海洋天然气水合物若干问题的模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋天然气水合物作为一种能量资源已受到各国政府的高度重视,如何准确地探测和估算海底水合物的资源量,是海洋天然气水合物研究的重要问题。本文针对这些问题,利用本实验室开发的低温高压实验技术,探讨了天然气水合物模拟实验的几种探测方法,包括声学法、电阻法和时域反射(TDR)法。本文研制了一套简易的天然气水合物制备装置,重点研究了各种条件下生成的甲烷水合物的含气量,以及海洋天然气水合物生成过程中引起的周围环境元素地球化学异常。主要研究内容如下:
     1.简述了海洋天然气水合物的组成、结构、性质、形成的基本条件、分布特点、资源量以及海底水合物的各种探测技术,探讨了目前关于海洋天然气水合物模拟实验研究的现状及其发展趋势,据此提出了本文研究目的,确定了研究内容。
     2.在球形高压釜内进行了甲烷水合物的相平衡条件实验。使用光通过率来确定天然气水合物的合成与分解,提高了探测灵敏度。实验测得的水合物相平衡曲线与国内外经典的相图十分吻合,实验结果令人满意。使用温压法探测了沉积物中甲烷水合物的生成和分解过程,得出粒径为0.28-0.9mm的天然砂中纯水-甲烷体系的相平衡条件与不含沉积物的纯水-甲烷体系的相平衡条件基本一致,说明粗颗粒的沉积物对相平衡条件影响不大。
     3.水合物超声探测实验表明,在纯水中,声速对体系中天然气水合物的生成/分解过程不敏感;在松散沉积物中,声速的变化灵敏地反映了体系内水合物的生成和分解的变化,但声波幅度的变化不明显。在沉积物岩芯中,纵波和横波速度随着孔隙度的减小而增大,声速灵敏地反应了沉积物岩芯中天然气水合物饱和度的变化。
     4.水合物模拟实验的初步结果表明,TDR探测技术和电阻法探测技术可灵敏地探测到反应体系内水合物的生成/分解过程。TDR技术可以灵敏地测出岩芯中的含水量,即可以灵敏地探测岩芯中水合物的饱和度。而电阻法探测技术对反应体系内CO_2水合物的成核-微晶过程十分灵敏,在水合物成核机理的研究中将有十分重要的作用。
     5.研制了一套简易的、容易开启的天然气水合物实验装置,采用了高频振动技术,已获得了国家专利。该装置的高压釜内设有内筒,合成的水合物很容易取出,可以直接测定其储气量;也可以将反应后的水合物与水分离,测定其离子
Marine gas hydrate is a potential important energy resource attracting the attentions worldwide. Therefore, how to correctly explore and evaluate the resource of marine gas hydrate is an urgent and significant problem to be solved. This paper aims to solve such problems related to marine hydrate research. Based on the low-temperature high-pressure techniques developed in our laboratory, several detection methods are discussed, including acoustic method, impendence method and Time-Domain -Reflector (TDR) method. A simple apparatus is specially developed to form gas hydrate, in basis of this, the gas content in hydrate formed in different conditions and the elemental geochemical anomaly in ambient environment during hydrate formation is studied in this paper. The main ideas are:1. Compositions, structures, properties, formation conditions, distribution feathers and marine gas hydrate resources as well as several detection techniques for marine gas hydrate are discussed concisely. The present situation and research tendency of experimental simulated study on marine gas hydrate is also introduced. Based on these, the aim and content of this study is presented.2. The phase equilibrium conditions of methane hydrate is studied in a spherical high-pressure vessel. The detection sensitivity is improved when the transmittance light strength ratio is used to detect the formation/dissociation of gas hydrate. The stability conditions of methane hydrate in pure water-methane system measured in this paper agree well with the classical phase equilibrium curves from literatures. In sediments, the formation/ dissociation process of gas hydrate is detected by changes of temperature and pressure in the vessel, the results show that the P-T conditions of methane hydrate in natural sand (0.28-0.9mm) is almost the same as those in the pure water-methane hydrate system, suggesting little effect on the stability conditions of gas hydrate by coarse sediments.3. Ultrasonic detection technique indicates that the velocity is not sensitive to the formation/decomposition of hydrate in a pure-water system. In loose sediments, sonic velocity changes sensitively during formation/dissociation processes of hydrate in the system, whereas the variation of wave amplitude is not significant in this case. In the sediment core, the velocity and amplitude of the compressional and shear waves increase as the porosity decrease, the sonic velocity sensitively reflects the variation of hydrate saturation in the marine sediment core.4. The preliminary results show that the TDR detection technique and the impedance detection method can detect the process of formation/dissociation of hydrate in laboratory. The TDR detection technique can determine water contents in
