西尼罗病毒核酸及抗体检测体系的建立与评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西尼罗病毒(West Nile virus,WNV)是黄病毒科黄病毒属成员,最早于1937年于乌干达一位发热妇女的血液中分离到。西尼罗病毒引起的西尼罗脑炎和西尼罗热是严重影响人类及动物健康的传染病。WNV以往仅在非洲、西亚、中东地区流行,60年代初传入欧洲,自1999年起在西半球登陆,并相继在美国传播。美国CDC报道了美国2007年前半年WNV感染的情况,共有19个州的122人感染了WNV。WNV也可通过输血及器官移植传播。WNV的流行对人类及动物健康产生巨大的威胁。
     目前尚无针对WNV的特效治疗药物,亦无有效的疫苗预防WNV感染。我国目前还未见人感染WNV的病例和在动物体内发现WNV的报道。由于野生鸟类是其自然宿主,携带病毒的候鸟可能导致病毒在不同地区之间的传播,随着候鸟的迁徙及我国与世界其他国家之间的贸易、旅游、人员往来日益频繁,WNV通过各种途径传入我国的可能性很大。为有效应对我国可能发生的WNV的暴发流行,有必要开展对WNV检测方法的研究。
     本研究首先通过选取WNV较保守的衣壳蛋白基因区作为目的扩增片段,建立WNV荧光定量检测体系,同时对检测体系进行了方法学评价。对西尼罗病毒囊膜蛋白基因进行分析确定其抗原决定簇区域并克隆该囊膜蛋白结构域Ⅲ基因,进而通过基因重组技术获得病毒囊膜蛋白结构域Ⅲ抗原。基于表达的结构域Ⅲ抗原建立WNV抗体检测体系并对建立的检测体系进行了相应的方法学评价。WNV核酸及抗体检测体系的建立对于我国人与动物的WNV感染监控、人类输血安全以及技术储备等均具有重要的意义。主要分以下三个方面进行介绍。
     1.WNV核酸检测体系的建立及评价
     本研究建立了一种实时荧光定量PCR快速检测西尼罗病毒的方法。通过序列比对和blast分析,确定WNV衣壳蛋白保守区基因为检测的目的基因,引物采用Primer Premier5.0软件进行设计。本研究建立的检测方法利用SYBRGreenⅠ染料,相比探针法成本较低。通过熔解曲线分析表明,建立的检测方法在扩增过程中没有发现有二聚体的产生。本检测体系在用空白对照及类似的乙脑病毒作为扩增对照时,没有发现非特异性产物的生成,表明该体系对于WNV的检测是特异的。将阳性对照标准品进行10倍梯度稀释后,可检测到10~2copies/μL样品,表明该检测体系具有很高的检测灵敏度。通过6次批间重复检测,体系的变异系数小于3%,表明该检测体系具有良好的可重复性。
     同时也对检测体系进行了重复性、特异性及检测灵敏度的评价。总之建立的检测体系可以用于我国疑似WNV感染的人群、动物来源样品的检测,同时也可用于血液、血液制品等中可能带毒的样品的系统监测。
     2.西尼罗病毒E蛋白结构域Ⅲ在昆虫S2细胞中的表达与鉴定
     西尼罗病毒囊膜蛋白结构域Ⅲ(DomainⅢ)位于WNV病毒膜蛋白的最表面,是诱导机体产生抗体的主要保护性抗原,同时DomainⅢ也是WNV感染细胞时与细胞表面结合的主要位点。本研究根据GenBank中发表的WNV囊膜蛋白DomainⅢ基因序列设计了一对引物并分别引入NotⅠ和NcoⅠ酶切位点,用PCR方法扩增DomainⅢ基因片段。回收目的基因片段,并用NotⅠ和NcoⅠ限制性内切酶消化,经纯化后,将其定向克隆入果蝇表达载体pMT/B/V5中,构建重组表达载体pMT-DⅢ。测序验证正确后,用脂质体转染法与辅助质粒pCoBlast共转染果蝇S2细胞,通过Blasticidin(杀稻瘟素)进行加压筛选,获得了抗性细胞S2-DⅢ。提取S2-DⅢ细胞的基因组DNA,PCR法检测目的基因在果蝇S2细胞中的整合与表达。用终浓度500μmol/L的硫酸铜溶液诱导表达,收集无血清的细胞表达上清,样品浓缩后进行SDS-PAGE及Western Blotting检测。结果表明,本研究成功构建了重组表达载体pMT-DⅢ,转染细胞经12μg/mL的Blasticidin筛选及鉴定后获得了稳定表达WNV E DomainⅢ蛋白的果蝇S2细胞株。筛选的昆虫细胞重组表达DomainⅢ蛋白,经初步鉴定与预期相符,为建立WNV抗体ELISA检测体系提供了标准对照抗原。
     3.WNV抗体检测体系的建立与评价
     利用重组的西尼罗病毒囊膜蛋白结构域Ⅲ蛋白作为标准抗原建立其抗体检测体系。通过优化条件确立抗原的最佳包被浓度为2.5ug/mL,对照用抗体使用浓度为1600倍稀释。对建立的体系进行评价表明,该检测体系对WNV的检测特异性较高,且对其它类似病毒如乙脑病毒、牛病毒性腹泻病毒等的检测交叉反应性低。批内检测时平均值为1.002,标准差为0.0423,变异系数为0.0422。批间检测时平均值为1.162,标准差为0.151,变异系数为0.130。本研究基于表达的囊膜蛋白DⅢ蛋白建立了WNV抗体的检测技术,检测的各项指标均符合检测的要求。总之这一检测体系的建立将为我国研制WNV各种抗体检测试剂提供技术及方法上的参考。
West Nile virus(WNV) is a member of the Japanese encephalitis (JE) virus group of the genus Flavivirus, family Flaviviridae. Infection of WNV is clearly an emerging and significant public health problem. It causes infectious disease in human and other animals featured by fever and encephalitis. The outbreak of WNV encephalitis in the United States in 1999 and subsequent epidemic in North America in the following years have caused great concerns. Moreover, with the development of the epidemic, there are more and more concerns on the transmitting routes in addition to mosquito bites, such as blood transfusion, organ transplantation and vertical transmission.
