爆炸火焰温度场测量装置的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度是确定物质状态的最重要参数之一,它的测量与控制在国防、军事、科学实验及工农业生产中具有十分重要的作用。特别是高温测量在航天、材料、能源、冶金等领域中占有极重要地位。而在导弹的瞬时爆炸过程中,温度则是标志着导弹性能的重要的物理量之一,也是一个国家军事实力的标志之一,所以研制爆炸火焰温度场测量装置,有着非常重要的现实意义。
     本文的工作就是利用多光谱测温法对导弹爆炸时的温度场进行测量。多光谱测温法是在一个仪器中制成多个光谱通道,利用多个光谱的物体辐射亮度测量信息,经过数据处理得到物体的温度和材料的光谱发射率。因为多光谱测温法有不影响目标温度场,响应速度快,测量无上限等优点,所以现在此方法广泛的应用在高温快速测量之中。
     本课题的主要内容包括两个部分,分别为测量装置的设计和测量装置的标定。文中通过分析国内外火焰温度场快速测量的方法和根据爆炸火焰温度场的实际测量要求,对测量装置的软硬件给出了具体的设计,具体包括探测器的选择、测量波长的选择、光学系统设计、前置放大电路的设计、高速数据采集系统的设计、数据传输的设计,火焰真温的计算,防爆的设计和测量装置标定方法的选择等。同时,本文采用Labview编程,简化了程序的编写过程,缩短了系统的开发周期。
Temperature is one of the most important parameters to identify the substances state. Its measurement and control play an important role in national defense, military, scientific experiments, industrial and agricultural production. High temperature measurement occupies a very important position in aerospace, materials, energy, metallurgy and other fields specially. To the process of missile instantaneous explosion, the temperature is one of important physical quantities marking the missile performance, which is also a symbol of nation's military strength, so developing explosion flame temperature measurement device has a very important practical significance.
     This paper’s main work is to develop the explosion flame temperature measurement device with multi-spectral thermometry. Multi-spectral thermometry is to get the brightness information of several spectrums from different channels. Then the temperature and spectral emissivity of material is calculated through processing the information data. Multi-spectral thermometry has advantages such as not affecting the target temperature, fast response and no maximum temperature, so this method is now widely used in the high-temperature rapid measurement system.
     The paper mainly consists of two parts: the design of the measurement device and calibration of the measurement device. Through the analysis of the domestic and international rapid flame temperature measurement methods and according to practical demands of the explosion flame temperature measurement, the paper gives the hardware and software specific design of the measurement device, which mainly include the detector choice, the measurement wavelength choice, optical system design, the amplifier circuit design, high-speed data acquisition system design, data transmission design, the calculation of the true temperature of the flame, the design of prevention of the destroy and the choice of the method of measurement device calibration. Meanwhile, using Labview programming simplifies the process of programming and shortens the development cycle.
引文
1 J.F. Schooley(美),赵琪,凌善康(译).科学和工业中的温度测量与控制(上册).计量出版社. 1985: 228~270
    2 K.L. Cashdollar, M.Hertzberg. Infrared Pyrometers for Measuring Dust Explosion Temperatures. Opt. Eng., 1982, 21(1):82~86
    3 Svet D Y, Sayapina V J, Levchuk V V, et al. Optical photoelectronic pyrometer for measuring the true temperature of metals by radiation. High Temp. High Press., 1979, 11:117~118
    4 G.A. Lyzenga, T.J. Ahrens. Multiwavelength Optical Pyrometer for Shock Compression Experiments. Review of Science Instrument. 1979, 50(11): 1421~1424
    5 J.F. Babelot, J. Magill, R.W. Ohse, M. Hoch. Micro-second and Submicro-second Multi-wavelength Pyrometer for Pulsed Heating Technique Diagnostics. Temperature, its Measurement and Control in Science and Industry. 1982, 5:439~446
    6 G.Ruffino, Z.Chu, S.Kang, J.Dai. Multi-wavelength Pyrometer with Photodiode Array. Temperature, its Measurement and Control in Science and Industry. 1993, 6(2):807 ~ 810
    7戴景民.多光谱辐射测温技术研究.哈尔滨工业大学硕士论文. 1995
    8 M.B. Boslough. A Sensitive Time-resolved Radiation Pyrometer for Shock Temperature Measurements Above 1500K, Rev. Sci. Instrum. 1989, 60(12): 3711~3717