    sediment core sensitively, that is to say that this method is sensitive enough to detect the hydrate saturation in the core. The impedance detection method is sensitive to the nucleation and micro-crystalline process of CO2 hydrate in the vessel, which is supposed to be useful in studying the hydrate nucleic mechanism in the future.5. Another simple experimental apparatus is designed to be easy to open, which uses the high-frequency vibrator and gains the national patent. There is an inner chamber in the high-pressure vessel, so that the synthesized hydrate can be taken out conveniently for direct gas storage determination in the hydrates, and the residual water can also be separated from the hydrate to determinate the ion concentrations. This apparatus is the experimental basis for gas storage determination and geochemical anomaly research for marine gas hydrate.6. Experimental study on gas storage in methane hydrate is carried out in the above apparatus. A new setup and technique is specially devised to measure gas volume during hydrates decomposing in a vacuum system. The results show that the determined E values are different in different conditions such as pressure, temperature, gas content in water and time, indicating gas storage in hydrate vary with its formation conditions. Compared with traditional gravimetric method, the volumetric method has a lot of advantages. It is easy to work and generally not affected by environmental conditions such as temperature and humidity. It is believed that this method is more useful to determine gas storage of natural gas hydrate in sediments, and will be widely used in the assessment of gas hydrate resources and the transport of natural gas.7. The formation process of marine gas hydrates is simulated in laboratory, and variations of ionic and isotopic concentrations in seawater are studied preliminarily. The results show that the effects of gas hydrate formation on the variations of ionic concentrations are not alike in different experimental conditions. The larger the gas consumption, the higher purity the hydrates, therefore, the salt-exclusion efficiency is stronger, resulting higher ionic concentrations in the residual solution, lower in the112hydrate solutions. The 8 O> 5D values in the solution are determined before and after each experiment, and the obtained isotopic fractionation factors of oxygen and hydrogen in natural seawater system are 1.0034 ~ 1.0063 and 1.018 — 1.036, respectively. SDS is an efficient surfactant, which can not only accelerate gas hydrate formation, but also probably affect the isotopic fractionation of oxygen and hydrogen.
引文
1.史斗.气水合物是一种新的烃类资源.史斗,孙成权,朱岳年编,国外天然气水合物研究进展.兰州:兰州大学出版社,1992.
    2.徐学祖.天然气水合物及其研究概况.史斗,孙成权,朱岳年编,国外天然气水合物研究进展,兰州:兰州大学出版社,1992.
    3.史斗,郑军卫.世界天然气水合物研究开发现状和前景.地球科学进展,1999,14(4):330-339
    4.胡春,裘俊红.天然气水合物的结构性质及应用.天然气化工,2000,25(4):48-52
    5.张剑.海洋天然气水合物P-T条件研究.吉林大学硕士学位论文,2003,p75.
    6. Sloan E D. Clathrate Hydrates of Natural Gases. 2nd ed, Marcel Dekker: New York, 1998.
    7.陈多福,徐文新,赵振华.天然气水合物的晶体结构及水合系数和比重.矿物学报,2001,21(2):159-164
    8.李艳芝.冰中的甲烷稳定技术.国外油田工程,2000,1:27-29.
    9. Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem, 1995, 23:997-1008
    10.夏新宇,戴金星,宋岩.海底天然气水合物气源及资源评价问题.天然气地球科学,2001,12(1-2):11-15.
    11. Froelich P N, Kvenvolden K A, Torres M E et al. Geochemical evidence for gas hydrate in sediments near the Chile Triple Junction. Proc. ODP. Sci. Results, 1995, 279-286.
    12. Uchido T. Methane hydrates in deep marine sediments-X-ray CT and NMR studies of ODP Leg 164 hydrates. Geological News of Geological Survey of Japan, 1997, 510:36-42.