     Since there is no proven therapy for WN encephalitis in humans or animals, nor any human vaccine to prevent WNV infection, preventative public health measures are of primary importance in the control of transmission of WNV. Effective controlling transmission of WNV requires rapid and sensitive assaying systems.
     Real time quantitative PCR is used routinely for the high-throughput diagnosis of pathogens, such as WNV. In this study we developed and validated a less expensive assay with the intercalating dye SYBR green I . The SYBR green-based assay was as sensitive as the TaqMan assay for WNV.
     An indirect ELISA developed for assaying WNV antibody in infectious and suspicious samples from humans and animals. Detection of WNV antibody with ELISA has the advantage of a simple, rapid in vitro procedure, and the same time, the detecting method does not require the extensive support facilities needed for conventional methods of virus isolation. Another important aspect of this assay is the stability of the noninfectious viral protein, which is safety for assaying. Our research work includes the following:
     1. Establishment and Evaluation of Real-time PCR for Detection ofWNV
     A rapid real-time polymerase chain reaction (RT-PCR) for detection of WNV was established in this study. Primers were designed according to capsid protein gene with Primer Premier5.0. In response, we developed and validated a less expensive assay with the intercalating dye SYBR green I . Amplifying curve showed that this method could successfully amplify WNV gene, nevertheless reference Japanese encephalitis and blank control were all negative. 10-fold dilutions of positive WNV DNA were used to measure the sensitivity of RT-PCR. The assaying system could detect 10~2 Copies/μL WNV gene. The newly-built real-time PCR has high sensitivity, good specificity, reliable stability, so it has potential to apply in inspection and quarantine of WNV.
     2. Expression and Identification of WNV E DomainⅢin Drosophila S2 Cell Lines
     The envelope protein is a major determinant of tropism and the primary target of virus-neutralizing antibody. In particular, domainIII of envelope is the major protective antigen of WNV, which can induce the production of neutralizing antibodies to neutralize the infectivity of the virus. This study constructed a expressed vector(pMT-DIII). pMT-DIII was transfected into S2 cells. S2- DIII cell which could permanently express recombinant DIII protein was established. The assessment of purity and speciality of WNV E DIII used SDS-PAGE and Western blotting.
     3. Establishment and Evaluation of Antibody ELISA Assaying System of WNV
     We adapted an indirect Ab enzyme-linked assay to facilitate studies of WNV and evaluated its application. Serological diagnosis of WNV infection is complicated by extensive antigenic cross-reactivity with other closely related virus, such as JEV and BVDV. This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WNV surveillance in our country. Here we describe a recombinant, S2 cell expressed antigen equivalent to structural domain III of the WNV envelope protein that has allowed clear discrimination of antibody responses to WNV from other related virus in indirect enzyme-linked assays using standardized control antiserum and some samples. This recombinant antigen has great potential to become the antigen of choice and will facilitate the standardization of reagents and implementation of WNV surveillance in our country.
引文
1.邓永强,姜涛,范宝昌,于曼,祝庆余,秦鄂德.西尼罗病毒的RT-PCR检测与鉴定.微生物学免疫学进展,2004,32:31-35
    2.高志勇,庄辉.西尼罗病毒研究进展.中华流行病学杂志,2005,26:62-64
    3.何虎鹏,张久松,丁国武,张泮河,刘一萍,高玉然,曹务春.西尼罗病毒抗体酶联免疫吸附试验检测方法的评价.中国人兽共患病学报,2007,23:121-123
    4.姜淑芳.中国重要库蚊属蚊虫传播西尼罗病毒的实验研究.军事医学科学院博士学位论文,北京:军事医学科学院图书馆,2006
    5.姜焱,张长印,王凯民,张敬民,唐泰山,陈国强,张鹤晓.检测马西尼罗热病毒抗体的重组E蛋白ELISA的建立.农业生物技术学报,2007,15(2):323-326
    6.金宁一,胡仲明,冯书章.新编人兽共患病学.北京:科学出版社,2007,190-191
    7.匡燕云,李思光,罗玉萍.环介导等温扩增核酸技术及其应用.微生物学通报,2007,34:557-560
    8.黎伟明,赵庆龙,邓立权,彭月华,宋绪华,白光大.西尼罗病预防控制现状与进展.中国国境卫生检疫杂志,2007,30:254-256
    9.罗招凡,丁鹤林,刘建伟.SYBR Green Ⅰ荧光定量PCR检测西尼罗病毒.中华医院感染学杂志,2007,17:1031-1034
    10.任军.西尼罗病毒研究进展.生命科学,2005,17:445-447
    11.陶三菊.近年来西尼罗热研究进展.国外医学病毒学分册,2002,9:97-100
    12.王丽,石磊,李琳.DNA环介导的恒温扩增法在快速鉴定病原微生物中的应用.生命的化学,2006,26:462-464
    13.魏荣,王志亮.美国西尼罗病毒感染的实验室诊断进展.中华微生物学和免疫学杂志,2004,24:162-164
    14.徐卫民,项海青.西尼罗热研究进展.浙江预防医学,2005,17:54-56
    15.于萍,魏荣,王志亮,杨艳菊.西尼罗病毒蚊媒的种类、研究进展及监控措施.中国媒介生物学及控制杂志,2005,16:324-326
    16.俞永新.近年来西尼罗热的流行现状及其流行的表型和基因型特性.国外医学流行病学传染病学分册,2005,32:129-134
    17.章金刚.西尼罗河病毒筛查与血液相关传播.临床输血与检验,2004,6:308-310
    18.张久松.西尼罗病毒感染病原体检测方法与流行病学调查研究.军事医学科学院博士后研究工作报告,北京:军事医学科学院图书馆,2005
    19.张久松,张泮河,左曙青,司炳银,曹务春.西尼罗病毒RT-PCR检测方法的建立及其初步应用.中国人兽共患病杂志,2004,20.737-740
    20.张晓龙.蚊-鸟-蚊循环在在西尼罗病毒传播中的作用研究.军事医学科学院博士学位论文,北京:军事医学科学院图书馆,2007
    21.张应梅.我国白蚊伊蚊和埃及伊蚊传播西尼罗病毒的实验研究.军事医学科学院博士学位论文,北京:军事医学科学院图书馆,2006
