]. Publications of the Astronomical Society ofthe Pacific,2000.112(769):315-319.
    [44] Graves, J.E., Northcott, M.J.,et al. First light for Hokupa'a:36-element curvature AO systemat UH[C]. SPIE,1998.3353:34-43.
    [45] Arsenault, R., Salmon, D.,et al. The Canada-France-Hawaii telescope adaptive opticsinstrument adaptor[C]. SPIE,1993.1920:364-370.
    [46] Roberts Jr, L.C.,Neyman, C.R. Characterization of the AEOS Adaptive Optics System1[J].Publications of the Astronomical Society of the Pacific,2002.114(801):1260-1266.
    [47]杨平.固体激光器光束净化及其相关技术研究[D].成都:中科院光电技术研究所,2008.
    [48] Sziklas, E.A.,Siegman, A. Mode calculations in unstable resonators with flowing saturablegain.2: Fast Fourier transform method[J]. Appl. Opt,1975.14(8):1874-1889.
    [49] Oughstun, K.E. Theory of intracavity adaptive optic mode control[C]. SPIE,1983.3762:54-65.
    [50] Oughstun, K.E.,Spinhirne, J.,et al. Intracavity adaptive optics.4: Comparison of theory andexperiment[J]. Appl. Opt.,1984.23(10):1529-1541.
    [51] Anafi, D., Spinhirne, J.,et al. Intracavity adaptive optics.2: Tilt correction performance[J].Appl. Opt.,1981.20(11):1926-1932.
    [52] Cherezova, T.,Kaptsov, L.N.,et al. Cw industrial rod YAG:Nd3+laser with an intracavityactive bimorph mirror[J]. Appl. Opt.,1996.35(15):2554-2561.
    [53] Kudryashov, A.V.,Samarkin, V.V. Control of high-power CO2-laser beam by adaptiveoptical-elements[J]. Optics Communications,1995.118(3):317-322.
    [54] Sacks, R., Auerbach, J.,et al. Application of adaptive optics for controlling the NIF laserperformance and spot size[C]. SPIE,1999.3492:344-354.
    [55] Zacharias, R.A., Beer, N.R.,et al. National Ignition Facility alignment and wavefrontcontrol[C]. SPIE,2004.5341:168-179.
    [56] Grosset-Grange, C., Barnier, J.-N.,et al. Design principle and first results obtained on theLMJ deformable mirror prototype[C]. SPIE,2007.6584:658403.
    [57] Yoon, G.-Y., Jitsuno, T.,et al. Development of a large-aperture deformable mirror forwavefront control[C]. SPIE,1997.3047:777-782.
    [58]姜文汉,杨泽平等.自适应光学技术在惯性约束聚变领域应用的新进展[J].中国激光,2009.36(7):1625-1634.
    [59]胡绍云,钟鸣等.自适应光学在固体战术激光武器中的应用[J].激光与光电子学进展,2006(2):25-28.
    [60] Higgs, C. Overview of the ABL-firepond active-tracking and compensation facility[C]. SPIE,1998.3381:14-18.
    [61] Billman, K.W., Breakwell, J.A.,et al. ABL beam control laboratory demonstrator[C]. SPIE,1999.3706:172-179.
    [62] Thompson, C.A., Kartz, M.W.,et al. Free space optical communications utilizing MEMSadaptive optics correction[C]. SPIE,2002.4821:129-138.
    [63] Wilks, S.C., Morris, J.R.,et al. Modeling of adaptive optics-based free-space communicationssystems[C]. SPIE,2002.4821:121-128.
    [64]王英俭,王春红.激光实际大气传输湍流效应相位校正一些实验结果[J].量子电子学报,1998.15(2):164-169.
    [65]杨慧珍,李新阳等.自适应光学技术在大气光通信系统中的应用进展[J].激光与光电子学进展,2007.501(10):61-68.
    [66] Liang, J., Grimm, B.,et al. Objective measurement of wave aberrations of the human eyewith the use of a Hartmann-Shack wave-front sensor[J]. J. Opt. Soc. Am. A,1994.11(7):1949-1957.
