二硫化碳等几种非线性材料的飞秒光学非线性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着激光技术的不断发展,超短激光脉冲被用于很多领域。在非线性光学方面,超短激光脉冲因其高的峰值强度和良好的时间分辨本领广泛用于研究各种材料的非线性光学性质。简单液体、金属酞菁及半导体材料三种典型材料在非线性光学研究领域具有巨大的潜在应用价值。通过研究简单液体分子在超短脉冲作用下的非线性光学特性使人们了解到了超短激光脉冲与简单液体分子相互作用时的微观机制,探索简单液体分子中电子、分子内运动及分子间运动等动力学过程。通过研究金属酞菁材料及半导体材料在超短脉冲作用下的非线性光学特性为其在实际应用中提供理论基础,同时也指导材料的合成。本文用飞秒激光脉冲通过Z-scan技术、光学克尔效应技术和泵浦探测技术研究了二硫化碳、二甲基亚砜、金属酞菁ZnPc(OBu)_6(NCS)及ZnSe晶体的非线性光学特性,并对实验结果进行解释。取得的主要创新成果如下:
     在低光强作用下,CS_2的光学非线性仅来源于三阶非线性效应,当光强增大到某一阈值时,三阶非线性效应和五阶非线性效应将同时出现。通过在不同光强下的Z-scan实验我们获得了三阶非线性折射率、五阶非线性折射率以及出现五阶效应的阈值。在800 nm波长下CS_2表现为三光子吸收,拟合实验结果获得了三光子吸收系数。CS_2在130 fs半高全宽激光脉冲作用下非线性响应包括寿命为160 fs的快弛豫成分和寿命为1.6 ps的慢弛豫成分。在400 nm波长作用下CS_2的非线性吸收来源于双光子吸收及其诱导的激发态吸收。通过理论拟合实验结果得到了CS_2的双光子吸收系数、激发态吸收截面以及激发态寿命。
     二甲基亚砜(DMSO)在130 fs半高全宽激光脉宽作用下的非线性响应几乎完全来自于电子的贡献,分子内运动和分子间运动的贡献可以忽略。用CS_2作为参考样品,测量得到了DMSO的三阶非线性极化率幅值约为CS_2的四分之一,而且主要来自于非线性折射的贡献,即三阶非线性极化率的实部。基于DMSO在超短脉冲作用下的瞬时响应,可以用DMSO作为非线性介质通过光学克尔效应方法测量超短激光脉冲宽度。通过自相关仪及光谱分析我们证明了在800 nm波长和400 nm波长下的测量结果是准确可以信的。用DMSO作为非线性介质通过光学克尔效应方法测量超短激光脉冲宽度其优点是适用的光谱范围宽,而且超短激光脉冲在DMSO中传输产生的群速色散非常小。
     金属酞菁ZnPc(OBu)_6(NCS)在超短脉冲作用下表现为饱和吸收和自聚焦效应。该分子在超短脉冲下的响应包括三部分贡献:电子的瞬时响应、一个快的弛豫成分和一个慢的弛豫成分。通过三能级模型和泵浦探测实验,我们证明了快的弛豫成分是来自高激发态上粒子的贡献,高激发态上的粒子寿命为850 fs;慢的弛豫成分来自低激发态粒子的贡献,低激发态上的粒子寿命为几个皮秒。金属酞菁ZnPc(OBu)_6(NCS)具有大的二阶超极化率,其幅值比C_(60)分子高三个数量级。
     在130 fs脉宽800 nm波长脉冲的作用下,ZnSe晶体的非线性折射来自于束缚电子的自聚焦效应;非线性吸收主要来自于束缚电子引起的带间的双光子吸收及双光子吸收诱导的导带内电子的单光子吸收,但是导带内电子的单光子吸收相比较于束缚电子的双光子吸收小很多。通过泵浦探测实验我们测得ZnSe晶体中通过双光子吸收跃迁到导带低能态上的粒子弛豫到导带底的时间为250 fs。因此,通过Z-scan技术测量得到的ZnSe晶体的非线性吸收和折射不包含载流子的贡献,完全来自于束缚电子的作用。
With the development of laser technique, the ultrashort laser pulses are used in many fields. In the field of nonlinear optics, ultrashort pulses are used to investigate the nonlinear optical properties of many materials with their high peak intensity and good time resolved ability. The three typical materials of simple liquids, phthalocyanine and semiconductor have potential value in the respect of optical nonlinear application and investigation. The micromechanism of ineraction of ultrashort pulses with sample liquids can be analyzed by the investigation of response of simple liquid under the action of untrashort pulses. The electric movement, the intra-molecule movement and the inter-molecule movement can be explored in simple liquid. The investigation of nonlinear optical properties of phthalocyanine and semiconductor are helpful for guiding the synthesis of phthalocyanine and the application of semiconductor. In the paper, the nonlinear optical properties of CS_2, DMSO, phthalocyanine ZnPc(OBu)_6(NCS), and ZnSe crystal are investigated by Z-scan, optical Kerr effect and pump-probe technique with 130 fs pulses. The experimental results are anslysised and explained. The following are innovative results obtained by us.