    22.赵荣乐,郑光宇.西尼罗病毒与西尼罗热.生物学通报,2005,40:1-3
    23.Bakonyi T,Hubalek Z,Rudolf I,Nowotny N.Novel flavivirus or new lineage of West Nile virus,Central Europe.Emerg Infect Dis,2005,11(2):225-231
    24.Bakonyi T,Ivanics E,Erdelyi,Erdelyi K,Ursu K,Ferenczi E,Weissenbock H,Nowotny N.Lineage 1 and lineage 2 strains of encephalitis West Nile virus,Central Europe.Emerg Infect Dis,2006,12(4):618-623
    25.Bao Y P,Wei T F,Lefebvre P A,An H,He L,Kunkel G T,Muller U R.Detection of protein analytes via nanoparticle-based bio bar code technology.Anal Chem,2006,78(6):2055-2059
    26.Beasley D W,Barrett A D.Identification of neutralizing epitopes within structure domain Ⅲ of the West Nile virus envelope protein.J Virol,2002,76(24):13097-13100
    27.Beasley D W,Li L,Suderman M T,Barrett A D.Mouse neuroinvasive phenotype of West Nile virus strains varies depending upon virus genotype.Virology,2002,296:17-23
    28.Beasley D W,Holbrook M R,Travassos D a Rosa A P,Coffey L,Carrara A S,Phillippi-Falkenstein K,Bohm R P,Ratterree M S,Lillibridge K M,Ludwig G V,Weaver S C,Tesh R B,Shope R E,Barrett A D.Use of a recombinant envelope protein Subunit antigen for specific serological diagnosis of West Nile virus infection.J Clini Micro,2004,42(6):2759-2765
    29.Beasley D W,Whiteman M C,Zhang S,Huang C Y,Schneider B S,Smith D R,Gromowski G D,Higgs S,Kinney R M,Barrett A D.Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains.J Virol,2005,79:8339-8347
    30.Bertolotti L,Kitron U,Goldberg T L.Diversity and evolution of West Nile virus in Illinois and The United States,2002-2005.Virology,2006(1):1-7
    31.Bertolotti L,Kitron U D,Walker E D,Ruiz M O,Brawn J D,Loss S R,Hamer G L,Goldberg T L.Fine-scale genetic variation and evolution of West Nile Virus in a transmission "hot spot" in suburban Chicago,USA.Virology,2008
    32.Blitvich B J,Bowen R A,Marlenee N L,Hall R A,Bunning M L,Beaty B J.Epitope-blocking Enzyme-Linked immunosorbent assays for detection of West Nile virus antibodies in domestic mammals. J Clin Microbiol, 2003, 41(6): 2676-2679
    33. Bogachek M V, Protopopova E V, Loktev V B, Zaitsev B N, Favre M, Sekatskii S K, Dietler G. Immunochemical and single molecule force spectroscopy studies of specific interaction between the laminin binding protein and the West Nile virus surface glycoprotein E domain II. J Mol Recognit, 2008(21): 55-62
    34. Borisevich V, Seregin A, Nistler R, Mutabazi D, Yamshchikov V. Biological properties of chimeric West Nile viruses. Virology, 2006(349):371 -381
    35. Botha E M, Markotter W, Wolfaardt M, Paweska J T, Swanepoel R, Palacios G, Nel L H, Venter M. Genetic determinants of virulence in pathogenic lineage 2 west nile virus strains. Emerg Infect Dis, 2008, 14(2):222-30
    36. Brault A C, Langevin S A, Bowen R A, Panella N A, Biggerstaff B J, Miller B R, Komar N. Differential virulence of West Nile strains for American crows. Emerg Infect Dis, 2004, 10(12):2161-2167
    37. Buckley A, Dawson A, Gould E A. Detection of seroconversion to West Nile virus, Usutu virus and Sindbis virus in UK sentinel chickens. VirolJ, 2006(3):71
    38. Castillo-Olivares J, Wood J. West Nile virus infection of horses. Vet Res, 2004(35):467-483
    39. Centers for Disease Control and Prevention (CDC) of USA. West Nile virus update-United States. Morb Mortal Wkly Rep, 2007, 56(29):740-741
    40. Chambers T J, Halevy M, Nestorowicz A, Rice C M, Lustig S. West Nile virus envelope proteins: nucleotide sequence analysis of strains differing in mouse neuroinvasiveness. J Gen Virol, 1998(79):2375-2380
    41. Charrel R N, Brault A C, Gallian P, Lemasson J J, Murgue B, Murri S, Pastorino B, Zeller H, de Micco P, de Lamballerie X. Evolutionary relationship between old world West Nile virus strains. Virology, 2003(315):381-388
    42. Choi K S, Nah J J, Ko Y J, Kim Y J, Joo Y S. The DE loop of the domain III of the envelope protein appears to be associated with West Nile virus neutralization. Virus Research, 2006(1)1-3
    43. Choi K S, Ko Y J, Nah J J, Kim Y J, Kang S Y, Yoon K J, Joo Y S. Monoclonal antibody-based competitive Enzyme-Linked Immunosorbent Assay for detecting and quantifying West Nile virus-neutralizing antibodies in horse sera. Clin Vaccine Immunol, 2007, 14(2):134-138
    44. Corrigan R L, Waldner C, Epp T, Wright J, Whitehead S M, Bangura H, Young E, Townsend H G. Prediction of human cases of West Nile virus by equine cases, Saskatchewan, Canada, 2003. Prev Vet Med, 2006(76):263-272
    45. Chu J J, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, Ng M L. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. J Gen Virol, 2005, 86:405-412
    46. Cui F, Raymond M, Berthomieu A, Alout H, Weill M, Qiao C L. Recent emergence of insensitive acetylcholinesterase in Chinese populations of the mosquito Culex pipiens. J Med Entomol, 2006, 43(5):878-883