    [67] Liang, J.,Williams, D.R.,et al. Supernormal vision and high-resolution retinal imagingthrough adaptive optics[J]. J. Opt. Soc. Am. A,1997.14(11):2884-2892.
    [68] Zawadzki, R.J., Jones, S.M.,et al. Adaptive-optics optical coherence tomography forhigh-resolution and high-speed3D retinal in vivo imaging[J]. Opt. Express,2005.13(21):8532-8546.
    [69]姜文汉.光电技术研究所的自适应光学技术[J].光电工程,1995.22(1):1-13.
    [70]向银辉.成都光电所自适应光学技术研究创新成果丰硕[J].中国科学院院刊,2007.22(4):345-349.
    [71] Jiang, W., Huang, S.,et al. Hill-climbing wavefront correcting system for large laserengineering[C]. SPIE,1988.965:266-272.
    [72]姜文汉,李明全等.星体目标自适应光学成象补偿[J].光电工程,1995.22(1):23-30.
    [73] Jiang, W., Li, M.,et al. Adaptive optics image compensation experiment for star objects[C].SPIE,1993.1920:381-391.
    [74] Jiang, W., Li, H.,et al. A37-element adaptive optics system with HS wavefront sensor[C].ESO Conference and Workshop Proceedings,1994.48:127.
    [75]姜文汉,吴旭斌.37单元自适应光学系统[J].光电工程,1995.22(1):38-45.
    [76]姜文汉,王春红.61单元自适应光学系统[J].量子电子学报,1998.15(2):193-199.
    [77] Ao, M., Yang, P.,et al. A method of aberration measurement and correction for entire beampath of ICF beam path[C]. SPIE,2007.6823:68230I.
    [78] Jiang, W., Tang, G.,et al.21-element infrared adaptive optics system at2.16-m telescope[C].SPIE,1999.3762:142-149.
    [79]饶长辉,姜文汉等.云南天文台1.2m望远镜61单元自适应光学系统[J].量子电子学报,2010.23(3):295-302.
    [80]魏凯,张学军等.1.8m望远镜127单元自适应光学系统首次观测结果[J]. ChineseOptics Letters,2010.8(11):1019-1021.
    [81] Ling, N., Zhang, Y.,et al. Small table-top adaptive optical systems for human retinalimaging[C]. SPIE,2002.4825:99-108.
    [82] Rao, C.-H., Jiang, W.-H.,et al. A tilt-correction adaptive optical system for the solar telescopeof Nanjing University[J]. Chinese Journal of Astron. Astrophys,2009.3(6):576.
    [83] Rao, C., Zhu, L.,et al.37-element solar adaptive optics for26-cm solar fine structuretelescope at Yunnan Astronomical Observatory[J]. Chinese Optics Letters,2010.8(10):966-968.
    [84] http://blog.sina.com.cn/bitaolab.
    [85]程少园,胡立发等.液晶自适应光学在人眼眼底高分辨率成像中的应用[J].中国激光,2009.36(10):2524-2527.
    [86]孔宁宁,李大禹等.开环双脉冲液晶自适应光学视网膜成像系统[J].光学学报,2012.32(1):90-98.
    [87]陈浩,宣丽等.1200mm望远镜开环液晶自适应光学系统设计[J].光学精密工程,2010.18(1):29-36.
    [88] Feinleib, J.,Lipson, S.G., Monolithic piezoelectric wavefront phase modulator,1975, GooglePatents.
    [89] Ealey, M.A. Deformable Mirrors at Litton-Itek: A Historical Perspective[C]. SPIE,1989.1167:48.
    [90] Freeman, R.,Pearson, J. Deformable mirrors for all seasons and reasons[J]. Appl. Opt.,1982.21(4):580-588.
    [91] Jagourel, P.,Gaffard, J., P. Active optics components in Laserdot[C]. SPIE,1991.1543:76-87.
    [92] Gosselin, P.,Jagourel, P.,et al. Objective comparisons between stacked array mirrors andbimorph mirrors[C]. SPIE,1993.1992:81-90.
