黄河下游同域山羊群体mtDNA D-环多态性与起源进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山东省地处黄河下游和黄淮海农区,现有崂山奶山羊、济宁青山羊、鲁北白山羊和沂蒙黑山羊等地方品种,新发现的莱芜黑山羊和牙山黑绒山羊,引进的波尔山羊及其杂交后代,共同组成了其山羊遗传资源。本试验测定了7个同域山羊种群(莱芜黑山羊(LBG)、济宁青山羊(JBG)、崂山奶山羊(LMG)、牙山黑绒山羊(YBG)、鲁北白山羊(LWG)、波尔山羊(BG)和杂交羊(HG))的mtDNA D-loop高变区部分序列,确立了不同单倍型。通过计算单倍型多样度、核苷酸多样度、群体间核苷酸分歧度、群体间净遗传距离、群体平均核苷酸差异数等参数及遗传变异AMOVA分析,研究了不同群体的遗传结构和遗传多样性水平;利用各单倍型构建了系统发育树,探讨了该区域山羊群体的起源,并对得到的几个分支进行了Mismatch分析。具体结果如下:
     1、在59只个体的mtDNA D-loop高变区序列中,发现崂山奶山羊品种的一条序列存在长度为5bp的片段缺失,很可能为一串联重复单位。其余58条序列均为533bp,发现了59个多态位点,其中单一多态位点22个,占总序列的4.13%,简约信息位点37个,占总序列的6.94%。所有多态位点中出现1处颠换(100位),1处转换与颠换共存(42位),其余均为转换,具有较高的转换偏倚。
     2、根据59个多态位点确立了37种单倍型,共享单倍型有H16、H21、H24和H33四种,其余33种单倍型均为各群体所特有,单倍型多样度为0.9540。Mismatch分析发现差异10个碱基的单倍型最多。
     3、所有群体单倍型多样度在0.7857~0.9697之间,核苷酸多样度在0.12716~0.17170之间,表明遗传多样性水平较高。AMOVA的变异组分剖分发现,群体内变异方差组分占94.87%,远大于群体间的5.13%,说明群体分化不明显。核苷酸分歧度在1.336%~1.951%,净遗传距离在0.015%~0.665%之间,通过Da构建NJ树发现杂交羊、济宁青山羊、莱芜黑山羊、鲁北白亲缘关系较近,聚为一支,而牙山黑山羊和崂山奶山羊亲缘关系较近,聚为另一支,支持将莱芜黑山羊与牙山黑山羊划分为两个不同的品种,并及时加以保护。
     4、系统发育树将37种单倍型划分为两个较大的分支,角猾羊1条序列聚入A分支,而捻角山羊则自成1支。A分支为7个群体的优势类型,B分支的影响相对较小。
     5、对A、B两种类型进行Mismatch分析,发现A类型经历过群体扩张,群体扩张时间较早,B类型未经历过群体扩张。
Shandong province lies in the lower region of the Yellow River and in the farmland of the Yellow River,Huai River and Hai River.Indigenous breeds such as Laoshan milk goat and Yimeng black goat,together with new-finding Laiwu black goat,Yashan black goat and imported Boer goat as well as its hybridized descendent comprised the goat resource of the area.The genetic diversity of 6 indigenous and 1 imported goat populations(Laiwu black goat(LBG),Jining blue goat(JBG),Laoshan milk goat(LMG),Yashan black goat(YBG),Lubei white goat(LWG),Beor goat(BG) and hybridized goat(HG)) was evaluated by sequencing partial sequence of mtDNA D-loop,and defined different haplotypes. The haplotype diversity,nucleotide diversity,average nucleotide substitution per site between population,net genetic distance between population,average nucleotide difference within population were computed to evaluate the genetic structure and level of genetic diversity;meanwhile,the genetic variance was analyzed through AMOVA;dendrogram was constructed to evaluate the origin of the goat.Mismatch analysis was dealed in the resulted lineages. The results were as follows:
     1. Among all the 59 sequences,a 5 bp fragment deletion was detected in one sequence from LMG,while the other sequences were 533bp long. All the sequences defined 59 polymorphic sites, among which singleton polymorphic sites are 22, parsimony informative sites are 37, account for 4.13%,6.97% of the whole sequence, respectively. Their were 1 transversion(site 100) and 1 coexistent site of transition and transversion(site 42),the others were all transition, which showed high ratio of transition to transversion.