     The nonlinear optical effects of CS_2 come from the third order nonlinear effect under low incident intensity. The third order and fifth order effects are appeared simultaneously when the incident intensity is larger than some threshold value. We get the third order nonlinear refraction index, the fifth order nonlinear refraction index and the threshold value for emergence of fifth order nonlinear effects. The nonlinear abosorption of CS_2 is the three photon absorption at 800 nm wavelength. The three photon absorption coefficient is obtained by theoretical fitting the experimental results. The responses of CS_2, under the action of ultrashort pulses, include the fast decay component with lifetime of 160 fs and the slow decay component with lifetime of 1.6 ps. At 400 nm wavelength, the nonlinear absorption of CS_2 includes the two photon absorption and the excited state absorption induced by two photon absorption. The two photon absorption coefficient, the excited absorption cross section and the lifetime of excited state of CS_2 are obtained.
     The nonlinear response of DMSO is instantaneous under the action of 130 fs pulses, which comes from the electric movement. The responses of intra-molecule and inter-molecule movement can be neglected. The measured third-order nonlinear susceptibility of DMSO is about one-quarter of that of CS_2 with the CS_2 as reference by optical kerr effect experiment. The nonlinear susceptibility of DMSO comes from the nonlinear refraction, namely the real part of third order susceptibility. Based on the instantaneous response of DMSO, DMSO can be used as nonlinear media for measurement of ultrashort pulse with optical kerr effect technique. The measured pulse width with DMSO as nonlinear media is accurate, which is certified by single shot autocorrelator and spectrum analyse. The advangtages of using DMSO as nonlinear media are that DMSO can be used in a wide spectrum, and the little broaden of pulse when the pulse propagation of pulse in the media.
     Under the action of ultrashort pulses, the phthalocyanine ZnPc(OBu)_6(NCS) display the saturated absorption effect and the self-focusing effect. The responses of ZnPc(OBu)_6(NCS) include three parts: the instantaneous response of electric, the fast decay component and the slow decay component. By the pump probe experiment and the three-energy level analysis, we confirm that the fast decay component come from the contribution of population stayed on high excited state, which lifetime is 850 fs. The slow decay component come from the contribution of population stayed on low excited state, which lifetime is sevel picosecond. The second hyperpolarizability of ZnPc(OBu)_6(NCS) is larger three order than that of C60.
     The ZnSe crystal show self-focusing effect from the bound electron under the action of 130 fs pulse at 800 nm wave length. The nonlinear absorption of ZnSe are the two photon absorption of bound electron in value band and the signle photon absorption induced by the two photon absorption. The electron stayed on the low energy state excited by two photon absorption will absorp a single photon to be excited to the high energy state. But, the single photon absorption of bound electron stayed on the low energy state is less than that of two photo absorpin. The lifetime of electron stayed on low energy state in conduction band is 250 fs measured by pump probe experiment. The Z-scan experiment can not detect the absorption and refraction of carrier because the 250 fs lifetime is longer than pulse duration.
引文
1 T. H. Maiman. Stimulated Optical Radiation in Ruby. Nature.1960, 187:493-494
    2 R. L. Fork, I. Green, and C. V. Shank. Generation of Optical Pulses Shorter Than 0.1 Psec by Colliding Pulse Mode Locking. Appl. Phys. Lett. 1981, 38: 671-673
    3 R. L. Fork. Compression of Optical Pulses to 6 Femtoseconds by Using Cubic Phase Compensation. Opt. Lett. 1987, 12: 483-485
    4 D. E. Spence, P. N. Kean, and W. Sibbett. 60-Fsec Pulse Generation from a Self-mode-locked Ti: Sapphire Laser. Opt. Lett. 1991, 16: 42-44
    5 A. Baltuska, M. S. Pshenichinikov, and D. A. Wiersma. Amplitude and Phase Characterization of 4.5-fs Pulses by Frequency- resolved Optical Gating. Opt. Lett. 1998, 23: 1474-1476