    47. Dai J, Wang P, Bai F, Town T, Fikrig E. ICAM-1 participates in the entry of West Nile virus into the central nervous system. J Virol, 2008, 82(8):4164-4167
    48. Davis B S, Chang G J, Cropp B, Roehrig J T, Martin DA, Mitchell CJ, Bowen R, Bunning ML. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in Enzyme-Linked Immunosorbent Assays. J Virol, 2001, 75(9):4040-4047
    49. Davis L E, Debiasi R, Goade D E, Haaland K Y, Harrington J A, Harnar J B, Pergam S A, King M K, DeMasters B K, Tyler K L. West Nile virus neuroinvasive disease. Annals of Neurology, 2006, 60(3):286-300
    50. Dawson J R, Stone W B, Ebel G D, Young D S, Galinski D S, Pensabene J P, Franke M A, Eidson M, Kramer L D. Crow deaths caused by West Nile virus during winter. Emerg Infect Dis, 2007, 13(12):1912-1914
    51. Diamond M S, Klein R S. A genetic basis for human susceptibility to West Nile virus. Trends Microbiol, 2006, 14:287-289
    52. Ding X, Wu X, Duan T, Siirin M, Guzman H, Yang Z Q, Tesh R B, Xiao S Y. Nucleotide and amino acid changes in West Nile virus strains exhibiting renal tropismin hamsters. Am J Tro Med Hyg, 2005, 73(4):803-807
    53. Dukes J P, King D P, Alexandersen S. Novel Reverse transcription loop-mediated isothermal amplification for rapid detection of foot-and-mouth disease virus. Arch Virol, 2006, 151:1093-1106
    54. Ebel G D, Carricaburu J, Young D, Bernard K A, Kramer L D. Gene and phenotypic variation of West Nile virus in New York, 2000-2003. Am J Trop Med Hyg, 2004, 71:493-500
    55. Eidson M, Komar N, Sorhage F, Nelson R, Talbot T, Mostashari F, Mclean R. Crow deaths as a sentinel surveillance system for West Nile virus in the northeastern United States, Emerg Infect Dis, 1999(7):615-620
    56. Eidson M, Miller J, Kramer L, Cherry B, Hagiwara Y. Dead crow densities and human cases of West Nile virus, New York State. Emerg Infect Dis, 2000(7):662-664
    57. Eidson M, Kramer L, Stone W, Hagiwara Y, Schmit K. Dead bird surveiliance as an early warning system for West Nile virus. Emerg Infect Dis, 2001(7):631-635
    58. Fayzulin R, Scholle F, Petrakova O, Frolov I, Mason P W. Evaluation of replicative capacity and genetic stability of West Nile virus replicons using highly efficient packaging cell lines. Virology, 2006(351): 196-209
    59. Figuerola J, Soriguer R, Rojo G, G6mez Tejedor C, Jimenez-Clavero MA. Seroconversion in wild birds and local circulation of West Nile virus, Spain. Emerg Infect Dis, 2007, 13(12):1915-1917
    60. GB/T 19440-2004. Protocol of detecting avian influenza virus using NASBA
    61. Glass W G, Lim J K, Cholera R, Pletnev A G, Gao J L, Murphy PM. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med, 2005, 202:1087-1098
    62. Gosselin P, Lebel G, Rivest S, Douville-Fradet M. The integrated system for public health monitoring of West Nile virus (ISPHM-WNV): a real-time GIS for surveillance and decision-making. Int J Health Geogr, 2005(4):21
    63. Gould L H, Sui J, Foellmer H, Oliphant T, Wang T, Ledizet M, Murakami A, Noonan K, Lambeth C, Kar K, Anderson J F, de Silva A M, Diamond M S, Koski R A, Marasco W A, Fikrig E. Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile virus. J Virol, 2005, 79(23):14606-14613
    64. Guptill S C, Julian K G, Campbell G L, Price S D, Marfin A A. Early season avian deaths from West Nile virus as warnings of human infection. Emerg Infect Dis, 2003(9):483-484
    65. Hadfield T L, Turell M, Dempsey M P, David J, Park E J. Detection of West Nile virus in mosquitoes by RT-PCR. Mol Cell Probes, 2001(15): 147-150
    66. Hanna S L, Pierson T C, Sanchez M D, Ahmed A A, Murtadha M M, Doms R W. N-Linked glycosylation of West Nile virus envelope proteins influences particle assembly and infectivity. J Virol, 2000, 79:13262-13274
    67. Hayes E B, Komar N, Nasci R S, Montgomery S P, O'Leary D R, Campbell G L. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis, 2005, 11(8): 1167-1173
    68. Holmes D A, Purdy D E, Chao D Y, Noga A J, Chang G J. Comparative analysis of immunoglobulin M (IgM) capture Enzyme-Linked Immunosorbent Assay using virus-like particles or virus-infected mouse brain antigens to detect IgM antibody in sera from patients with evident flaviviral infections. J Clin Microbiol, 2005, 43(7):3227-3236
    69. Hong T C, Mai Q L, Cuong D V, Parida M, Minekawa H, Notomi T, Hasebe F, Morita K. Development and evaluation of a novel Loop-mediated Isothermal Amplification Method for rapid detection of Severe Acute Respiratory Syndrome coronavirus. J Clin Microbiol, 2004, 42(5):1956-1961
    70. Hunt A R, Hall R A, Kerst A J, Nasci R S, Savage H M, Panella N A, Gottfried K L, Burkhalter K L, Roehrig J T. Detection of West Nile Virus antigen in mosquitoes and avian tissues by a monoclonal Antibody-Based Capture Enzyme Immunoassay. J Clin Microbiol, 2002, 40(6):2023-2030