     2.59 polymorphic sites defined 37 haplotypes, population shared haplotypes were H16、H21、H24 and H33, the others were private haplotype within population, whole haplotype diversity was 0.9540.Mismatch analysis showed that 10 nucleotides differences between haplotypes was the highest.
     3. Haplotype diversity and nucleotide diversity of the populations were 0.7857~0.9697 and 0.12716~0.17170 respectively, which suggested high genetic diversity. AMOVA analysis shows variation percentage within population was 94.87 % ,and among population was 5.13 % ,population differentiation was not clear. Net genetic distance between population was from 0.015%~0.665%,while the nucleotide divergence was form1.336% to 1.951%.By constructing NJ tree with Da we find that HG、JBG、LBG、and LWG clustered together, they might have close relative relationship, YBG and LMG clustered together, which shows close relationship, too. Thus LBG and YBG should be divided to two different breeds, and emergent protection is needed to YBG..
     4. Dendrogram divided 37 haplotypes into two major clusters(lineage A and B), capra aegagrus clustered into lineage A, while capra falconeri clustered into other lineage. Lineage A is the predominance lineage of the 7 goat populations, while lineage B has a relatively small proportion.
     5. Mismatch analysis of lineage A and B showed that lineage A experienced population expansion, and the expansion time was relatively early, while lineage B didn’t experience population expansion.
引文
[1] Ajmone-Marsan P, Negrini R, Crepaldi P, Milanesi E, Gorni C, Valentini A, Cicogna M. Assessing genetic diversity in Italian goat populations using AFLP markers[J].Anim Genet.2001. 32(5):281~288.
    [2] Anderson S,de Brui jn M. H,Coulson A. R.et al. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome[J]. Mol. Biol. 1982.156(4):683~717.
    [3] Anderson S,et al.Sequence and organization of the human mitochondrial genome[J]. Nature 1981, 290:457~465.
    [4] Avise JC, Shapira JF, Daniel SW, et al Mitochondrial DNA differentiation during the speciation process in Peromyscus. Mol Biol Evol. 1983,1(1):38~56.
    [5] Bhat P P, Mishra B P, Bhat P N. Polymorphism of mitochondrial DNA (mtDNA) in cattle and buffalo[J]. Biocheical Genetics, 1990, 28:311~317.
    [6] Bjorm MU, Amason U, The complete mitochondrial DNA sequence of the pig(Sus scrofa)[J]. Mol. Evol., 1998, 47:302~306.
    [7] Cronin M A. A unique SacII restriction fragment length polymorphism in mitochondrial DNA of sheep and goats[J].Anim Sci, 1994, 72:796.
    [8] David E. MacHugh,Daniel G. Bradly. Livestock genetic origins: Goats buck the trend[J]. PNAS,2001,98(10):5382~5384.
    [9] Edwards, Gaillard C.J et a1. Y-specific microsatellite polymorphisms in a range of bovid species[J]. Animal Genetics, 2000,31:127~130.
    [10] Elisabetta S,Filomena T,Aurclio R,et a1.Mammalian mitochondrial D-loop region structural analysis identification of new conserved sequences and their functional and evolutionary implications[J].Gene, 1997, 205:125~140.
    [11] Evans H .J, et al.Chromosoma, 1973,42:383~ 402.
    [12] Excoffer L. Analysis of Population Subdivision, in Handbook of Statistical Genetics. D.Balding,M.Bishon and C.Cannings.(eds.) wiley &Sons.Ltd. 2000.
    [13] Excoffier L.,and M.Slatkin. Maximum-likelihood estimation of molecular haplotype frequencies in diploid population.Mol.Biol.Evol,1995,12:921~927.
    [14] Fu. Y. X.Stastical tests of neutrality of mutations against population growth,hitchhiking and background selection[J]. Genetics, 1997,147: 915~925.
    [15] Gordon Luikart, Ludovic Gielly, Laurent Excoffier, et al. Multiple maternal origins and weak phylogeographic structure in domestic goats.PNAS,2001,98(10):5927~5932.