    6 U. Morgner, F. X. K Artner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi. Sub-two-cycle Pulses from a Kerr-lens Mode-locked Ti:sapphire Laser. Opt. Lett. 1999, 24: 411-413
    7朱江峰,魏志义.飞秒激光精密微纳加工的研究进展.前沿进展. 2006, 36: 679-683
    8 R. R. Alfano and S. L. Shapiro. Emission in the Region 4000 to 7000 A via Four-photon Coupling in Glass. Phys. Rev. lett. 1970, 24: 584-587
    9 A. Giordmaine and J. A. Howe. Intensity-induced Optical Absorption Cross Section in CS2. Phys. Rev. Lett. 1963, 11: 207-209
    10 P. D. Maker, R. W. Terhune, and C. M. Savage. Intensity-dependent Changes in the Refractive Index of Liquids. Phys. Rew. Lett. 1964, 12: 507-509
    11 S. Kielich. Frequency and Spatially Variable Electric and Magnetic Polarizations Induced in Nonlinear Media by Electromagnetic Fields. Acta Phys. Polon. 1966, 30: 683-707
    12 M. A. Duguay and J. W. Hansen. an Ultrafast Light Gate. Appl. Phys. Lett. 1969, 15: 192-194
    13 E. P. Ippen and C. V. Shank. Picosecond Response of a High-repetition-rate CS2 Optical Kerr Gate. Appl. Phys. Lett. 1975, 26: 92-94
    14 P. P. Ho and R. R. Alfano. Optical Kerr Effect in Liquids. Phys. Revi. A. 1975,20: 2170-2187
    15 C. Kalpouzos, W. T. Lotshaw, D. MeMorrow, and G. A. Kenney-Wallace. Femtosecond Laser-induced Kerr Responses in Liquid Carbon Disulfide. J. Phys. Chem. 1987, 91: 2028-2030
    16 D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace. Femtosecond Optical Kerr Studies on the Origin of the Nonlinear Responses in Simple Liquids. IEEE J. Quantum Electron. 1988, 24: 443-454
    17 J. S. Friedman and C. Y. She. the Effects of Molecular Geometry on the Depolarized Stimulated Gain Spectra of Simple Liquids. J. Chem. Phys. 1993, 99: 4960-4969
    18 T.-H. Huang, C.-C. Hsu, T.-H. Wei, S. Chang, S.-M. Yen, C.-P. Tsai, R.-T. Liu, C.-T. Kuo, W.-S. Tse, and C. Chia. the Transient Optical Kerr Effect of Simple Liquids Studied with an Ultrashort Laser with Variable Pulsewidth. IEEE J. Sel. Top. Quantum Electron. 1996, 2: 756-768
    19 A. Idrissi, M. Ricci, P. Bartolini and R. Righini. Optical Kerr-effect Investigation of the Reorientational Dynamics of CS2 in CCl4 Solutions. J. Chem. Phys. 1999, 111: 4148-4152
    20 J. Burgin, C. Guillon, and P. Langot, Femtosecond Investigation of the Non-instantaneous Third-order Nonlinear Suceptibility in Liquids and Glasses. Appl. Phys. Lett. 2005, 87: 211916-211918
    21 T. Hattori and T. Kobayashi. Ultrafast Optical Kerr Dynamics Studied with Incoherent Light. J. Chem. Phys. 1991, 94: 3332-3345
    22 D. McMorrow, N. Thantu, J. S. Melinger, S. K. Kim, and W. T. Lotshaw. Probing the Microscopic Molecular Environment in Liquids: Intermolecular Dynamics of CS2 in Alkane Solvents. J. Phys. Chem. 1996, 100: 10389-10399
    23 I. A. Heisler, R. R. B. Correia, T. Buckup, and S. L. S. Cunha. Time-resolved Optical Kerr-effect Investigation on CS2/polystyrene Mixtures. J. Chem. Phys. 2005, 123: 054509 -6
    24 M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quantum Electron. 1990, 26: 760-769
    25 R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S.Sakakibara, and H. Kuroda. Nonlinear Refraction in CS2. Appl. Phys. B: lasers Opt. 2004, 78: 433-438
    26 R. A. Ganeev, A. I. Ryasnyansky, N. Ishizawa, M. Baba, M. Suzuki, M. Turu, S. Sakakibara, and H. Kuroda. Two- and Three-photon Absorption in CS2. Opt. Commun. 2004, 231: 431-436
    27 L. D. Ziegler and X. J. Jordanides. Two-photon Absorption Resonance Effects in the Third-order Responses of Transparent Liquids. Chem. Phys. Lett. 2002, 352: 270-280
    28 Z.-B. Liu, Y.-L. Liu, B. Zhang, W.-Y. Zhou, J.-G. Tian, W.-P. Zang, and C.-P. Zhang. Nonlinear Absorption and Optical Limiting Properties of Carbon Disulfide in a Short-wavelength Region. J. Opt. Soc. Am. B. 2007, 24: 1101-1104
    29 D. Mcmorrow and W. T. Lotshaw. Intermolecular Dynamics in Acetonitrile Probed with Femtosecond Fourier Transform Raman Spectroscopy. J. Phys. Chem. 1991, 95: 10395-10406
    30 K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukumi. Femtosecond Optical Kerr Dynamics of Thiophene in Carbon Tetrachloride Solution. Chem. Phys. Lett. 1996, 249: 329-334
