1、番荔枝内生真菌Periconia sp.F-31中新颖结构化学成分研究 2、丹参细胞培养物中脂溶性化学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、番荔枝内生真菌Periconia sp. F-31中新颖结构化学成分研究
     Periconia sp. F-31为本实验室前期从刺果番荔枝中分离得到的一株具有较强体外细胞毒活性的内生真菌,菌种鉴定结果表明,其可能为黑团孢霉属的一个新种(Periconia sp.)。本论文以寻找新颖结构的活性PKS-NRPS杂合物为重点,对其次生代谢产物进行了系统的研究。
     紧密结合HPLC-UV-MS"分析技术指导跟踪分离,采用正相硅胶柱色谱、SephadexLH-20凝胶柱色谱、正/反相半制备HPLC等多种分离手段进行快速定向分离纯化,并通过理化性质、多种波谱技术(IR, UV, MS、1D NMR,2DNMR)、CD、单晶X-ray、化学方法等手段鉴定化合物的结构。从Periconia sp. F-31中共分离得到29个化合物,新化合物24个(P1-P24), PKS-NRPS杂合物16个(P1-P16),包括8个来源于PKS-NRPS杂合途径的具有新颖结构骨架的细胞松弛素类化合物(P1-P8)和2个具6/6/5含氧三环系新颖结构骨架的PKS-NRPS杂合物(P9-P10)。其中8个细胞松弛素类化合物又包含三类骨架结构:第一类为9/6/5三环系的细胞松弛素,第二类为其衍生的5/6/6/5四环系和5/5/6/6/5五环系的细胞松弛素,第三类为7/6/5三环系的细胞松弛素。在确定新化合物的绝对构型过程中,除了常用波谱手段外,还运用了化学衍生法、X-ray、CD[包括Rh2(OCOCF3)4-鳌合CD、Mo2(OAC)4-鳌合CD]等方法。另外,对新化合物的生物合成途径进行了合理的推测。
     对部分化合物进行了体外抗肿瘤活性评价和抗病毒(HIV-1)活性评价。抗肿瘤筛选结果显示,化合物P1和P2对HCT-8、BGC-823、Bel-7402三种肿瘤细胞株显示良好的抑制活性。上述新颖结构骨架PKS-NRPS杂合物的发现不仅为药物先导物提供了结构多样化的化合物分子,还为这些PKS-NRPS杂合物生物合成途径的进一步研究奠了基础。
     二、丹参细胞培养物中脂溶性化学成分研究
     丹参为我国传统中药,是最常用的活血化瘀中药之一,现代药理学研究表明,丹参有扩张冠状动脉、增加冠状动脉血流量、减慢心率、改善心肌缺氧、改善微循环、抗肿瘤、抗菌消炎等多种药理活性。临床广泛用于治疗心脑血管疾病。丹参的脂溶性成分是活血化瘀的有效成分之一,主要用于治疗冠心病。丹参中化学成分已有较多文献报道,而其细胞培养物中化学成分则少有研究。为明确丹参细胞培养物中脂溶性化学成分,寻找新的活性天然产物。我们对丹参细胞培养物80%乙醇提取物的石油醚部位进行了系统的化学成分研究。
     采用正相硅胶柱色谱、Sephadex LH-20凝胶柱色谱、制备薄层、正/反相半制备HPLC等手段进行分离纯化,根据理化性质及波谱数据鉴定化合物的结构,共分离鉴定了50个化合物,其中8个新化合物(M1-M8),包括6个含嗯唑环的芳香化松香烷二萜类化合物(M1-M6)和2个降碳二萜类化合物(M7-M8),并首次通过单晶X衍射法和圆二色谱(CD)技术确定了含嗯唑环的芳香化松香烷二萜类化合物中手性碳的绝对构型。另外,对含噁唑环的芳香化松香烷二萜的生物合成途径进行了合理的推测。
     对分离得到的化合物进行了抗肿瘤、抗病毒、神经保护等多种药理活性筛选。在抗肿瘤活性测试中,化合物M19-M21, M31-M33具有良好的体外抗肿瘤活性。在抗病毒活性筛选中,发现多个化合物具有很强的抗HIV-1活性,并且发现其在低浓度和高浓度下对HIV-1的抑制活性不呈浓度依赖性,其中2个化合物在0.1μM浓度下抑制率可达40-50%。在小胶质细胞释放炎症因子的抑制模型上,化合物M19-M23,M31,M33在10μM浓度下对小胶质细胞释放的炎症因子的抑制率可达100%,显示出很强的神经保护活性。以上结果表明,植物细胞培养物不仅可以产生原植物中已发现的活性成分,还可以产生新颖结构活性天然产物,为药物先导物的发现提供了新的来源。
1. Chemical constituents from endophytic fungus Periconia sp. F-31isolated from Annona muricata
     Periconia sp. F-31was an endophytic fungus isolated from the medicinal plant Annona muricata, which might be a new species according to the identification by using morphological and molecular (ITS1-5.8S-ITS2rDNA sequence) analyses, the crude extract of which displayed potent cytotoxicity against several human cancer cell lines.
     As part of our search for novel bio-active PKS-NRPS metabolites from Periconia sp. F-31, the EtOAc extract of the filtrate and mycelia of this strain were systematically investigated. Under the guidance of HPLC-UV-MS" analysis, twenty-nine compounds were isolated by using various chromatographic techinques, and their structures were elucidated by extensive spectroscopic data analysis. Especially, the absolute configurations were determined by analyzing the