    [16] Harpending, R. C., Signature of ancient population growth in a low -resolution mitochondrial.mismatch distribution. Hum. Biol,1994,66:591~600.
    [17] Hecht W. Studies on mitochondrial DNA in farm animals[J]. In: Genome Analysis in Domestic Animals., 1990, 259~268.
    [18] Helen Doric-kellerh,Philip Green,et al. A genetic linkage map of the human Cenomes CeLL,1987,51:319~337.
    [19] Hiendleder S, Mainz K, Plante Y et al. Analysis of mitochondria) DNA indicates that domestic sheep are derived from two different ancestral maternal sources: No evidence for contributions from Urial and Argali sheep [J]. hered, 1998,89(2):113~120.
    [20] Joseph E, Faber, Carol A, et al. Tandemly repeated sequence in the mitochondrial DNA control region and phylogeography of the Pike Perebes Stizostedion,Salmo sala[J].Mol Phylogenet Evol. 1998,10:310~322.
    [21] Kaftanovskaya H M, Serov O L. High-revuiution GTC-banded chromosomes of cattle,sheep,and goat;a comparative study [J].The journal of heredity, 1994,85:395~400.
    [22] Kaneda H, Hayashi J, Takahama S, et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis[J]. Proc Natl Acad Sci U S A. 1995, 92(10):4542~4546.
    [23] Ken Nozawa, A Shinjo, T Shotake.Blood-protein variation in the meat goat in Okinawa Island of Japan [J].Sonderdruck aus ZeisdriftFurTizrzuchung and zutungsbiologe Bd.1987,95.
    [24] Kiersteina G, Vallinotoc M, Silvac A, et al. Analysis of mitochondrial D-loop region casts new light on domestic water buffalo (Bubalus bubalis) phylogeny [J].Mol Phylogenet Evol, 2004,30(2):308~324.
    [25] Laipis P.J, Wilcox C.J, Hauswirth W.W. Nucleotide sequencevariation in mitochondrial deoxyribonucleic acid from bovine liver[J]. Dairy Sci 65:1655~1662.
    [26] Li W.-H. Molecular evolution. Sinauer, Sunderland, Mass. 1997.
    [27] Liu Ruo-Yu,Yang Gong-She,Lei Chu-Zhao. The genetic diversity of mtDNA D-loop and the origin of Chinese goats. Acta Genetica Sinica, 2006, 33(5): 420~428.
    [28] Loftus R. T.,MacHugh D. E.,Bradley D. G.et al Evidence for two independent domestication of cattle[J]. Proc. Natl. Acad. Sci. USA. 1994,91:275~2761.
    [29] Manjunath B. Joshi,Pramod K.Rout,Ajoy K.Mandal, et al.phylogeography and origin of Indian domestic goats. Mol. Biol. Evol. 2004, 21(3):454~462.
    [30] Mannen H, Kojima T, Oyama K, Mukai F, Ishida T, et al. Effect of mitochondrial DNA variation on carcass traits of Japanese Black cattle [J]. Anim Sci. 1998a, 76(1):36~41.
    [31] Mannen H,Morimoto ML, Oyamat K,et al.Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle [J]. Anim Sci. 2003, 81(1):68~73.
    [32] Mannen H.,TsujiS.,Loftus R. T.et al. Mitochondrial DNA Variation and Evolution of Japanese Black Cattle(Bos taurus) [J].Genetics,1998b,150: 1169~1175.
    [33] Mason I.L. Evolution of domesticated animal.Longman,London.1984.
    [34] Michael W. Bruford, Daniel G. Bradley et al. DNA markers reveal the complexity of livestock domestication. Nature Reviews Genetics.2003(4),900~910.
    [35] Nei M. Molecular Evolutionary Genetics[M]. New York:Columbia University Press. 1987.
    [36] Nozawa K,Sninjo A,Sho take T. Population genetics of farm animals. E.Blood p ro tein variations in the meat goats in Ok inawa Islands of Japan [J ].Z T iezuch tg Zuch tgsbio l,1978,95:60~77.
    [37] Roger A. Genetic evidence for a Pleistocene population explosion. Evolution 1995,49:608~615.