    31 N. A. Smith, S. Lin, S. R. Meech, and K. Yoshihara. Ultrafast Optical Kerr Effect and Solvation Dynamics of Liquid Aniline. J. Phys. Chem. A 1997, 101: 3641-3645
    32 N. P. Ernsting, G. M. Photiadis, H. Hennig, and T. Laurent. Rotational Friction Kernel in Water from the Femtosecond Time-resolved Optical Kerr Effect of Acetonitrile/water Mixtures. J. Phys. Chem. A. 2002, 106: 9159-9173
    33 N. T. Hunt, A. R. Turner, and K. Wynne. Inter-and Intramolecular Hydrogen Bonding in Phenol Derivatives: A Model System for Poly-l-tyrosine. J. Phys. Chem. B. 2005, 109: 19008-19017
    34 J.-L. Tang, C.-W. Chen, J.-Y. Lin, Y.-D. Lin, C.-C. Hsu, T.-H. Wei, and T.-H. Huang, Ultrafast Motion of Liquids C2H4Cl2 and C2H4Br2 Studied with a Femtosecond Laser. Opt. Commun. 2006, 266: 669-675
    35 Z. Hu, X. Huang, H. V. R. Annapureddy, and C. J. Margulis. Molecular Dynamics Study of the Temperature-dependent Optical Kerr Effect Spectra andIntermolecular Dynamics of Room Temperature Ionic Liquid 1-Methoxyethylpyridinium Dicyanoamide J. Phys. Chem. B. 2008, 112: 7837-7849
    36 Q. Zhong and J. T. Fourkas. Optical Kerr Effect Spectroscopy of Simple Liquids. J. Phys. Chem. B. 2008, 112: 15529-15539
    37 A. Braun and J. Tscherniac. Products of the Action of Acetic Antydride on Phthalamide. Ber. Bunsen-Ges. Phys. Chem. 1907, 40: 2709-2714
    38 P. A. Barrett, C. E. Dent, and P. R. Linstead. Phthalocyanines Part VII. Phthalocyanine as a Co-ordinating Group. A General Investigation of the Metallic Derivatives. J. Chem. Soc. 1936, pp: 1719-1736
    39 S. kirin, P. N. Moakalev, and Yu A. Makashev. Formation of Phthalocyanines of Rare-earth Elements. Russ. J. Inorg. Chem. 1965, 10: 1065-1066
    40 Z. Z. Ho, C. Y. Ju, and W. M. Hetherington. Third Harmonic Generation in Phthalocyanines. J. Appl. Phys. 1987, 62: 716-718
    41 W.-T. Huang, L. Yan, X. Hong, Y Hong, Q.-H. Gong, Y.-Y. Huang, C.-H. Huang and J.-Z. Jiang. Ultrafast Third-order Optical Nonlinearity of Several Sandwich-type Phthalocyaninato and Porphyrinato Europium Complexes, Chinese Physics. 2005, 14: 2226-5
    42 R.-Y. Zhu, X.-Q. Qiu, Y. Chen and S.-X. Qian. Nonlinear Optical Properties of Indium Phthalocyanine Axially Grafted Polystyrene Thin Film. Chin. Phys. Lett. 2006, 23: 622-624
    43 R.-Y. Zhu, X.-Q. Qiu, Y. Chen, and S.-X. Qian. Effect of Axial Substitution on the Ultrafast Dynamics and Third-order Optical Nonlinearity of Metallophthalocyanines Films. J. Lumin. 2006, 119–120: 522-527
    44 G. Shi, Y. X. Wang, D. J. Liu, X. R. Zhang, J. Y. Yang, K. Yang, and Y. L. Song. Determination of Large Third-order Optical Nonlinearities Intetra-tertbutylphthalocyaninatogalliumiodide Film. J. Appl. Phys. 2008, 104: 113102 -6
    45 Y. J. Li, T. M. Pritchett, J. D. Huang, M. R. Ke, P. Shao, and W. F. Sun, Photophysics and Nonlinear Absorption of Peripheral-substituted Zinc Phthalocyanines. J. Phys. Chem. A. 2008, 112: 7200-7207
    46 B. Derkowska, M. Wojdy, R. Czaplicki, W. Ba, and B. Sahraoui. Influence of theCentral Metal Atom on the Nonlinear Optical Properties of MPcs Solutions and Thin Films. Opt. Commun. 2007, 274: 206-212
    47 M J. F. Calvete, D. Dini, S. R. Flom, M. Hanack, R. G. S. Pong, and J. S. Shirk. Synthesis of a Bisphthalocyanine and its Nonlinear Optical Properties. Eur. J. Org. Chem. 2005, 3499-3509
    48 R. Kumar, S. V. Rao, L. Giribabu, and D. N. Rao. Ultrafast Nonlinear Optical Properties of Alkyl Phthalocyanines Investigated using Degenerate Four-wave Mixing Technique. Opt. Mater. 2009, 31: 1042-1047
    49 M. Morisue, K. Ogawa, K. Kamada, K. Ohta and Y. Kobuke. Strong Two-photon and Three-photon Absorptions in the Antiparallel Dimer of a Porphyrin–phthalocyanine Tandem. Chem. Commun. 2010, 46: 2121-2123
    50 J. S. Shirk, J. R. Lindle, F. J. Bartoli, C. A. Hoffman, Z. H. Kafafi, and A. W. Snow. Off-resonant Third-order Optical Nonlinearities of Metal-substituted Phthalocyanines. Appl. Phys. Lett. 1989, 55: 101634-101635
    51 K. P. Unnikrishnan, J. Thomas, B. Paul, A. Kurian, P. Gopinath, V. P. N. Nampoori and C. P. G. Vallabhan. Nonlinear Absorption and Optical Limiting in Solutions of Some Rare Earth Substituted Phthalocyanines. J. Nonlinear Opt. Phys. Mater. 2001, 10: 113-121