    71. Jain N, Fisk D, Sotir M, et al. West Nile encephalitis, status epilepticus and West nile pneumonia in a renal transplant patient. Transpl Int, 2007, 20(9):800-803
    72. Jean C M, Honarmand S, Louie J K, Glaser C A. Risk factors for West Nile virus neuroinvasive disease, California, 2005. Emerg Infect Dis, 2007, 13(12):1918-20
    73. Johnson A J, Langevin S, Wolff K L, Komar N. Detection of Anti-West Nile virus immunoglobulin M in chicken serum by an Enzyme-Linked Immunosorbent Assay. J Clin Microbiol, 2003, 41(5):2002-2007
    74. Johnson A J, Noga A J, Kosoy O, Lanciotti R S, Johnson A A, Biggerstaff B J. Duplex Microsphere-Based immunoassay for detection of Anti-West Nile virus and Anti-St. Louis Encephalitis virus immunoglobulin M antibodies. Clin Diagn Lab Immunol, 2005, 12(5):566-574
    75. Jourdain E, Gauthier-Clerc M, Sabatier P, Grege O, Greenland T, Leblond A, Lafaye M, Zeller H G. Magpies as hosts for West Nile virus, southern France. Emerg Infect Dis, 2008, 14(1):158-60
    76. Joyner P H, Kelly S, Shreve A A, Snead S E, Sleeman J M, Pettit D A. West Nile virus in raptors from Virginia during 2003. J Wildl Dis, 2006, 42(2):335-344
    77. Julian K G, Eidson M, Kipp A M, Weiss E, Petersen L R, Miller J R, Hinten S R, Marfin A A. Early season crow mortality as a sentinel for West Nile virus disease in humans, northeastern United States. Vector Borne Zoonotic Dis, 2002(2):145-I55
    78. Kanai R, Kar K, Anthony K, Gould H, Ledizet M, Fikrig E, Marasco W A, Koski R A, Mokis Y. Crystal structure of West Nile virus envelope glycoprotein reveals viral Surface epitopes. J Viro, 2006, 80(22):11000-11008
    79. Kanesa-Thasan N, Putnak J R, Mangiafico J A, Saluzzo J E, Ludwig G V. Absence of protective neutralizing antibodies to West Nile virus in subjects following vaccination with Japanese encephalitis or dengue vaccines. Am J Trop Med Hyg, 2002, 66:115-116
    80. Kaufmann B, Nybakken G E, Chipman P R, Zhang W, Diamond M S, Fremont D H, Kuhn R J, Rossmann M G. West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody. Proc Natl Acad Sci, 2006, 103(33): 12400-12404
    81. Kilpatrick A M, Kramer L D, Jones M J, Marra P P, Daszak P. West Nile virus epidemics in north America are driven by shifts in mosquito feeding behavior. PLoS Biol, 2006(4):606-611
    82. Klein R S, Lin E, Zhang B, Luster A D, Tollett J, Samuel M A, Engle M, Diamond M S. Neuronal CXCL10 directs CD8 T-Cell recruitment and control of West Nile virus encephalitis. J Virol, 2005, 79:13262-13274
    83. Komar N, Panella N A, Burns J E, Dusza S W, Mascarenhas T M, Talbot T O, Serologic evidence for West Nile virus infection in birds in the New York City vicinity during an outbreak in 1999. Emerg Infect Dis, 2001(7):621-625
    84. Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis, 2003(9):311-322
    85. Komar N. West Nile virus: epidemiology and ecology in North America. Adv Virus Res, 2003(61): 185-234
    86. Kramer L D, Styer L M, Ebel G D. A Global Perspective on the Epidemiology of West Nile Virus. Annu Rev Entomol, 2008(7):61-81
    87. Kou X, Wu Q, Zhang J, Fan H. Rapid detection of Noroviruses in fecal samples and shellfish by Nucleic Acid Sequence-based Amplification. J Microbiol, 2006, 44(4):403-408
    88. Lee D H, Mathew J, Pfahler W, Ma D, Valinsky J, Prince A M, Andrus L. Individual donor nucleic acid amplification testing for detection of West Nile virus. J Clin Microbiol, 2005, 43(10):5111-5116
    89. Lim J K, Glass W G, McDermott D H, Murphy P M. CCR5: no longer a good for nothing gene chemokine control of West Nile virus infection. Trends Immunol, 2006, 27:308-311
    90. Ludolfs D, Niedrig M, Paweska J T, Schmitz H. Reverse ELISA for the detection of anti West Nile virus IgG antibodies in humans. Eur J Clin Microbiol Infect Dis, 2007(26)467-73
    91. Lanciotti R S, Roehrig J T, Deubel V. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science, 2000, 286:23332-23371
    92. Lanciotti R S, Kerst A J. Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis Encephalitis viruses. J Clin Microbiol, 2001, 39(12):4506-4513
    93. Lanciotti R S, Ebel G D, Deubel V, Kerst A J, Murri S, Meyer R, Bowen M, Mckinney N, Morrill W E, Crabtree M B, Kramer L D, Roehrig J T. Complete genome sequences and phylognetic analysis of West Nile virus strains isolated from the United States, Europe, and the Middle East. Virology, 2002(298):96-105
    94. Lieberman M M, Clements D E, Ogata S, Wang G, Corpuz G, Wong T, Martyak T, Gilson L, Coller B A, Leung J, Watts D M, Tesh R B, Siirin M, Travassos da Rosa A, Humphreys T, Weeks-Levy C. Preparation and immunogenic properties of a recombinant West Nile subunit vaccine. Vaccine, 2006(1): 1-10