    [38] Rozas,J., J.C. Sanchez-DelBarrio,X. Messeguer,et al. DnaSP , DNA polymorphism analysis by the coalescent and other methods. Bioinformatics, 2003,19:2496~2497.
    [39] Saitbekova N, Gaillard C, Obexer-Ruff G, Dolf G. Genetic diversity in Swiss goat breeds based on microsatellite analysis[J]. Anim Genet,1999 30(1):36~41.
    [40] Sambrook J,Fritsch E F,Maniatis T. Molecular Cloning Second edition, New York: Cold Spring Harbor[M],1989.
    [41] Sbisa E, Tanzariello F, Reyes A, et al.Mammalian mitochondrial D-loop region structural analysis: identification of new conserved sequences and their functional and evolutionary implications [J]. Gene.1997, 205 (1-2):125~140.
    [42] Schutz MM, Freeman AE, Linberg GL, et al. the effect of mitochondrial DNA on milk production and health of diary cattle[J]. Livest Prod Sci. 1994, 37:283~295.
    [43] Sultana S, Mannen H, Tsuji S. Mitochondrial DNA diversity of Pakistani goats. Anim Genet. 2003,34(6):417~21.
    [44] Sutarno, Cummins JM, Greeff J et al. Mitochondrial DNA polymorphisms and fertility in beef cattle [J]. Theriogenology. 2002,57(6):1603~1610.
    [45] Taanman JW. The mitochondrial genome: structure, transcription, translation and replication [J]. Biochim Biophys Acta,1999, 1410 (2): 103~123.
    [46] Tajima F. Statistical method for testing the mutation hypothesis by DNA polymorphism.Genetics.1989,123:585~589.
    [47] Tajima R. The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites.Genetics,1996,143:1457~1465.
    [48] Thompson, J.D., Higgins, D.G. and Gibson, T.J. CLUSTAL W: improvingthe sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994,22:4673~4680.
    [49] Troy C.S, MacHugh D. E, Ballet J.F,et al. Genetic evidence for Near-Eastern origins of European cattle [J]. Nature,2001,410:1088~1091.
    [50] Upholt WB and Dawid JB. Mapping of mitochondrial DNA of individual sheep and goat, rapid evolution in the D-loop region [J]. Cell,1974,11:571.
    [51] Vigne J.D.,Carrere L,Saliege J.R,et al. R2000.in Proc.4th Int.on Archzeozoology of Southwestern Asia and adjacent areas(Archaeological Research and Consultancy, Publication32, Gronigne, The Netherlands), pp.A83~A106.
    [52] Wakana S, Watanabe T, Hayashi Y.A variant in the restrication endonuclease cleavage pattern of mitochondrial DNA in the domestic Jowls, Galus domesticus [J]. Animal Genetics, 1986, 17:159~168.
    [53] Wakisa, G. et al.Characterization of Zuba cattle breeds in Tanzania using random amplified polymorphic DNA markers [J]. Anim. Genet.1994, 25:89~94.
    [54] Yu Y, Nie L, He Z. Q, et al. Mitochondrial DNA variation In cattle of South China: origin and introgression[J]. Animal Genetics,1999,30:245~250.
    [55] Zhao X,Li N,Guo W,Hu X,Liu et al. Further evidence for paternal inheritance of mitochondrial DNA in the sheep(Ovis aries)[J]. Heredity, 2004,93: 399~403.
    [56] 常洪,Nozawa K,刘小林等.黄河中、下游流域固有山羊群体亲缘关系的研究.见:常洪.中国家畜遗传资源研究.西安:陕西人民教育出版社,1998:45~51.
    [57] 陈宏,Leibenguth F,邱怀.家畜线粒体 DNA(mtDNA)的研究.黄牛杂志.1995,21(1):7~13.
    [58] 陈文华.中国原始农业的起源和发展[J].农业考古,2005,1:8~15.
    [59] 杜立新.分子遗传标记及其在动物育种中的应用[J].黄牛杂志,1995,22(1):31.
    [60] 苟德明,王智新.线粒体 DNA 特性及其多态性研究进展[J].黄牛杂志,1996,22(4):7~10.
    [61] 黄原.分子系统学-原理、方法及应用.北京.中国农业出版社,1998.