    13. Wright J F, Dallimore S R and Nixon F M. Influences of grain size and salinity on pressure temperature thresholds for methane hydrate stability in JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research-well sediments. GSC Bulletin, 544:229-239..
    14. Kvenvolden k A. Gas hydrates: Geological perspective and global change. Rev. Geopheys, 1993, 31: 173-187.
    15. Waseda A. Organic carbon content, bacterial methanogenesis, and accumulation processes of gas hydrates in marine sediments. Geochemical Journal, 1998, 32:142-157.
    16. Clayton C. Source volumetrics of biogenic gas generation bacterial gas. Technip, Paris, 1992, 191-204.
    17. Whiticar M J, Faber E and Schoell M. Biogenic methane formation in marine and freshwater environments: CO_2 reduction vs. acetate fermentation-isotope evidence. Geochim Cosmochim Acta, 1986, 50: 693-709.
    18.张志强.浅海天然气水合物的地质控制和资源潜量.天然气地球科学,1990,1:25-31.
    19.朱岳年.大陆斜坡和陆隆区可能广泛分布天然气水合物的地震地层学证据.史斗,孙成权,朱岳年编.国外天然气水合物研究进展.兰州:兰州大学出版社,1992.
    20.赵生才.天然气水合物研究现状及我国对策.地球科学进展,2002,17(3):461-464.
    21.苏新.国外海洋气水合物研究的一些新进展.地学前缘,2000,7(3):257-265.
    22. Brown K M, Bangs N L. The nature, distribution, and origin of gas hydrate in the Chile triple junction region. Earth and Planetary Science Letters, 1996, 139: 471-483.
    23. Miles P R. potential distribution of methane hydrate beneath the European continental margins. Geophysical Research Letters, 1995, 22(23): 3 179-3 182.
    24 Hesse R, Harrison W E. Gas hydrates(clathrates) causing pore-water free shening and oxygen isotope fractionation in deep-water sedimentary sections of t errigenous continental margins. Earth Planet. Sci. Lett, 1981, 11:453-562.
    25 Paull C K and Ryo Matsumoto. LEG 164 overview. Proceedings of the Ocean Drilling Program, Scientific Results 164, 2000, 3-10
    26. Watanabe Y, Matsumoto R., and Lu H L. Trace Element Geochemistry of the Blake Ridge Sediments at Site 997. Scientific Results 164, 2000, 151-163.
    27. Lu H L, Matsumoto R.,and Watanabe Y. Major Element Geochemistry of the Sediments from Site 997, Blake Ridge, Western Atlantic,147-149. Scientific Results 164, 2000, 147-149.
    28. Hesse R, Frape S K, Egeberg P K, and Matsumoto R. Stable Isotope Studies (Cl, O and H) of Interstitial Waters from Site 997, Blake Ridge Gas Hydrate Field, West Atlantic. Scientific Results 164,2000, 129-137.
    29. Oba T, Shikama A, and Okada H. Oxygen Isotopic Record of the Last 0.8 m.y. at the Blake Ridge, Site 994C, 173-175. Scientific Results 164, 2000, 173-175.
    30. Borowski W S, Paul C K, William Ussler Ⅲ. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 1999, 159:131-154.
    31.杨涛,薛紫晨等.南海北部地区海洋沉积物中孔隙水的氢、氧同位素组成特征.地球学报,2003,24(6):511-514。
    32. Torres M E, Mcmanus J. Fluid and chemical fluxes in and our of sediments hosting methane hydrate deposits on Hydrate Ridge, OR,I: Hydrological provinces. Earth and Planetary Science Letters, 2002, 201:525-540.
    33. Buffett B A and Zatsepina O Y. Formation of gas hydrate from dissolved gas in natural porous media. Marine Geology, 2000, 164: 69-77.
    34. Ginsburg G D and Soloviev V A. Methane migration within the submarine gas-hydrate stability zone under deep-water conditions. Marine Geology, 1997, 137: 49-57.
    35. Rempel A and Buffett B A. Formation and accumulation of gas hydrate in porous median. J. Geophys. Res., 1997, 102: 10151-10164.
    36. Zatsepina O Y and Buffet B A. Thermodynamic conditions for the stability of gas hydrate in the seafloor. J. Geoplys. Res., 1998, 103: 24127-24139.