    95. Li J, Bhuvanakantham R, Howe J, Ng M L. The glycosylation site in the envelope protein of West Nile virus (Sarafend) plays an important role in replication and maturation processes. J Gen Virol, 2006(87):613-622
    96. Li L, Barrett A D, Beasley D W. Differential expression of domain Ⅲ neutralizing epitopes in the envelope proteins of West Nile virus strains. Virology, 2005(335):99-105
    97. Lindsey N P, Kuhn S, Campbell G L, Hayes E B. West Nile Virus neuroinvasive disease incidence in the United States, 2002-2006. Vector Borne Zoonotic Dis, 2008, 8(1):35-39
    98. Linke S, Ellerbrok H, Niedrig M, Nitsche A, Pauli G. Detection of West Nile virus lineages 1 and 2 by real-time PCR. J Virol Methods, 2007(146):355-358
    99. Liu W J, Wang X J, Clark D C. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. J Virol, 2006, 80: 2396-2404
    100. Lo M K, Tilgner M, Shi PY. Potential high-throughput assay for screening inhibitors of West Nile virus replication. J Virol, 2003, 77(23): 12901-12906
    101.Ludwig G V, Calle P P, Mangiafico J A, Raphael B L, Danner D K, Hile J A, Clippinger T L, Smith J F, Cook R A, McNamara T. An outbreak of West Nile virus in a New York City captive wildlife population. Am J Trop Med Hyg, 2002(67):67-75
    102.Macdonald J, Tonry J, Hall R A, Williams B, Palacios G, Ashok M S, Jabado O, Clark D, Tesh R B, Briese T, Lipkin W I. NS1 protein secretion during the acute phase of West Nile virus infection. J Virol, 2005, 79: 13924-13933
    103.Maher-Sturgess S L, Forrester N L, Wayper P J, Gould E A, Hall R A, Barnard R T, Gibbs M J. Universal primers that amplify RNA from all three flavivirus subgroups. Virol J, 2008(5): 16
    104.Malan A K, Martins T B, Hill H R, Litwin C M. Evaluations of commercial West Nile virus Immunoglobulin G (IgG) and IgM Enzyme Immunoassays show the value of continuous validation. J Clin Microbiol, 2004, 42(2):727-733
    105. Martina B E, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan G F, Osterhaus A D. Immunization with West Nile virus envelope domain III protects mice against lethal infection with homologous and heterologous virus. Vaccine, 2007(1): 1-5
    106. Martin D A, Noga A, Kosoy O, Johnson A J, Petersen L R, Lanciotti R S. Evaluation of a diagnostic algorithm using immunoglobulin M Enzyme-Linked Immunosorbent Assay to differentiate human West Nile virus and St. Louis Encephalitis virus infections during the 2002 West Nile virus epidemic in the United States. Clin Diagn Lab Immunol, 2004, 11(6):1130-1133
    107.Mcabee R D, Green E N, Holeman J, Christiansen J, Frye N, Dealey K, Mulligan F S, Brault A C, Cornel A J. Identification of Culex pipiens complex mosquitoes in a hybrid zone of West Nile virus transmission in Fresno county, California. Am J Trop Med Hyg, 2008, 78(2):303-310
    108.Mclean R G, Ubico S R, Docherty D E, Hansen W R, Sileo L, Mcnamara T S. West Nile virus transmission and ecology in birds. Ann N Y Acad Sci, 2001(951):54-57
    109.Monath T P, Liu J, Kanesa-Thasan N, Myers G A, Nichols R, Deary A, McCarthy K, Johnson C, Ermak T, Shin S, Arroyo J, Guirakhoo F, Kennedy J S, Ennis F A, Green S, Bedford P. A live, attenuated recombinant West Nile virus vaccine. Proc Natl Acad Sci, 2006,103(17):6694-6699
    110. Mostashari F, Kulldorff M, Hartman J J, Miller J R, Kulasekera V. Dead bird clusters as an early warning system for West Nile virus activity. Emerg Infect Dis, 2003(9):641-646
    111. Muerhoff A S, Dawson G J, Dille B, Gutierrez R, Leary T P, Gupta M C, Kyrk C R, Kapoor H, Clark P, Schochetman G, Desai S M. Enzyme-Linked Immunosorbent Assays using recombinant Envelope protein expressed in COS-1 and Drosophila S2 cells for detection of West Nile virus immunoglobulin M in serum or cerebrospinal fluid. Clin Diagn Lab Immunol, 2004, 11(4):651-657
    112.Mukhopadhyay S, Kim B S, Chipman P R, Rossmann M G, Kuhn R J. Science, 2003, 302(10):248 113.Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-Based Bio-Bar Codes for the ultrasensitive detection of proteins. Science, 2003, 301 (5641): 1884-1886
    114. Nash D. The outbreak of West Nile vrus infection in the New York city area in 1999. New Engl J Med, 2001, 344:1807-1814
    115.Niedrig M, Sonnenberg K, Steinhagen K, Paweska J T. Comparison of ELISA and immunoassays for measurement of IgG and IgM antibody to West Nile virus in human sera against virus neutralization. J Virol Methods, 2007( 139): 103-105
    116.Nicolle L, Gutkin A, Smart G, Dawood M, Drebot M, Van Caeseele P, Giulivi A, Minuk G. Serological studies of West Nile virus in a liver transplant population. Can J Infect Dis Med Microbiol, 2004, 15(5): 271-274
    117.Niedrig M, Kursteiner O, Herzog C, Sonnenberg K. Evaluation of an indirect immunofluorescence assay for detection of immunoglobulin M (IgM) and IgG antibodies against yellow fever virus. Clin Vaccine Immunol, 2008, 15(2): 177-181