    [93]凌宁.多元整体压电变形反射镜(研究阶段进展报告)[J].光学工程,1982(06):44-52.
    [94] Dubra, A.,Massa, J.S.,et al. Preisach classical and nonlinear modeling of hysteresis inpiezoceramic deformable mirrors[J]. Opt. Express,2005.13(22):9062-9070.
    [95] Yang, Q., Ftaclas, C.,et al. Hysteresis correction in the curvature adaptive optics system[J].JOSA A,2005.22(1):142-147.
    [96] PI, Tutorial on Piezotechnology in Nanopositioning Applications,2008, physik instrumente.
    [97]王博文,曹淑瑛.磁致伸缩材与器件[M].北京:冶金工业出版社,2008.
    [98] Lee, J.H.,Walker, D.D.,et al. Adaptive secondary mirror demonstrator: design andsimulation[J]. Opt. Eng.,1999.38(9):1456-1461.
    [99]樊新龙.1.8m望远镜变形次镜优化设计及测试技术研究[D].成都:中科院光电技术研究所,2012.
    [100] Grosso, R.P.,Yellin, M. The membrane mirror as an adaptive optical element[J]. J. Opt. Soc.Am.,1977.67(3):399-406.
    [101] McElroy, J.H., Thompson, P.E.,et al. Laser tuners using circular piezoelectric benders[J].Appl. Opt.,1975.14(6):1297-1302.
    [102] Pearson, J.E., Bridges, W.B.,et al. Coherent optical adaptive techniques: design andperformance of an18-element visible multidither COAT system[J]. Appl. Opt.,1976.15(3):611-621.
    [103] Adelman, N.T. Spherical mirror with piezoelectrically controlled curvature[J]. Appl. Opt.,1977.16(12):3075-3077.
    [104]与S.G.Lipson教授的私人通信,2013.
    [105] Steinhaus, E.,Lipson, S.G. Bimorph piezoelectric flexible mirror[J]. J. Opt. Soc. Am.,1979.69(3):478-481.
    [106] Kokorowski, S.A. Analysis of adaptive optical elements made from piezolectric bimorphs[J].J. Opt. Soc. Am.,1979.69(1):181-187.
    [107] Halevi, P. Bimorph piezoelectric flexible mirror: graphical solution and comparison withexperiment[J]. J. Opt. Soc. Am.,1983.73(1):110-113.
    [108] Ikeda, O.,Sato, T. Comparison of deformability between multilayered deformable mirrorswith a monomorph or a bimorph actuator[J]. Appl. Opt.,1986.25(24):4591-4597.
    [109] Mehta, P.K. Moment actuator influence function for flat circular deformable mirrors[C].SPIE,1990.1303:2-19.
    [110] Schwartz, C.,Ribak, E.,et al. Bimorph adaptive mirrors and curvature sensing[J]. J. Opt. Soc.Am. A,1994.11(2):895-902.
    [111] Kudryashov, A.V.,Shmalhausen, V.I. Semipassive bimorph flexible mirrors for atmosphericadaptive optics applications[J]. Opt. Eng.,1996.35(11):3064-3073.
    [112] Vorontsov, M.A., Kudryashov, A.,et al. Flexible mirror for adaptive light-beam formationsystems[J]. Sov. J. Quantum Electron,1984.14(16):839-841.
    [113] Kudryashov, A. Adaptive optics for lasers[C]. CAOL,2008:87-89.
    [114] Safronov, A.G. Bimorph adaptive optics: Elements, technology and design principles[C].SPIE,1996.2774:494-504.
    [115] Dainty, C. Adaptive Optics for Industry and Medicine[M]. Ireland: Imperial College Press,2007.
    [116] Ellis, E.M. Low-cost bimorph mirrors in adaptive optics[D].London:Imperial College, Univ.of London,1999.
    [117] Roddier, F. A new concept in adaptive optics: curvature sensing and compensation[J]. Appl.Opt.,1988.27(7):1223-1225.