single-crystal X-ray diffraction data, CD [including Rh2(OCOCF3)4-induced CD^Mo2(OAC)4-induced CD] spectroscopic data. Twenty-four (P1-P24) of them are new compounds, including sixteen PKS-NRPS metabolites (P1-P16), these PKS-NRPS metabolites contain eight novel cytochalasans (P1-P8) and two PKS-NRPS metabolites with an unique6/6/5tricyclic ring system (P9-P10). The cytochalasan contain three type structures:the first type of which possesses novel9/6/5tricyclic ring system, the second type has unique5/6/6/5and5/5/6/6/5carbocyclic ring system which might be derived from the former, the third type displays unusual7/6/5tricyclic ring system. The plausible biosynthetic pathways of new compounds were also proposed.
     The in vitro bio-activities of part of compounds were evaluated for the cytotoxicity against five cancer cell lines and antiviral activity. Comopunds PI and P2showed selective and significant cytotoxicity against HCT-8, BGC-823, and Bel-7402cancer cell lines. The discovery of novel PKS-NRPS metabolites with cytotoxicities not only provide the diverse molecules for lead compounds, but also are useful for further biosynthesis investigation of these significant PKS-NRPS metabolites.
     2. Liposoluble chemical constituents from cell cultures of Salvia miltiorrhiza
     Salvia miltiorrhiza Bunge (Labiatae), which is well-known as the traditional Chinese medicine "Danshen", has been used for the treatment of menstrual disorders, menorrhagia, menostasis, insomnia and cardiovascular diseases, particularly angina pectoris and myocardial infarction. The liposoluble chemical constituents of S. miltiorrhiza were confirmed as effective constituents, which were mainly used for the treatment of coronary heart disease. Numerous studies of chemical constituents of S. miltiorrhiza plants have been reported, however, the chemical constituents of the cell cultures of S. miltiorrhiza have hardly reported till now. As part of our search for bioactive compounds, the petroleum ether fraction of80%EtOH extract of S. miltiorrhiza cell cultures were systematically investigated, which led to the isolation of fifty compounds including eight new compounds (M1-M8). Their structures with absolute configuration were elucidated by detailed analyses of spectroscopic data (IR, MS, NMR, UV), CD, and single-crystal X-ray diffraction. The new compounds included six new oxazole-containing diterpenoids (M1-M6) and two norditerpenoids (M7-M8). Especially, the single-crystal X-ray diffraction experiment was the first time for confirming the oxazole ring and the absolute configuration of this type diterpenoids. The plausible biosynthetic pathway of aromatic oxazole-containing diterpenoids was also proposed.