    118. Nielsen C F, Armijos M V, Wheeler S, Carpenter T E, Boyce W M, Kelley K, Brown D, Scott T W, Reisen W K. Risk factors associated with human infection during the 2006 West Nile virus outbreak in Davis, a residential community in northern California. Am J Trop Med Hyg, 2008, 78(1):53-62
    119.Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 2000, 28(12):63
    120.Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, Fremont D H. Structual basis of West Nile virus neutralization by a therapeutic antibody. Nature, 2005, 437:764-769
    121.0zer N, Ergunay K, Simsek F, Kaynas S, Alten B, Caglar S S, Ustacelebi S. West Nile virus studies in the Sanliurfa Province of Turkey. J Vector Ecol, 2007,32(2):202-206
    122. Pant G R, Lunt R A, Rootes C L, Daniels P W. Serological evidence for Japanese encephalitis and West Nile viruses in domestic animals of Nepal. Comparative Immunology, Microbiology & Infectious Diseases, 2006(29): 166-175
    123.Papin J F, Vahrson W, Dittmer D P. SYBR Green-based real-time quantitative PCR assay for detection of West Nile virus circumvents false-negative results due to strain variability. J Clin Microbiol, 2004, 42(3): 1511-1518
    124.Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol, 2004, 42(1): 257-263
    125. Payne A F, Binduga-Gajewska I, Kauffman E B, Kramer L D. Quantitation of flaviviruses by fluorescent focus assay. J Virol Methods, 2006(134):183-189
    126.Petersen L R , Roehrig. West Nile virus: a reemerging global pathogen. Emerg Infect Dis, 2001, 7(4): 611-614
    127.Pletnev A G, Swayne D E, Speicher J, Rumyantsev A A, Murphy B R. Chimeric West Nile/dengue virus vaccine candidate: Preclinical evaluation in mice, geese and monkeys for safety and immunogenicity. Vaccine, 2006(24):6392-6404
    
    128. Prince H E, Hogrefe W R. Detection of West Nile virus (WNV)-specific immunoglobulin M in a reference laboratory setting during the 2002 WNV season in the United States. Clin Diagn Lab Immunol, 2003, 10(5):764-768
    
    129. Prince H E, Lape-Nixon M. Evaluation of a West Nile virus immunoglobulin a capture Enzyme-Linked Immunosorbent Assay. Clin Diagn Lab Immunol, 2005, 12(1):231-233
    
    130. Prince H E, Tobler L H, Yeh C, Gefter N, Custer B, Busch M P. Persistence of West Nile virus-specific antibodies in viremic blood donors. Clin Vaccine Immunol, 2007, 14(9):1228-1230
    
    131. Ramanathan M P, Chambers J A, Pankhong P, Chattergoon M, Attatippaholkun W, Dang K, Shah N, Weiner D B. Host cell killing by the West Nile virus NS2B-NS3 proteolytic complex: NS3 alone is sufficient to recruit caspase-8-based apoptotic pathway. Virology, 2006,345:56-72
    
    132.Rawlins M L, Swenson E M, Hill H R, Litwin C M. Evaluation of an Enzyme Immunoassay for detection of immunoglobulin M antibodies to West Nile virus and the importance of background subtraction in detecting nonspecific reactivity. Clin Vaccine Immunol, 2007, 14(6):665-668
    133. Ray D, Shah A, Tilgner M, Guo Y, Zhao Y, Dong H, Deas T S, Zhou Y, Li H, Shi P Y. West Nile virus 5-Cap structure is formed by sequential guanine N-7 and ribose 2-0 methylations by nonstructural protein. J Virol, 2006, 80(17): 8362-8370
    134.Reisen W, Brault A C. West Nile virus in north America: perspectives on epidemiology and intervention. Pest Manag Sci, 2007, 20:20-22
    135.Rochlin I, Santoriello M P, Mayer R T, Campbell S R. Improved high-throughput method for molecular identification of Culex mosquitoes. J Am Mosq Control Assoc, 2007, 23(4):488-91
    136. Russell B J, Velez J O, Laven J J, Johnson A J, Chang G J, Johnson B W. A comparison of concentration methods applied to non-infectious flavivirus recombinant antigens for use in diagnostic serological assays. J Virol Methods, 2007(145):62-70
    137.Rutjes S A, van den Berg H H, Lodder W J, de Roda Husman A M. Real-time detection of noroviruses in surface water by use of a broadly reactive Nucleic Acid Sequence-Based Amplification Assay. Appl Environ Microbiol, 2006, 72(8):5349-5358
    138.Sames W J, Duffy A, Maloney F A, Townzen J S, Brauner J M, McHugh C P, Lilja J. Distribution of mosquitoes in Washington State. J Am Mosq Control Assoc, 2007, 23(4):442-448
    139. Samuel M A, Diamond M S. Alpha/Beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol, 2005, 79(21):13350-13361
    140. Samuel M A, Diamond M S. Pathogenesis of West Nile virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol, 2006, 80(19):9349-9360
    141. Samuel M A, Whitby K, Keller B C, Marri A, Barchet W, Williams B R, Silverman R H, Gale M Jr. Diamond. PKR and RNase L Contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol, 2006(7):7009-7019
    142. Sanchez M D, Pierson T C, McAllister D, Hanna S L, Puffer B A, Valentine L E, Murtadha M M, Hoxie J A, Doms R W. Characterization of neutralizing antibodies to West Nile virus. Virology, 2005(336):70-82