    37. Hyndman R, Wang K, Yuan T and Spence G D. Tectonic sediment thickening, fluid expulsions and the thermal regime of seduction zone accretionary prisms: the Cascadia margin off Vancouver Island. J. Geophys. Res., 1993, 98: 21865-21876.
    38. Zatsepina O Y and Buffett B A. Phase equilibrium of gas hydrate : Implications for the formation of hydrate in the deep seafloor. Geohys. Res. lett., 1997, 24(13): 1567-1570.
    39. Kvenvolden K A and Kastner. Gas hydrates of the Peruvian Margin. Proc. Ocean Drill. Program Sci. Results, 1990, 112: 517-526.
    40. Von Bregmann M T, Emeis K C and Camerlenghi A. Geochemistry of sediments from the Peru upwelling area: Results from sites 680, 682, 685 and 688. Proc. Ocean Drill. Program Sci. Results, 1990,112:491-504.
    41. Westbrook G K. Proceedings of the Ocean Drilling Program Initial Reports. Vol.146(Part 1), pp611, Ocean Drill. Program, College Station, Tex, 1994.
    42. Kastner M, Kvenvolden K A, Whiticar M J, Camerlenghi A and Lorenson T D. Relation between pore fluid chemistry and gas hydrates associated with bottom simulation reflectors at the Cascadia Margin Sites 889 and 892. Proc. Ocean Drill. Program Sci. Result, 1995, 146(part 1): 125-187.
    43. Paull C K. Proceedings of the Ocean Drilling Program Initial Reports. Vol. 164, Ocean Drill. Program, College Station, Tex ,1996.
    44. Dickens G R and Quinly-Hunt M S. Methane hydrates stability in pore water: A simple theoretical approach for geophysical application. J. Geophys. Res., 1997, 102: 773-783.
    45. Hyndman R D and Davis E E. A mechanism for the formation of methane hydrate under seafloor bottom-simulated reflectors by vertical fluid expulsion. J. Geophys. Res., 1992,97: 7025-7041.
    46 Ussier W and Paull C K. Effects of ion exclusion and isotopic fractionation on pore water geochemistry during gas hydrate formation and decomposition. Geo. Mar. Lett., 1995,15: 37-44.
    47. Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70A radius silicagel pores. J Phys Chem, 1992, 96: 8599-8603
    48. Chuvilia E M, Yakushev V S and Perlova E V. Experimental study of gas hydrate formation in Porous media. VNIIGAN, Moscow, 1998,431-440
    49. Turner D and Sloan E D. Hydrate phase equilibrium measurements and predictions in sediments. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, May 19-23, 2002, 327-330.
    50. Tohidi B, Anderson R, Clennell M B, et al. Visual observation of gas-hydrate formation and dissociation in porous media by means of glass micromodels. Geology, 2001, 29 (9): 867-870
    51. Booth J S, Winters W J, Dillon W P. Apparatus investigates geological aspects of gas hydrates. Oil £ Gas Journal, 1999,4:63-68.
    52. Wright J F, Nixon F M, Dallimore S R, et al. A method for direct measurement of gas hydrate amounts based the bulk dielectric properties of laboratory test media. Proceedings of the Fourth International Conference on Gas Hydrates,Yokohama, May 19-23, 2002.
    53. Zatsepina O Y and Buffett B A. Nucleation of CO2-hydrate in a porous medium. Fluid Phase Equilibrium, 2002, 200: 263-275
    54. Waite W F, Winters W J, Mason D H. Hydrate formation and compressional wave development in partially saturated Ottawa sand. (?) European Geophysical Society, Geophysical Research Abstracts, 2003, 5, 04505
    55.业渝光,张剑,刁少波,刘昌岭.海底水合物模拟实验技术.海洋地质与第四纪地质,2003,23(1).119-123.
    56. Wraith J M and Or D. Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: Experimental evidence and hypothesis development. Water Resources Research, 1999, 35(2): 361-369
    57. Yasuoka K and Murakoshi S. Molecular Dynamic Simulation of Dissociation Process for methane hydrate. Annals New York Academy of science, 2000, 678-685.
    58. Uchida T, HiranoT, Ebinum et al. Raman Spectroscopic determination of hydration number of methane hydrates. Environmental and Energy Engineering, 1999, 45:2641-2645.