    [118] Forbes, F., Roddier, F.,et al. Segmented bimorph deformable mirror[J]. J. Phys. E: Sci.Instrum,1989.22:402-405.
    [119] Arsenault, R., Salmon, D.A.,et al. The Canada-France-Hawaii telescope adaptive opticsinstrument adaptor[C]. SPIE,1993.1920:364-370.
    [120] Lai, O., Veran, J.P.,et al. CFHT Adaptive Optics: First results at the telescope[C]. SPIE,1997.2871:859-870.
    [121] Graves, J.E., Northcott, M.,et al. First Light for Hokupa'a36Element Curvature AO Systemat UH[C]. SPIE,1998.3353:34-43.
    [122] Arsenault, R., Alonso, J.,et al. MACAO-VLTI: An adaptive optics system for the ESOinterferometer[C]. SPIE,2003.4839:174-185.
    [123] Arsenault, R., Donaldson, R.,et al. MACAO-VLTI adaptive optics systems performance[C].SPIE,2004.5490:47-58.
    [124] Takami, H., Takato, N.,et al. Adaptive optics system for Cassegrain focus of Subaru8.2mtelescope[C]. SPIE,1998.3353:500-507.
    [125] Watanabe, M., Oya, S.,et al. Implementation of188-element curvature-based wavefrontsensor and calibration source unit for the Subaru LGSAO system[C]. SPIE,2008.7015:701564.
    [126]张大卫,冯晓梅.音圈电机的技术原理[J].中北大学学报(自然科学版),2006.27(3):224-228.
    [127] Bruns, D.G., Barrett, T.K.,et al. Force-actuated adaptive secondary mirror prototype[C]. ESOConference and Workshop Proceedings,1995:251-256.
    [128] Brusa, G.,Del Vecchio, C. Design of an Adaptive Secondary Mirror: A Global Approach[J].Appl. Opt.,1998.37(21):4656-4662.
    [129] Riccardi, A., Brusa, G.,et al. Adaptive secondary mirrors for the Large BinocularTelescope[C]. SPIE,2003.5169:721-732.
    [130] http://www.eso.org/public/announcements/ann12032/.
    [131] Hornbeck, L.J.128×128deformable mirror device[J]. Electron Devices, IEEE Transactionson,1983.30(5):539-545.
    [132] Miller, L.M., Argonin, M.,et al. Fabrication and characterization of a micromachineddeformable mirror for adaptive optics applications[C]. SPIE,1993.1945:421-430.
    [133] Bifano, T.G., Perreault, J.,et al. Microelectromechanical deformable mirrors[J]. SelectedTopics in Quantum Electronics, IEEE,1999.5(1):83-89.
    [134] Vdovin, G.,Sarro, P. Flexible mirror micromachined in silicon[J]. Appl. Opt.,1995.34(16):2968-2972.
    [135] Divoux, C., Cugat, O.,et al. Deformable mirror using magnetic membranes: application toadaptive optics in astrophysics[J]. Magnetics, IEEE Transactions on,1998.34(5):3564-3567.
    [136] Schiller, C.M., Horsky, T.N.,et al. Charge-transfer-plate deformable membrane mirrors foradaptive optics applications[C]. ISOP,1992:120-127.
    [137] Haji-saeed, B., Kolluru, R.,et al. Photoconductive optically driven deformable membraneunder high-frequency bias: fabrication, characterization, and modeling[J]. Appl. Opt.,2006.45(14):3226-3236.
    [138] Ragazzoni, R.,Marchetti, E. A liquid adaptive mirror[J]. Astron. Astrophys,1994.283:L17-L19.
    [139] Laird, P.R., Bergamasco, R.,et al. Ferrofluid-based deformable mirrors: a new approach toadaptive optics using liquid mirrors[C]. SPIE,2003.4839:733-740.
    [140] Brousseau, D., Borra, E.F.,et al. A magnetic liquid deformable mirror for high stroke and loworder axially symmetrical aberrations[J]. Opt. Express,2006.14(24):11486-11493.