    52 H. T. Yuan, K. C. Feng, X. J. Wang, C. J. He, D. H. Li, Y. X. Nie, and K. A. Feng. Research on Optical Property of Phase Transition PcNi/VO2 Films. Appl. Surf. Sci. 2005, 30: 36-39
    53 H. S. Nalwa and P. Vasudevan. Dielectric Properties of Cobalt Phthalocyanine. J. Mater. Sci. Lett. 1983, 2: 22-24
    54 H. S. Nalwa. the Effect of Central Metal Atom on the Electrical Properties of Phthalocyanine Macromolecule. J. Electron. Mater. 1988, 17: 291-295
    55邱玲,许晓娟,肖鹤鸣.多硝基立方烷的合成、结构和性能研究进展,含能材料. 2005, 13(04):0262-0268
    56 J. S. Shirk, J. R. Lindle,, F. J. Bartoli, and M. E. Boyle. Third-order Optical Nonlinearities of Bis(phthalocyanines). J. Phys. Chem. 1992, 96: 5847-5852
    57 T. C. Wen and I. D. Lian. Nanosecond Measurements of Nonlinear Absorption and Refraction in Solutions of Bis-phthalocyanines at 532 nm. Synth. Met. 1996, 83: 111-116
    58 R. Philip, M. Ravikanth, and G. R. Kumar. Studies of Third Order Optical Nonlinearity in iron (III) Phthalocyanineμ-oxo Dimers using Picosecond Four-wave Mixing. Opt. Commun. 1999, 165: 91-97
    59 W. T. Huang, H. Xiang, Q. H. Gong, Y. Y. Huang, C. H. Huang, and J. Z. Jiang. Large and Ultrafast Third-order Optical Nonlinearity of Heteroleptic Triple-decker (phthalocyaninato)(porphyrinato)Sm(III) Complexes. Chem. Phys. Lett. 2003, 374: 639-644
    60 M. Brunel, B. Campagne, M. Canva, A. Brun, F. Chaput, and J.-P. Boilot. Ultrafast Induced Excited State Absorption in Organically Doped Xerogels. Chem. Phys. 1999, 246: 477-481
    61 G.-H. Ma, L.-J. Guo, J. Mia, Y. Liu, S.-X. Qian, D.-H. Pan, and Y. Huang. Femtosecond Nonlinear Optical Response of Metallophthalocyanine Films. Solid State Commun. 2001, 118: 633-638
    62 R. S. S. Kumar, S. V. Rao, L. Giribabu, and D. N. Rao. Femtosecond and Nanosecond Nonlinear Optical Properties of Alkyl Phthalocyanines Studied using Z-scan Technique. Chem. Phys. Lett. 2007, 447: 274-278
    63 Z.-Y. Li, Z.-H. Chen, S. Xu, L.-H. Niu, Z. Zhang, F.-S. Zhang, and K. Kasatani. Off-resonant Third-order Optical Nonlinearities of Novel Diarylethene– phthalocyanine Dyads. Chem. Phys. Lett. 2007, 447: 110-114
    64 N. Venkatram, D. Narayana Rao, L. Giribabu, and S. Venugopal Rao. Femtosecond Nonlinear Optical Properties of Alkoxy Phthalocyanines at 800 nm Studied using Z-scan Technique. Chem. Phys. Lett. 2008, 464: 211-215
    65 S. Venugopal Rao, N. Venkattram, L. Giribabu, and D. Narayana Rao. Ultrafast Nonlinear Optical Properties of Alkyl-phthalocyanine Nanoparticles Investifated using Z-scan Technique. J. Appl. Phys. 2009, 105: 053109-6
    66 R. S. S. Kumar, S. Venugopal. Rao, L. Giribabu, and D. Narayana. Rao. Ultrafast Nonlinear Optical Properties of Alkyl Phthalocyanines Investigated using Degenerate Four-wave Mixing Technique. Opt. Mater. 2009, 31: 1042-1047
    67 R. W. Hellwarth. Control of Fluorescent Pulsations, Advance in Quantum Electronics. Columbia University Press, New York. 1961, 334
    68 R. L. Fork, B. I. Green, and C. V. Shank. Generation of Optical Pulses Shorterthan 0.1 Psec by Colliding Pulse Mode locking. Appl. Phys. Lett. 1981, 38: 671-673
    69 J. A. Valdmanis and R. L. Fork, Generation of Optical Pulses as Short as 27 Femtoseconds Directly from a Laser Balancing Self-phase Modulation, Group-velocity Dispersion Saturable Absorptionand Saturable Gain. Opt. Lett. 1985, 10: 131-133
    70 R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank. Compression of Optical Pulses to Six Femtoseconds by using Cubic Phase Compensation. Opt. Lett. 1987, 12: 483-485
    71 D. E. Spence, P. N. Kean, and W. Sibbett. 60-fsec Pulse Generation from a Self-mode-locked Ti:sapphire Laser. Opt. lett. 1991, 16: 42-44
    72 D. J. Kane and R. Trebino. Characterization of Arbitrary Femtosecond Pulses Using Frequency-resolved Optical Gating. IEEE J. Quantum Electron. 1993, 29: 571-579
    73 K W. DeLong, D N. Fittinghoff, R Trebino, B Kohler, and K Wilson. Pulse Retrieval in Frequency-resolved Optical Gating Based on the Method of Generalized Projections. Opt. Lett. 1994, 19: 2152-2154
    74蔡伯荣,魏光荣.激光器件.长沙:湖南科学技术出版社, 1981: 38-39
    75韩秋菊,吴文智.基于刀片法的飞秒激光束腰半径的实时测量与计算.技术纵横. 2008, 07: 68-70