    143. Schweitzer B K, Kramer W L, Sambol A R, Meza J L, Hinrichs S H, Iwen P C, Schweitzer B K, Kramer W L, Sambol A R, Meza J L, Hinrichs S H, Iwen P C. Clinical and Vaccine Immunology, 2006, 13(3): 314-318
    144. Shi P Y, Kauffman E B, Ren P, Felton A, Tai J H, Dupuis A P, Jones S A, Ngo K A, Nicholas D C, Maffei J, Ebel G D. High-throughput detection of West Nile virus RNA. J Clin Microbiol, 2001, 39(4): 1264-1271
    145.Shirato K. Different chemokine expression in lethal and non-lethal murine West Nile virus infection. J Med Virol, 2004,74:507-513
    146.Shirato K, Miyoshi H, Goto A, Ako Y, Ueki T, Kariwa H, Takashima I. Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol, 2004, 85:3637-3645
    147.Shirato K, Miyoshi H, Kariwa H, Takashima I. Detection of West Nile virus and Japanese encephalitis virus using real-time PCR with a probe common to both viruses. J Virol Methods, 2005(126):119-125
    148.Shrestha B, Samuel M A, Diamond M S. CD8 T cells require perforin to clear West Nile virus from infected neurons. J Virol, 2006, 80(1):119-129
    149.Shrestha B, Wang T, Samuel M A, Whitby K, Craft J, Fikrig E, Diamond M S. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol, 2006, 80(11):5338-5348
    150. Sutherland G L, Nasci R S. Detection of West Nile virus in large pools of mosquitoes. J Am Mosq Control Assoc, 2007, 23(4):389-95
    151. Tachiiri K, Klinkenberg B, Mak S, Kazmi J. Predicting outbreaks:a spatial risk assessment of West Nile virus in British Columbia. Int J Health Geogr, 2006(5):21
    152.Tardei G, Ruta S, Chitu V, Rossi C, Tsai T F, Cernescu C. Evaluation of immunoglobulin M (IgM) and IgG Enzyme Immunoassays in serologic diagnosis of West Nile virus infection. J Clin Microbiol, 2000, 38(6):2232-2239
    153. Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science, 2000, 289(5): 1757-1760
    154. Theodore C. Pierson, Melissa D. Sanchez, Bridget A. Puffer, Asim A. Ahmed, Brian J. Geiss, Laura E. Valentine, Louis A. Altamura, Michael S. Diamond, Robert W. Doms. A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology, 2006(346):53-65
    155.Theophilides C N, Ahearn S C, Grady S, Merlino M. Identify West Nile virus risk areas: the dynamic continuous area space time system, Am J Epidemiol, 2003(157):843-854
    156.Toriniwa H, Komiya T. Rapid detection and quantification of Japanese Encephalitis virus by real-time reverse transcription Loop-mediated Isothermal Amplification. Microbiol. Immunol, 2006, 50(5):379-387
    157.Tsiodras S, Kelesidis T, Kelesidis I, Bauchinger U, Falagas M E. Human infections associated with wild birds. J Infect, 2008, 56(2):83-98
    158. Wacker R, Ceyhan B, Alhorn P. Magneto immuno-PCR: a novel immunoassay based on biogenic magnetosome nanoparticles. Biochem Biophys Res Commun, 2007, 357(2):391-396
    159. Wagner B, Glaser A, Hillegas J M, Erb H, Gold C, Freer H. Monoclonal antibodies to equine IgM improve the sensitivity of West Nile virus-specific IgM detection in horses. Vet Immunol Immunopathol, 2007(1):1-11
    160. Ward M P, Schuermann J A, Highfield L D, Murray K O. Murray characteristics of an outbreak of West Nile virus encephalomyelitis in a previously uninfected population of horses. Vet Microbiol, 2006(118):255-259
    161. Wayne R H, Ronald M, Mary L N, Michael W, Harry E P. Performance of immunoglobulin G (IgG) and IgM Enzyme-Linked Immunosorbent Assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other Flavivirus-specific antibodies. J Clin Microbiol, 2004, 42(10):4641-4648
    162. Wolf R F, Papin J F, Hines-Boykin R, Chavez-Suarez M, White G L, Sakalian M, Dittmer D P. Baboon model for West Nile Virus infection and vaccine evaluation. Virology, 2006(355) :44-51
    163. Wong S J, Demarest V L, Boyle R H, Wang T, Ledizet M, Kar K, Kramer L D, Fikrig E, Koski R A. Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J Clin Microbiol, 2004, 42(1):65-72
    164.Yakub I. Single nucleotide polymorphisms in genes for 20-50-oligoadenylate synthetase and RNase L in patients hospitalized with West Nile virus infection. J Infect Dis, 2005, 192: 1741-1748
    165. Yamshchikov G, Borisevich V, Kwok C W, Nistler R, Kohlmeier J, Seregin A, Chaporgina E, Benedict S, Yamshchikov V. The suitability of yellow fever and Japanese encephalitis vaccines for immunization against West Nile virus. Vaccine, 2005, 23:4785-4792
    166. Zhang J G. The screening WNV and its transmission through blood. Journal of Clinical Transfusion and Laboratory Medicine, 2004, 6(4):308-310
    167. Zhang S, Li L, Woodson S E, Huang C Y, Kinney R M, Barrett A D, Beasley D W. A mutation in the envelope protein fusion loop attenuates mouse neuroinvasiveness of the NY99 strain of West Nile virus. Virology, 2006(353):35-40
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.