    [141] Oppenheimer, B.R., Palmer, D.,et al. Investigating a Xinetics Inc. Deformable Mirror[C].SPIE,1997.3126:569-579.
    [142] Agafonov, V.V.,Safronov, A.G. Efficiency of objectives with deformable mirrors.1.Controlling the focal length and the position of the focal spot[J]. J. Opt. Technol.,2005.72(6):448-454.
    [143]凌宁,张正荣.多元整体压电变形反射镜(二)——变形反射镜的工作寿命[J].光学工程,1985(02):22-28.
    [144]丁心志.变形反射镜拟合残余误差分析研究:中科院光电技术研究所,2007.
    [145]杨强,曹根瑞.13单元双压电晶片反射镜控制电极的优化设计[J].光学技术,1996(5):15-20.
    [146]曹根瑞,杨强.13单元双压电晶片变形反射镜主要性能参数的测试[J].光学技术,1996(4):25-29.
    [147]杨强,朱建平等.双压电变形反射镜的优化设计[J].光学学报,1999.19(09):1163-1169.
    [148]陈科帆,姚军等.基于静电排斥力的大冲程MEMS变形镜[J].微纳电子技术,2011.48(4):242-247.
    [149]汪为民,陶逢刚等.新型分立倾斜式微变形镜研究[J].中国激光,2011.38(7):253-258.
    [150]乔大勇.基于MEMS技术的自适应光学微变形镜的设计与分析[D].西安:西北工业大学,2003.
    [151]饶伏波,乔大勇等.自适应光学系统MEMS微变形镜的研究[J].纳米技术与精密工程,2004(04):288-293.
    [152]何洋. MEMS微变形镜的系统级建模研究[D].西安:西北工业大学,2005.
    [153]向东,陈海清等.带透明电极可变形反射镜的研制[J].光电子·激光,2006.17(07):849-853.
    [154]陈家凤,陈海清. MEMS变形反射镜主要特性测试[J].光子学报,2009.38(12):3245-3249.
    [155]孙全.基于PolyMUMPs技术的微机电变形镜的研究[D].长沙:国防科学技术大学,2011.
    [156]吕赛君,裴旦等.基于微光机电系统的微光学自适应微镜的研究[J].光学学报,2007.27(7):1271-1274.
    [157]吕赛君,白剑等.基于MOEMS的微光学自适应微镜的研究[J].中国光学学会2006年学术大会论文摘要集,2006.
    [158]王丹.小像差压电变形镜制造技术研究[D].苏州:苏州大学,2011.
    [159]许晓慧.基于PZT厚膜的MEMS微变形镜[D].合肥:中国科学技术大学,2008.
    [160]林旭东,刘欣悦等.137单元变形镜的性能测试及校正能力实验[J].光学精密工程,2013.21(02):267-273.
    [161]林旭东,刘欣悦等.基于干涉仪测量的变形镜面形展平标定研究[J].光子学报,2012.41(5):511-515.
    [162]林旭东,薛陈等.自适应光学波前校正器技术发展现状[J].中国光学,2012.5(4):337-351.
    [163]林旭东,刘欣悦等.961单元变形镜研制及性能测试[J].光学学报,2013.33(6):601001.
    [164] Forbes, F.,Roddier, N. Adaptive optics using curvature sensing[C]. SPIE,1991.1542:140-147.
    [165] Jagourel, P.,Madec, P.Y.,et al. Adaptive Optics: A bimorph mirror for wavefrontcorrection[C]. SPIE,1990.1271:160-171.
    [166] Northcott, M. The university of Hawaii adaptive optics system. II. Computer simulation[C].SPIE,1991.1542:254-261.
    [167] Madec, P. Overview of Deformable Mirror Technologies for Adaptive Optics andAstronomy[C]. SPIE,2012.8447:844705-1.
    [168] Ning, Y., Jiang, W.,et al. Response function calculation and sensitivity comparison analysisof various bimorph deformable mirrors[J]. Opt. Express,2007.15(19):12030-12038.