    76 A. K. Cherri, A. A. S. Awwal, and M. A. Karim. Generalization of Ronchi Sinusoidal and Triangular Nulings for Gaussiaan-laser-beam Diameter Measusrements. Appl. Opt. 1993, 32: 2235-2242
    77姚昆,侯碧辉,张增明等.散斑位移法测高斯光束空间分布.强激光与粒子束. 2000, 12: 141-144
    78 S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoums, and X. Michaut. an Experimental Investigation of the Nonlinear Refractive Index (n2) of Carbon Disulfide and Toluene by Spectral Shearing Interferometry and Z-scan Techniques. Chem. Phys. Lett. 2003, 369: 318-324
    79 M. Falconieri and G. Salvetti. Simultaneous Measurement of Pure-optical and Thermo-optical Nonlinearities Induced by High-repetition-rate Femtosecond Laser Pulses: Application to CS2. Appl. Phys. B: Lasers Opt. 1999, 69: 133-136
    80 J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji. Three-photon Absorption in ZnO and ZnS Crystals. Opt. Express. 2005, 13: 9235-9247
    81 Y. Morel, A. Lrimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, and C. Andraud. Two-photon Absorption and Optical Power Limiting of Bifluorene Molecule. J. Chem. Phys. 2001, 114: 5391-5396
    82 C. L. Zhan, D. H. Li, D. Q. Zhang, Y. J. Li, D. Y. Wang, T. X. Wang, Z. Z. Lu, L. Z. Zhao, Y. X, Nie, and D. B. Zhu. Three-photon Absorption from Six Stilbazolium Derivatives: Application for Optical Limiting. Chem. Phys. Lett. 2002, 353: 138-142
    83 D. Y. Wang, C. L. Zhan, Y. Chan, Y. J. Li, Z. Z. Lu, and Y. X. Nie. Large Optical Power Limiting Induced by Three-photon Absorption of Two Stilbazolium-like Dyes. Chem. Phys. Lett. 2003, 369: 621-626
    84 B. I. Green and R. Farrow. Direct Measurement of a Subpi-cosecond Birefringent Response in CS2. J. Chem. Phys. 1982, 77: 4779-4780
    85 B. I. Green and R. C. Farrow. the Subpicosecond Kerr Effect in CS2. Chem. Phys. Lett. 1983, 98: 273-276
    86 J. E. Geusic, S. Singh, D. W. Tipping, and T. C. Rich. Three-photon Stepwise Optical Limiting in Silicon. Phys. Rev. Lett. 1967, 19: 1126-1128
    87 G. S. He, C. Weder, P. Smith, and P. N. Prasad. Optical Power Limiting and Stabilization Based on a Novel Polymer Compound. IEEE J. Quantum Electron. 1998, 34: 2279-2285
    88 G. S. He, L. X. Yuan, J. D. Bhawalkar, and P. N. Prasad. Optical Limiting, Pulse Reshaping, and Stabilization with a Nonlinear Absorptive Fiber System. Appl. Opt. 1997, 36: 3387-3392
    89 H. Xiang, D.-F. Liu, Z.-W. Wang, Z. Li, W.-T. Huang, H. Yang, Z.-X. Guo, and Q.- H. Gong. Large Difference of Ultrafast Third-order Optical Response between Two C60 Derivatives. Chem. Phys. Lett. 2004, 392: 80-84
    90 G.-P. Dong, H.-Z. Tao, X.-D. Xiao, C.-G. Lin, Y.-Q. Gong, and X.-J. Zhao. Study on the Third and Second-order Nonlinear Optical Properties of GeS2-Ga2S3-AgCl Chalcohalide Glasses. Opt. Express. 2007, 15: 2398-2408
    91 K. Kamada, M. Ueda, T. Sakaguchi, K. Ohta, and T. Fukum. Femtosecond Optical Kerr Dynamics of Thiophene in Carbon Tetrachloride Solution. Chem.Phys. Lett. 1996, 249: 329-334
    92 A. A. Jaye, N. T. Hunt, and S. R. Meech. Temperature-and Solvation-dependent Dynamics of Liquid Sulfur Dioxide Studied through the Ultrafast Optical Kerr Effect. J. Chem. Phys. 2006, 124: 024506-9
    93 J. A. Giordmaine and J. A. Howe. Intensity-induced Optical Absorption Cross Section in CS2. Phys. Rev. Lett. 1963, 11: 207-209
    94 L. D. Ziegler and X. J. Jordanides. Two-photon Absorption Resonance Effects in the Third-order Responses of Transparent Liquids. Chem. Phys. Lett. 2002, 352: 270-280
    95 J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn. Electronic Spectoscopy of Isoelectronic Molecules. II. Linear Triatomic Groupings Containing Sixteen Valence Electrons. Chem. Rev. 1971, 71: 73-108
    96 R. L. Sutherland, M. C. Brant, J. E. Rogers, J. E. Slagle, D. G. McLean, and P. A. Fleitz. Excited-state Characterization and Effective Three-photon Absorption Model of Two-photon-induced Excited-state Absorption in Organic Push-pull Charge-transfer Chromophores. J. Opt. Soc. Am. B. 2005, 22: 1939-1948
    97 M. Fakis, G. Tsigaridas, I. Polyzos, V. Giannetas, P. Persphonis, I. Spiliopoulos, and J. Mikroyannidis. Intensity Dependent Nonlinear Absorption of Pyrylium Chromophores. Chem. Phys. Lett. 2001, 342: 155-161