    9 Y.A. Levendis. Development of Multicolor Pyrometers to Monitor the Transient Response of Burning Carbonaceous Particles. Rev. Sci. Instrum. 1992, 63(7):3608~3622
    10张涵信,黎作武.高超声速层流尾迹的数值模拟.力学学报. 1992, 24(4):389~399
    11王振国,鄢小清,刘昆,陈新华,张育林. N2O4/UDMH火球特性的实验与理论研究.宇航学报. 1997, 18 (4):50~55
    12洪延姬,姚宏林.高温瞬态辐射光源亮度温度测量.指挥技术学院学报.2001, 12 (1):88~91
    13张瑛华,刘宗德,段鹏.电爆炸法制备纳米晶涂层的瞬态温度场分析.现代电力. 2002, 19(5):8~12
    14林柏泉,桂晓宏.瓦斯爆炸过程中火焰传播规律的模拟研究.中国矿业大学学报. 2002, 31(1):6~9
    15林柏泉,桂晓宏.瓦斯爆炸过程中火焰厚度测定及其温度场数值模拟分析.实验力学. 2002, 17(2):227~233
    16王志健,田欣利,胡仲翔.空气超音速火焰喷枪设计理论与数学模型的建立.材料科学与工程. 2002, 20(1):54~57
    17杨栋,王俊德,赵宝昌,许厚谦.原子发射光谱双谱线法测量固体火箭发动机内燃气温度.光谱与光谱分析. 2002, 22(2):307~310
    18 SUN Xiao-gang, DAI Jing-min. Multispectral thermometry based on neural network. Journal of Harbin Institute of Technology (New Series). 2003, 10(1):108~112
    19于胜春,汤龙生.固体火箭发动机喷管及羽流流场的数值分析.固体火箭技术. 2004, 27(2):95~97
    20毕明树,尹旺华,丁信伟.圆筒形容器内可燃气体爆燃过程的数值模拟.天然气工业. 2004, 24(4):94~97
    21孙晓刚,原桂彬,林科锋,戴景民.基于神经网络的多光谱测温数据处理方法.清华大学学报. 2005, 24(4):999~1001
    22金钊,萧鹏,戴景民.固体推进剂火箭发动机羽焰温度诊断的遗传算法研究。燃烧科学与技术. 2006, 12(3):213~216
    23李奇楠,徐晓轩,武中臣,宋宁,张存洲,俞钢.多光谱辐射测温的正交多项式回归方法.光谱学与光谱分析. 2006, 26(12):2173~2177
    24孙晓刚,原桂彬,戴景民.基于遗传神经网络的多光谱辐射测温法. 2007,27(2):213~216
    25 Dei Y, Dai J M, Chu Z X. Monte-carlo studies and computer modeling of multi-wavelength dyrometry. Journal of Harbin Institute of Technology, 1996, 3(2):20~25
    26 Sun X G, Xu W H, Chu Z X. The theoretical analysis of multi-wavelength pyrometer: check and autosearch for emissivity general expression. Journal of Harbin Institute of Technology, 1998, 5(3):36~40
    27孙晓刚,戴景民,褚载祥.多光谱辐射测温的理论研究——发射率模型的自动判别.红外与毫米波学报. 1998,17(3):221-225
    28 Vanzettir. Practical Applications of Infrared Techniques.科学出版社. 1972, 7(1):158~162
    29程守洙,江之永.普通物理学(3).高等教育出版社. 2001 :221~240
    30施德恒,刘玉芳,孙金锋,黄国庆,陈玉科.探测器本身的辐射对实时测温系统测温精度的影响及其抑制.量子电子学报. 2003, 20(6):753~758
    31孙晓刚,戴景民,王雪峰,褚载祥.一种测量固体火箭发动机羽焰温度的数据处理方法研究.红外与毫米波学报. 2003, 22(2):141~144
    32 Gu S, Fu G, Zhang Q. 3500K high frequency induction-heated blackbody source. J. Thermophysics, 1989, 3(1):83~85
    33佐久间史洋,服部晋.实用形定点黑体炉的试作.计测自动制御学会论文集,昭和57年, 18(1):52~57
    34花田百合男.实用钯点黑体的试制.国外计量, 1986, 5:15~19
    35 Righini F, Bussolino G C, Rosso A. Radiance temperatures(at 658 and 898nm) of iriobium at its melting point. Int. J. of Thermophysics, 1993, 14(3):495~510
    36 Righini F, Bussolino G C, Rosso A. A new technique for the measurement of radiance temperature at the melting point. Int. J. of Thermophysics, 1993, 14(3):485~494
    37 Miller A P, Cezairliyan A. Radiance temperatures (in the wavelength range 521~906nm) of molybdenum of its melting point by a pulse-heating technique. Temp., its Measur. and Contr. in Sci. and Ind., 1993, 6(2):769~774
    38 Ono A. A hemispherical mirror method for the measurement of directional spectral emissivity of diffuse opaque surface. Proc. 8th Symp. Thermophysical Properties, 1982, 2:133~137
    39 P. Coppa, G. Ruffino, A. Spena. Pyrometer Wavelength Function: its Determination and Error Analysis. High Temperature - High Pressure. 1988, 20:479~490
    40 J.L.Gardner. Computer Modelling of a Multiwavelength Pyrometer for Measuring True Surface Temperature. High Temp.-High Pressures.1980, 12:669~705
    41戴景民,褚载祥.基于波长函数的辐射温度计一点标定法及其精度的理论估计与实验验证.计量学报. 1999,20(1):53~58
    42 Coppa P. Pyrometer wavelength function: its determination and error analysis. High Temp. High Press. 1988,20: 479~490
    43 SUN Xiao-gang, ZHAO Wei, YUAN Gui-bin, DAI Jing-min. Methods of data processing in multi-wavelength thermometry. Journal of Harbin Institute of Technology (New Series). 2006, 13(4):421~426
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.