    59. Davie M K, Buffet B A. A numerical model for the formation of gas hydrate below the seafioor. Journal of Geophysical Research, 2001, 106 (B1): 497-514
    60. Davie M K, Buffett B A. Sources of methane for marine gas hydrate: inferences from a comparison of observations and numerical models. Earth and Planetary Science Letters, 2003, 206:51-63
    61. Xu W, Puppe C. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. Journal of Geophysical Research, 1999, 104 (B3): 5081-5095
    62. Henry P. Formation of natural gas hydrate in marine sediments, 2. Thermodynamic calculations of stability conditions in porous sediments. Journal of Geophysical Research, 1999, 144(B 10): 23005-23022
    63. Rao Y H. C-program for the calculation of gas hydrate stability zone thickness. Computer & Geosciences, 1999, 25:705-707
    64. Hesse R. Pore water anomalies of submarine gas-hydrate zones as tool to assess hydrate abundance and distribution in the subsurface-What have we learned in the past decade? Earth-Science Review, 2003, 61: 149-179.
    65. Stern L, Kirby S H, Dorbam W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science, 1996, 273: 1843-1848.
    66. Holbrook W S, Hoskins H, Wood W T et al. Methane hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science, 1996, 173:1840-1843..
    67. Bunz S, Bertndt C. Geological controls on the Storegga gas-hydrate system of the mid-Norwegian continental margin. Earth and Planetary Science Letter, 2003, 209, 291-307
    68. Bower P G, Orr Jr F M, Friederich G et al. Deep ocean field tests of methane hydrate formation from a remotely operated vehicle. Geology, 1997, 25: 407-410.
    69. Dickens G R, Paull C K, Wallace P. Leg 164 Science Party. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature, 1997, 25, 259-262
    70. Dickens G R. The potential volume of oceanic methane hydrates with variable external conditions. Organic Geochemistry, 2001, 32 (10): 1179-1193
    71. Pecher I A, Minshull T A, Singh S C, Huene R. Velocity structure of a bottom simulating reflector offshore Peru: Results from full waveform inversion. Earth and Planetary Science Letters, 1996, 139:459-469
    72. Ashi J, Tokuyama H, Taira A. Distribution of methane hydrate BSRs and its implication for the prism growth in the Nankai Trough. Marine Geology, 2002, 187:177-191
    73. Guerin G, Goldberg D, Collett T S et al. Acoustic energy dissipation in gas hydrate bearing sediments, ODP Leg 204, Hydrate Ridge. (?) European Geophysical Society, Geophysical Research Abstracts, 2003, 5, 11089
    74. Kopp H. BSR occurrence along the Sudan margin: evidence from seismic data. Earth and Planetary Science Letter, 2002, 197, 225-235
    75. Jin K., Lee M W, Collett T S. Relationship of gas hydrate concentration to porosity and reflection amplitude in research well, Mackenzie Delta. Canada. Marine and Petroleum Geology, 2002, 19, 407-415.
    76. Lu S, McMechan G A. Estimation of gas hydrate and free gas saturation, concentration, and distribution from seismic data. Geophysics, 2002, 67(2),582-593.
    77.梅东海,廖健,王璐琨.水合物平衡生成条件的测定及预测.高校化学工程学报,1997,11(3):113-116
    78.孙志高,石磊,樊栓狮等.气体水合物相平衡测定方法研究.石油与天然气化工,2001,30(4):164-166
    79.廖健,梅东海,杨继涛等.天然气水合物相平衡研究的进展.天然气工业,1998,18(3):75-82.
    80.樊栓狮,郭彦坤,石磊等.测定气体水合物相平衡数据的高压PVT装置.分析测试学报,2001,20(4):10-13
    81.雷怀彦,郑艳红,吴保祥.AlCl_3介质中甲烷水合物相平衡PT轨迹.科学通报,2002,47(16):1229-1232
    82.樊栓狮,石磊,郭彦坤,孙志高,郭开华.甲烷气体水合物相平衡测试新装置及新方法.天然气工业,2001,21(3):71-73
    83 刘昌岭,业渝光,张剑,刁少波.天然气水合物相平衡研究的实验技术与方法,中国海洋大学学报(自然科学版),2004,34(1):153-158.