    98 J. Wang, M. Sheik-Bahae, A. A. Said, D. J. agan, and E. W. Straland. Time-resolved Z-scan Measurements of Optical Nonlinearities. J. Opt. Soc. Am. B. 1994, 11: 1009-1017
    99 A. M. Smondyrev and M. L. Berkowitz. Molecular Dynamics Simulation of DPPC Bilayer in DMSO. Biophys. J. 1999, 76: 2472-2478
    100 T. Arakawa, J. F. Carpenter, Y. A. Kita, and L. M. Crowe. the Basis for Toxicity of Certain Cryoprotectants A hypothesis. Cryobilogy. 1990, 27: 401-415
    101 T. J. Anchordoguy, J. F. Carpenter, J. H. Crowe, and L. M. Crowe. Temperature-dependent Perturbation of Phospholipid Bilayers by Dimethylsulfoxide. Biochim. Biophys. Acta. 1992, 1104: 117-122
    102 M. Paolantoni, M. E. Gallina, P. Sassi, and A. Morresi. Structural Properties of Glucose-dimethylsulfoxide Solutions Probed by Raman Spectroscopy. J. Chem. Phys. 2009, 130: 164501-8
    103 B. R. Gayathri, J. R. Mannekutla, and S. R. Inamdar. Effect of Binary Solvent Mixtures (DMSO/water) on the Dipole Moment and Lifetime of Coumarin Dyes. J. Mol. Struct. 2008, 889: 383-393
    104 G. Shi, C.-Y. He, Y.-B. Li, X.-R. Zhang, Y.-X. Wang, K Yang, Y.-L. Song, and C.-H. Wang. Excited-state Nonlinearity Measurements of ZnPcBr4/DMSO. J. Opt. Soc. Am. B. 2009, 26: 754-761
    105 J. L. Bredas, C. Adant, P. Tackx, and A. Persoons. Third-order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chem. Rev. 1994, 94: 243-278
    106 H. W. Lee, J. K. Anthony, H. D. Nguyen, S. Mho, K. Kim, H. Lim, J. Lee, and F. Rotermund. Enhanced Ultrafast Optical Nonlinearity of Porous Anodized Aluminum Oxide Nanostructures. Opt. Express. 2009, 17: 19093-19101
    107 T. H. Huang. Intramolecular Vibrational Activity and Quantum Beats in the Raman-induced Optical Kerr Effect of Liquids under Impulsive Electric Exciations. Chem. Phys. 1992, 164: 57-71
    108 T. H. Huang and C. H. Wang. Vibrational Quantum Beats Observed by Raman-induced Optical Kerr Effect. Mol. Phys. 1995, 86: 1249-1269
    109 J. S. Friedman and C. Y. She. the Effects of Molecular Geometry on the Depolarized Stimulated Gain Spectra of Simple Liquids. J. Chem. Phys. 1993, 99: 4960-4969
    110 T. Fujisawa, K. Nishikawa, and H. Shirot. Comparison of Interionic/intermolecular Vibrational Dynamics between Ionic Liquids and Concentrated Electrolyte Solutions. J. Chem. Phys. 2009, 131: 244519-14
    111 R. A. Farrer, B. J. Loughnane, L. A. Deschenes, and J. T. Fourkas. Level-dependent Damping in Intermolecular Vibrations: Linear Spectroscopy. J. Chem. Phys. 1997, 106: 6901-6915
    112 K. L. Sala, G. A. Kenney-Wallace, and G. E. Hall. CW Autocorrelation Measurements of Picosecond Laser Pulses. IEEE J. quantum Electron. 1980, 16: 990-996
    113 T. Hattori and T. Kobayashi. Ultrafast Optical Kerr Dynamics Studied with Incoherent Light. J. Chem. Phys. 1991, 94: 3332-3346
    114 A. K. Cherri, A. A. S. Awwal, and M. A. Karim. Generalization of the Ronchi,Sinusoidal, and Triangular Rulings for Gaussian-laser-beam-diameter Measurements. Appl. Opt. 1993, 32: 2235-2242
    115 A. zoubir, L. shah, K. Richardson, and M. Richardson. Practical Uses of Femtosecond Laser Micro-materials Processing. Appl. Phys. A. 2003, 77: 311-315
    116 A. Creti, M. Anni, M. Z. Rossi, and G. Lanzani. Ultrafast Carrier Dynamics in Core and Core/shell CdSe Quantum Rods: Role of the Surface and Interface Defects. Phys. Rev. B. 2005, 72: 125346-10
    117 J. Bi, Y.-H. Li, J.-J. Yin, and P.-X. Lu. Coloured Conical Emission in BBO Crystal Pumped by Second Harmonic Femtosecond Pulses. Chin. Phys. Lett. 2009, 26: 014207-4
    118 H. P. Weber. Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase Locked Lasers Using Nonlinear Optics. J. Appl. Phys. 1967, 38: 2231-2234
    119 D. J. Kane and R. Trebino. Characterization of Arbitrary Femtosecond Pulses using Frequency-resolved Optical Gating. IEEE J. Quantum Electron. 1993, 29: 571-579
    120 A. Tunnermann, H. Eichmann, R. Henking, K. Mossavi, and B. Wellegehausen. Single-shot Autocorrelator for KrF Subpicosecond Pulses Based on Two-photon Fluorescence of Cadmium Vapor atλ= 508 nm. Opt. Lett. 1991, 16: 402-404
    121 S. Szatmari, F. P. Schafer, and J. Jethwa. A Single-shot Autocorrelator for the Ultraviolet with a Variable Time Window. Rev. Sci. Instrum. 1990, 61: 998-1003