    [62] 贾永红,简承松等.贵州四个山羊品种 mtDNA 多态性及起源分化[J].动物学研究.1999,20(2):88~92.
    [63] 贾永红,史宪伟,简承松等.贵州四个山羊品种 mtDNA 多态性及起源分化.动物学研究,1999,20(2):88~92.
    [64] 拉切尔斯基.农业驯化中动植物的生态变化[J].农业考古,1993,1,20~22.
    [65] 赖松家,中国三个牛种遗传多样性和分子系统进化研究,四川农业大学博士学位论文,中国雅安,2003.
    [66] 李祥龙.山羊的起源与分化研究概况.内蒙古畜牧科学,1998,2:6~9.
    [67] 李样龙,张亚平,陈圣偶等.山羊品种间线粒体 DNA 限制性片段长度多态性研究.动物学研究[J].1997,18(4):421~428.
    [68] 李样龙等.我国主要地方山羊品种随机扩增多态 DNA 研究[J].蓄牧兽医学报,2000,31(5):416~422.
    [69] 刘若余,夏先林,雷初朝等.贵州黄牛 mtDNA D-loop 遗传多样性研究.遗传,2006,28(3):279~284.
    [70] 吕宝中,钟扬,高莉萍等译.Massatoshi N.,Sudhir K[美]著.分子进化与系统发育.北京:高等教育出版社,2002.
    [71] 牛屹东,李明,魏辅文等.线粒体 DNA 用作分子标记的可靠性和研究前景[J].遗传,2001,23(6):593~598.
    [72] 潘爱銮.山羊血液蛋自多态性的研究动态[J].西南民族学院学报(自然科学版),1998(4):414~ 419.
    [73] 彭华.中国黄牛线粒体 D-loop 区,ND5 基因和 Cyt b 基因多态性研究.西北农林科技大学硕士毕业论文,2004.
    [74] 秦国庆,常洪,陈国宏等.藏山羊 RAPD 及 RFLP 标记的初步研究[J].西北农业大学学报,1998,26(1):17~20.
    [75] 胜又诚,野泽谦.日本种山羊におけゐ血液蛋白の遗传子构成[J].日本畜产学会报,1981,52:553~561.
    [76] 孙允东.山东地方山羊遗传多样性研究.山东农业大学硕士学位论文.2003.
    [77] 涂友仁等.中国羊品种志[M].上海:上海科学技术出版社,1989.
    [78] 王朝锋.中国 8 个黄牛品种线粒体 DNA 遗传多样性研究. 西北农林科技大学硕士毕业论文,2005.
    [79] 谢成侠,孙玉民.关于中国畜牧史研究的若干问题[J].古今农业,1992,4,1~7.
    [80] 谢崇安.中国原始畜牧业的起源和发展[J].农业考古,1985,1,282~291.
    [81] 徐其放,陈嘉昌,朱世杰等.动物线粒体 DNA 的特异结构及应用分子系统学分析的方法.中国比较医学杂志.2005,15(5):315~319.
    [82] 许天申.论裴李岗文化时期的原始农业-河南古代农业研究之一.中原文物.1998,3:12~23.
    [83] 阎华超,高岚.线粒体 DNA 遗传特性的新进展[J].生物技术,2003, 13(6):63~65.
    [84] 阎隆飞.分子生物学.中国农业出版社.1997.
    [85] 杨忠诚,吴芸,滕尚辉等.贵州山羊遗传多样性及其起源.山地农业生物学报,2006,25(5):399~403.
    [86] 苑存忠.山东地方绵羊品种遗传进化与多样性研究.山东农业大学硕士学位论文,2004.
    [87] 张红平.采用 mtDNA 序列研究中国家养山羊的遗传多样性与起源分化.四川农业大学博士论文.雅安,2003.
    [88] 张亚平.从 DNA 序列到物种树.动物学研究.1996,17(3):247~252.
    [89] 赵兴波,储明星,李宁.绵羊线粒体 DNA 控制区 5'端序列 PCR-SSCP与序列分析[J].遗传学报,2001,28(3):225~228.
    [90] 赵兴波,王爱华,吴常信等.绵羊(Ovis cries)线粒体 DNA 的遗传变异类型研究[J].自然科学进展,2001(11):12~16.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.