    84. Clennell M B et al. Formation of natural gas hydrates in marine sediments 1.Conceptual model of gas hydrates growth conditioned by host sediment properties. J. Geophys. Res., 1999, 104(B10): 22985-23003.
    85. Lu H L and Matsumoto R. Preliminary experimental results of the stable P-T conditions of methane hydrate in a nannofossil-rich claystone column. Geochemical Journal, 2002,36:21-30.
    86. Lu H L, Wright F, Okui T et al. The characteristic of methane hydrates synthesized in sand and clay sediments. (?) European Geophysical Society, Geophysical Research Abstracts, 2003, 5, 13389.
    87. Uchida T, Ebinuma T, Takeya S et al. Effects of pore sizes on dissociation temperatures and pressures of methane, carbon dioxide, and propane hydrates in porous media. J. Phys. Chem. B, 2002, 106:820-826.
    88.刘昌岭,业渝光,张剑,刁少波.海洋天然气水合物的模拟实验研究现状.岩矿测试,2004,12(2):201-206.
    89. Topp G C and Davis J L, Annan A P. Electromagnetic determination of soil-water conter: Measurement in coaxial transmission line. Water Resource Res., 1980, 16: 574-582.
    90. Dalton F N, Herkrlrath W N and Rawlins D S et al.. Time domain reflectometry: Simulataneous measurements of soil water content and electrical conductivity with a single probe. Science, 1984, 224:989-990.
    91.龚元石.时域反射仪测定土壤水分的研究进展.灌溉排水,1997,1:40~43.
    92.郑纪勇,邵明安.利用边界层方法确定溶质迁移参数的实验研究.水利学报,2002,1:62-96.
    93.王绍令,赵秀锋.青藏公路南段岛状冻土区内冻土环境变化.冰川冻土,1997,19(3):231-239
    94. O'Connor K M. Applications of time domain reflectometry in the mining industry, SEM Annual Meeting, Feb. 24-26, Cincinnati, Ohio, Preprint, 2003, 3-28.
    95. Campbell J E. Dielectric properties and influence of conductivity in soil at one to fifty megahertz. Soil Science Society of American Journal, 1990, 54: 332-341.
    96. Heimovaara T J. Frequency domain analysis of time domain reflectometry waveforms: 1.Measurement of the complex dielectric permittivity of soils. Water Resources Research, 1994, 30(2):189-199.
    97. Zegelin S J, White I and Jenkins D R. Improved field probes for soil water content and electrical conductivity measurements using time domain reflectometry. Water Resources Research, 1989, 25(11): 2367-2376.
    98. Robinson D A and Friedman S P. Parallel plates compared with conventional reflectometry rods as TDR waveguides for sensing soil moisture. Subsurface Sensing Technologies and Applications, 2000, 1(4): 137-151.
    99. Buffett B A and Zatsepina O Ye. Experiment stugy of the stability of CO_2-hydrate in a porous medium. Fluid Phase Equilibria. 2001, 192:85-102.
    100. Gudmundsson J S, Borrehaug A. Nature gas hydrate-an alternative to liquifed nature gas. Petroleum Review, 1996, 5:232-239.
    101.胡玉峰.天然气水合物及相关新技术研究进展.天然气工业,2001,21(2):84-86.
    102.张文玲,李海国,王胜杰,刘芙蓉.水合物储运天然气技术的研究进展.天然气工业,2000,20(3):95-97.
    103.章春笋,樊栓狮。不同类型表面活性剂对天然气水合物形成过程的影响.天然气工业,2003,23(1):91-95。
    104. Ugur Karaaslan,Evrim Uiuneye,Mahmut Parlaktuna.Effect of an anionic surfactant on different type of hydrate structures. Journal of Petroleum Science and Engineering, 2002, 987
    105. Zhang Y, Rogers R E. Surfactant effects on gas hydrate formation. Chemical Engineering Science, 2000, 55(19): 4175-4187.
    105. Guo Yankun, Fan Shuanshi. Storage via hydrate formation using calcium hypochlorite as additive. J. Chemical Induastry and Engineering, 2002, 5:452-453.