     The isolated compounds were evaluated for their cytotoxicities, antiviral activities, neuroprotective activities. Compounds M19-M21, M31-M33showed selected and significant activity against several cancer cell lines. Several compounds displayed potent activity against HIV-1replication. It's interesting that the values of inhibitory activities of these compounds are not concentration-dependent, the values of inhibitory activities of2compounds in0.1μM were in the range of40-50%. Compounds M19-M23, M31, M33inhibited lipopolysaccharide (LPS)-induced pro-inflammatory factors in BV2-macrophages with the inhibition ratio of100%at10μM. The results imply that plant cell cultures can not only produce known bioactive compounds, but also yield new bioactive metabolites, which offer alternative and effective sources of lead compounds.
引文
[1]Binder, M.; Tamm, C. The cytochalasans:a new class of biologically active microbial metabolites. Angewandte Chemie (International Editon in English) 1973,15:370-380.
    [2]Andersen, B.; Smedsgaard, J.; Rrisvad, J. C. Penicillium expansum:consistent production of Patulin, Chaetoglobosins, and other secondary metabolites in culture and their natural occurrence in fruit products. Journal of Agricultural and Food Chemistry 2004,52:2421-2428.
    [3]Ding, G; Song, Y. C.; Chen, J. R.; Xu, C.; Ge, H. M.; Wang, X. T.; Tan, R. X. Chaetoglobosin U, a cytochalasan alkaloid from endophytic Chaetomium globosum IFB-E019. Journal of Natural Products 2006,69:302-304.
    [4]Lin, Z.-J.; Zhang, G.-J.; Zhu, T.-J.; Liu, R.; Wei, H.-J.; Gu, Q.-Q. Bioactive cytochalasins from Aspergillus flavipes, and endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helvetica Chimica Acta 2009,92:1538-1544.
    [5]Aldridge, D. C.; Armstrong, J. J.; Speake, R. N.; Turner, W. B. The cytychalasins, a new class of biologically active mould metabolites. Chemical Communications 1967,1: 26-27.
    [6]Binder, M.; Tamm, C. Desoxaphomin, das erste [13] cytochalasan, ein moglicher biogenetischer vorlaufer der 24-oxa-[14] cytochalasane. Helvetica Chimica Acta 1973, 56:966-976.
    [7]Binder, M.; Tamm, C.; Turner, W. B.; Minato, H. Nomenclature of a class of biologically active mould metabolites:the cytochalasins, phomins, and zygosporins. Journal of the Chemical Society, Perkin Transactions 11973,11:1146-1147.
    [8]Liu, R.; Lin, Z.; Zhu, T.; Fang, Y.; Gu, Q.; Zhu, W. Novel open-chain cytochalasins from the marine-derived fungus Spicaria elegans. Journal of Natural Products 2008,71: 1127-1132.
    [9]Hirose, T.; Izawa, Y.; Koyama, K.; Natori, S.; Iida, K.; Yahara, I.; Shimaoka, S.; Maruyama, K. The effects of new cytochalasins from Phomopsis sp. and the derivatives on cellular structure and actin polymerization. Chemical & Pharmaceutical Bulletin 1990,38:971-974.
    [10]Lin, Z.-J.; Zhang, G.-J.; Zhu, T.-J.; Liu, R.; Wei, H.-J.; Gu, Q.-Q. Bioactive cytochalasins from Aspergillus flavipes, and endophytic fungus associated with the mangrove plant Acanthus ilicifolius. Helvetica Chimica Acta 2009,92:1538-1544.
    [11]Liu, J.-K. N-containing compounds of Macromycetes. Chemical Review 2005,105: 2723-2744.