    [169]许尚贤.机械设计中的有限元法[M].北京:高等教育出版社,1992.
    [170]朱伯芳.有限元方法原理与应用[M].北京:水利电力出版社,1979.
    [171]李景湧.有限元方法[M].北京:北京邮电大学出版社,2000.
    [172]杨李成.能动变形反射镜技术研究[D].成都:中科院光电技术研究所,2008.
    [173] Sobolev, A.,Cherezova, T.,et al. Optimized bimorph flexible mirrors for laser beamcorrection and shaping[C]. SPIE,2005.5876:58760F.
    [174] Kudryashov, A., Sobolev, A.,et al. Novel development of tiny bimorph mirrors[C]. SPIE,2007.6467:64670o.
    [175]宁禹,周虹等.20单元双压电片变形反射镜的影响函数有限元分析和实验测量[J].光学学报,2008.318(09):1638-1642.
    [176]饶学军,凌宁.用数字干涉仪测量变形镜影响函数的实验研究[J].光学学报,1995.15(10):1446-1451.
    [177]崔玉国,孙宝元等.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003.11(3):270-275.
    [178] Krejci, P.,Kuhnen, K. Inverse control of systems with hysteresis and creep[J]. Control Theoryand Applications,IEEE,2001.148(3):185-192.
    [179]丁心志,官春林.变形镜面形影响函数的有限元仿真[J].光学仪器,2008.161(01):40-44.
    [180]凌宁,官春林.变形反射镜的发展[J].光电工程,1995(01):14-22.
    [181]宁禹,余浩等.20单元双压电片变形镜的性能测试与闭环校正实验研究[J].物理学报,2009. v.58(07):4717-4723.
    [182]凌宁,张雨东等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报,2004.24(9):1153-1158.
    [183] Ling, N., Zhang, Y.,et al. High resolution mosaic image of capillaries in human retina byadaptive optics[J]. Chinese Optics Letters,2005.3(4):225-226.
    [184]蔡冬梅,凌宁等.反射型LCOS显示板用于人眼波前像差校正的研究[J].光电子.激光,2008.19(7):992-995.
    [185]姜宝光,曹召良等.激光为光源的液晶自适应眼底成像系统[J].光学精密工程,2008.16(10):1805.
    [186] Li, C., Xia, M.,et al. High-resolution retinal imaging through open-loop adaptive optics[J].Journal of biomedical optics,2010.15(4):046009-046009-6.
    [187] Farrell, T. Woofer-tweeter adaptive optics for astronomy:NATIONAL UNIVERSITY OFIRELAND,2010.
    [188] Carvalho, L.A. Accuracy of Zernike Polynomials in Characterizing Optical Aberrations andthe Corneal Surface of the Eye[J]. IOVS,2005.46(6):1915-1926.
    [189]杨华锋.用于提高自适应光学系统空间校正能力的组合变形镜波前校正技术研究[D].长沙:国防科学技术大学,2008.
    [190]张永康.激光加工技术:化学工业出版社工业装备与信息工程出版中心,2004.
    [191] Dubey, A.K.,Yadava, V. Laser beam machining—a review[J]. International Journal ofMachine Tools and Manufacture,2008.48(6):609-628.
    [192] Kostylev, A., Sobolev, A.,et al. Genetic algorithm for intracavity laser beam shaping[C].SPIE,2005.5876:587605.
    [193] Gropp, A., Hutfless, J.,et al. Laser beam cutting[J]. Optical and quantum electronics,1995.27(12):1257-1271.
    [194]黄英奇,程兆谷等.自适应变形镜激光应用技术[J].激光与光电子学进展,2003.40(1):46-51.
    [195] Cheng, Z.,Zhang, Z.,et al. Self-adaptive optical systems for long-distance flying optics[J].Appl. Opt,2006.45(18):4428-4432.
    [196] Vorontsov, M.,Sivokon, V. Stochastic parallel-gradient-descent technique for high-resolutionwave-front phase-distortion correction[J]. J. Opt. Soc. Am. A,1998.15(10):2745-2758.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.