    107.邓友生,徐学祖,张志新.甲烷水合物合成的初步研究.冰川冻土,1993,15(1):144-148
    108. Circone S, Kirby S H, Pinkston J C and Stem L A. Measurement of gas yields and flow rates using a custom flowmeter. Review of Scientific Instruments, 2001, 72:2709-2716.
    109.郑新,樊栓狮,孙志高.甲烷水合物储气实验研究.哈尔滨工业大学学报,2003,35(2):157-159.
    110. Sun Zhigao, Ma Rongsheng, Fan Shuanshi et al. Investigation on gas storage in methane hydrate. Journal of Natural Gas Chemistry, 2004, 13 (2): 107-112.
    111.刘芙蓉,王胜杰,张文玲,李海国.冰-水-气生成天然气水合物的实验研究.西安交通大学学报,2000,34(2):66-69.
    112.张文玲,李海国,王胜杰,刘芙蓉.水合物储运天然气技术的研究进展.天然气工业,2000,20(3):95-97.
    113.王德玉.冷冻水合物法储存天然气.国外石油工程,1997,8:36-38.
    114. Stern L A, Circone S, Kirby S H. Anomalous preservation of pure methane hydrate at 1 atm. J. Phys. Chem. B, 2001, 105: 1756-1762.
    115. Ershov E D, Yakushev V S. Experimental research on gas hydrate decomposition in frozen rocks. Cold Regions Science and Technology, 1992, 20:147-156.
    116. Iversen N, Jorgensen B B. Diffusion coefficients of sulfate and methane in marine sediments: influence of porosity. Geochim. Comochim. Acta, 1993, 571-578.
    117. Borowski W S, Paul C K., William Ussler Ⅲ. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Marine Geology, 1999,159:131-154.
    118.赵祖斌,梁劲,程思海等.沉积物间隙水中硫酸盐与甲烷相互作用关系的研究进展.海洋科学,2001,25(9):24-26.
    119.凌洪飞,蒋少涌等.沉积物孔隙水地球化学异常:天然气水合物存在的指标.海洋地质动态,2001,7(7):34-37.
    120.王家生,Suess E.天然气水合物伴生的沉积物碳、氧稳定同位素示踪.科学通报,2002,47(15):1172-1176.
    121. Handa, Y.P., Enthalpies of fusion and heart capacities for H_2~(18)O ice and H_2~(18)O tetrahydrofuran clathrate hydrate in the range 100-270K. Can. J. Chem, 1984, 62, 1659-1661.
    122. Davidson D W, Leaist D G and Hesse R. Oxygen-18 enrichments in the water of a clatherate hydrate. Geochim. Cosmochin Acta, 1983, 47, 2293-2295.
    123. Maekawa T and Imai A. Hydrate and oxygen isotope fractionation in water during gas hydrate formation. Annals New York Academy of Science, 2000, 912;452-459.
    124. Maekawa T. Experimental tudy on isotopic fractionation in water during gas hydrate formation. Geochemical Journal, 2004, 38:129-138.
    125.裘俊红,郭天民.水合物生成和分解动力学研究现状.化工学报,1995,46(6):741-756.
    126. Englezos P, Kalogerakis N, Dholabhai P D, et al. Chem Eng Sci, 1987,42 (11):2647-2658.
    127. Skovborg P, Ng H J, Rasmussen P, et al, Chem Eng Sci, 1993, 48 (3): 445-453.
    128. Matsumoto R and Borowski W S. Gas hydrate estimates from newly determinied oxygen isotopic fractionation α_G and δ~(18)O anomalies of the interstitial water: Leg 164, Blake Ridge. Scientific Results 164, 2000, 59-66.
    129. O'Neil J R. Hydrogen and oxygen isotope fractionation between ice and water. J. Phys. Chem, 1968, 72, 3683-3684.
    130. Suzuoki T and Kimura T. D/H and ~(18)O/~(16)O fractionation in ice-water system. Mass Spectroscopy, 1973, 21 229-233.
    131. Jakli G and Staschewski D. Vapor pressure of H_2~(18)O ice (-50 to 0℃) and H_2~(18)O water (0 to 170℃). J. Chem. Soc. Faraday Trans, 1977, 73:1505-1509.
    132. Craig H and Hom B. Relationships of deuterium, oxygen-18, and chlorinity in the formation of sea ice. Trans. Am. Geophys. Union, 1968, 49,216-217.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.