    [12]Kndeyka, J.; Hensens, O. D.; Zink, D.; Ball, R.; Lingham, R. B.; Bills, G.; Dombrowski, A.; Goetz, M. L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease II. Isolation and structure. The Journal of Antibiotics 1992,45:679-685.
    [13]Fujii, Y.; Tani, H.; Ichinone, M.; Nakajima, H. Zygosporin D and two new cytochalasins produced by the fungus Metarrhizium anisoplias. Journal of Natural Products 2000,63:132-135.
    [14]Liu, R.; Gu, Q.; Zhu, W.; Cui, C.; Fan, G.; Fang, Y.; Zhu, T.; Liu, H. 10-Phenyl-[12]-cytochalasins Z7, Z8, and Z9 from the marine-derived fungus Spicaria elegans. Journal of Natural Products 2006,69:871-875.
    [15]Evidente, A.; Andolfi, A.; Vurro, M.; Zonno, M. C.; Motta, A. Cytochalasins Z4, Z5, Z6, three new 24-Oxa[14]cytochalasans produced by Phoma exigua var. heteromorpha. Journal of Natural Products 2003,66:1540-1544.
    [16]Pongcharoen, W.; Rukachaisirikul, V.; Phongpaichit, S.; Rungjindamai, N.; Sakayaroj, J. Pimarane diterpene and cytochalasin derivatives from the endophytic fungus Eutypella scoparia PSU-D44. Journal of Natural Products 2006,69:856-858.
    [17]Horn, W. S.; Simmonds, M.S. J.; Schwartz, R. E.; Blaney, W. M. Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron.1995,51: 3969-3978.
    [18]Lin, Z.; Zhu, T.; Wei, H.; Zhang, G.; Wang, H.; Gu, Q. Spicochalasin A and new aspochalasins from the marine-derived fungus Spicaria elegans. European Journal of Organic Chemistry 2009,18:3045-3051.
    [19]Rochfort, S.; Ford, J.; Ovenden, S.; Wan, S. S.; George, S.; Wildman, H.; Tait, R. M.; Grimes, B. M.; Cox, S.; Coates, J.; Rhodes, D. A novel aspochalasin with HIV-1 integrase inhibitory activity from Aspergillus flavipes. The Journal of Antibiotics 2005, 58:279-283.
    [20]Holtzel, A.; Schmid, D. G.; Nicholson, G. J.; Krastel, P.; Zeeck, A.; Gebhardt, K.; Fiedler, H.-P.; Jung, G Aspochalamins A-D and aspochalasin Z produced by the endosymbiotic fungus Aspergillus niveus LU 9575. The Journal of Antibiotics 2004,57, 11:715-720.
    [21]Alvi, K. A.; Nair, B.; Pu, H.; Ursino, R.; Gallo, C.; Mocek, U. Phomacins:three novel antitumor cytochalasan constituents produced by a Phoma sp. The Journal of Organic Chemistry 1997,62:2148-2151.
    [22]Sekita, S.; Yoshihira, K.; Natori, S.; Udagawa, S.; Sakabe, F.; Kurata, H.; Umeda, M. Chaetoglobosins, cytotoxic 10-(Indol-3-yl)-[13]-cytochalasans from Chaetomium sp. I. production, isolation and some cytological effedts of chaetoglobosins A-J. Chemical & Pharmaceutical Bulletin 1982,30:1609-1617.
    [23]Xue, M.; Zhang, Q.; Gao, J.-M.; Li, H.; Tian, J.-M.; Pescitelli, G. Chaetoglobosin Vb from endophytic Chaetomium globosum:absolute configuration of chaetoglobosins. Chirality 2013,24:668-674.
    [24]Cameron, A. F.; Freer, A. A.; Hesp, B.; Strawson, C. J. Isolation, and crystal and molecular structure of cytochalasin G:an[11]cytochalasan containing an indole group. Journal of the Chemical Society, Perkin Transactions II 1974,1741-1744.