    122 C. Iaconis and I. A. Walmsley. Self-referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses. IEEE J. Quantum Electron. 1999, 35: 501-509
    123 J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Dewner. Two-photon Absorption in Diamond and its Application to Ultraviolet Femtosecond Pulse-width Measurement. Opt. Lett. 1991, 16: 499-501
    124 H. S. Albrecht, P. heist, J. Kleinschmidt, D. V. Lap, and T. Schroder. Single-shot Measurement of Ultraviolet and Visible Femtosecond Pulses Using the Optical Kerr Effect. Appl. Opt. 1993, 32: 6659-6663
    125 D. Steinbach, W. Hugei, and M. Wegener. Generation and Detection of Blue10.0-fs Pulses. J. Opt. Soc. Am. B. 1998, 15: 1231-1234
    126 G. P. Agarwal. Nonlinear Fiber Optics. Academic Press, San Diego, 1995
    127 R. F. Souza, M. A. R. C. Alencar, J M. Hickmann, and L R. P. Kassab. Femtosecond Nonlinear Optical Properties of Tellurite Glasses. Appl. Phys. Lett. 2006, 89: 171917-171919
    128 Z.-H. Chen, C. Zhong, Z. Zhang, Z.-Y. Li, L.-H. Niu, Y.-J. Bin, and F.-S. Zhang. Photoresponsive J-aggregation Behavior of a Aovel Azobenzene-phthalocyanine Dyad and its Third-order Optical Nonlinearity. J. Phys. Chem. B. 2008, 112: 387-7394
    129 J. Shan, P. Yang, L.-Y Liu, and L. Xu. the Second Order Hyperpolarizability of Cis Azobenzene Isomer. Chem. Phys. 2009, 362: 109-113
    130 C.-Y. Tai, S.-H. Chang, and T.-C. Chiu. Significant Enhancement of Broadband Optical Limiting Behavior Using Off-resonant Sub-wavelength Coupled Plasmonic Waves. Opt. Express. 2008, 16: 14979-14986
    131 M. A. Ozdag, T. Ceyhan, H. Unver, A. Elmali, and O. Bekaroglu. Strong Optical Limiting Property of a Ball-type Supramolecular Zinc-phthalocyanine in Polymer-phthalocyanine Composite Film. Opt. Commun. 2010, 283: 330-334
    132 H. Manaa, A. A. Mulla, S. Makhseed, M. Al-Sawah, and J. Samuel. Fluorescence and Nonlinear Optical Properties of Non-aggregating Hexadeca-substituted Phthalocyanine. Opt. Mater. 2009, 32: 108-114
    133 S. V. Rao, N. Venkatram, L. Giribabu, and D. N. Rao. Ultrafast Nonlinear Optical Properties of Alkyl-phthalocyanine Nanoparticles Investigated using Z-scan Technique. J. Appl. Phys. 2009, 105: 053109-6
    134 W.-B. Duan, K. Smith, H. Savoie, J. Greenman, and R. W. Boyle. Near IR Emitting Isothiocyanto-substituted Fluorophores-their Synthesis and Bioconjugation to Monoclonal Antibodies. Org. Biomol. Chem. 2005, 4: 2384-2386
    135 H. J. Ravindra, A. J. Kiran, K. Chandrasekharan, H. D. Shashikala, and S. M. Dharmaprakash. Third Order Nonlinear Optical Properties and Optical Limiting in Donor/acceptor Substituted 4'-methoxy Chalcone Derivatives. Appl. Phys. B: Lasers Opt. 2007, 88: 105-110
    136 Q.-H. Gong, J.-L. Li, and T.-Q. Zhang. Ultrafast Third-order OpticalNonlinearity of Organic Solvents Investigated by Subpicosecond Transient Optical Kerr Effect. Chin. Phys. Lett. 1998, 15: 30-31
    137 P. P. Ho and R. R. Alfano. Optical Kerr Effect in Liquids. Phys. Rev. A. 1979, 20: 2170-2187
    138 E. Tokunaga, N. Sato, J. Korenaga, T. Imai, S. Sato, and H. Hamaguchi. Visible Nonlinear Band-edge Luminescence in ZnSe and CdS Excited by a Mid-infrared Free-electron Laser. Opt. Rev. 2010, 17: 341-345
    139 R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedel, and L. Pavesi. Bound Electronic and Free Carrier Nonlinearities in Silicon Nanocrystals at 1550nm. Opt. Express. 2009, 17: 3941-3950
    140 P. Xie, Z. Q. Zhang, and K. S. Wong. Simultaneous High-efficiency Second- and Third-harmonic Generation in a 1-D Semiconductor Photonic Crystal. IEEE J. Quantum Electron. 2007, 43:804-809
    141 K. Y. Tseng, K. S. Wong, and G. L. Wong. Femtosecond Time-resolved Z-scan Investigations of Optical Nonlinearities in ZnSe. Opt. Lett. 1996, 21: 180-182
    142 E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau. Energy Band-gap Dependence of Two-photon Absorption. Opt. Lett. 1985, 10: 490-492
    143 X.-Q. Yan, Z.-B. Liu, X.-L. Zhang, W.-Y. Zhou, and J.-G. Tian. Polarization Dependence of Z-scan Measurement: Theory and Experiment. Opt. Express. 2009, 17: 6397-6406
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.