    [25]Christian, O. E.; Compton, J.; Christian, K. R.; Mooberry, S. L.; Valeriote, F. A.; Crews, P. Using jasplakinolide to turn on pathways that enable the isolation of new chaetoglobosins from Phomospis asparagi. Journal of Natural Products 2005,68: 1592-1597.
    [26]Numata, A.; takahashi, C.; Ito, Y.; Minoura, K.; Yamada, T.; Matsuda, C.; Nomoto, K. Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga:structure determination and solution conformation. Journal of the Chemical Society, Perkin Transactions 11996,34:239-245.
    [27]Jiao, W.; Feng, Y.; Blunt, J. W.; Cole, A. L. J.; Munro, H. G. Chaetoglobosins Q, R, T, three further new metabolites from Chaetomium globosum. Journal of Natural Products 2004,67:1722-1725.
    [28]Cui, C.-M.; Li, X.-M.; Li, C.-S.; Proksch, P.; Wang, B.-G. Cytoglobosins A-G, cytochalasans from a marine-derived endophytic fungus, Chaetomium globosum QEN-14. Journal of Natural Products 2010,73:729-733.
    [29]Iwamoto, C.; Yamada, T.; Ito, Y.; Minoura K.; Numata, A. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron 2001,57: 2997-3004.
    [30]Zhang, Y.; Tian, R.; Liu, S.; Chen, X.; Liu, X.; Che, Y. Alachalasins A-G, new cytochalasins from the fungus Stachybotrys charatum. Bioorganic & Medicinal Chemistry 2008,16:2627-2634.
    [31]Zhang, Y; Tian, R.; Liu, S.; Chen, X.; Liu, X.; Che, Y. Corrigendum to "Alachalasins A-G, new cytochalasins from the fungus Stachybotrys charatum" [Bioorg.& Med. Chem.16 (2008) 2627-2634]. Bioorganic & Medicinal Chemistry 2009,17:428.
    [32]Carter, S. B. Effects of cytochalasina on mammalian cells. Nature 1967,213:261-264.
    [33]Betina, V.; Micekova, D.; Nemec, P. Antimicrobial properties of cytochalasins and their alteration of fungal morphology. Journal of General Microbiology 1972,71:343-349.
    [34]Makioka, A.; Kumaqai, M.; Kobayashi, S.; Takeuchi, T. Different effects of cytochalasins on the growth and differentiation of Entamoeba invadens. Parasitol Research 2004,93:68-71.
    [35]Lingham, R. B.; Hsu, A.; Silverman, K. C.; Bills, G. F.; Dombrowski, A.; Goldman, M. E.; Darke, P. L.; Huang, L.; Koch, G.; Ondeyka, J. G.; Goetz, M. A. L-696,474, a novel cytochalasin as an inhibitor of HIV-1 protease III. Biological activity. The Journal of Antibiotics 1992,45:686-691.
    [36]Jayasuriya, H.; Herath, K. B.; Ondeyka, J. G.; Polishook, J. D.; Bills, G.F.; Dombrowski, A. W.; Springer, M. S.; Siciliano, S.; Malkowitz, L.; Sanchez, M.; Guan, Z.; Tiwari, S.; Stevenson, D. W.; Borris, R. P.; Singh, S. B. Isolation and structure of antagonists of chemokine receptor. Journal of Natural Products 2004,67:1036-1038.
    [37]Donadio, S.; Monciardini, P.; Sosio, M. Polyketide synthases and nonribosomal peptide synthetases:the emerging view from bacterial genomics. Natural Product Reports 2007,24:1073-1109.
    [38]Molnar, I.; Schupp, T.; Ono, M.; Zirkle, R.; Milnamow, M.; Nowak-Thompson, B.; Engel, N.; Toupet, C.; Stratmann, A.; Cyr, D. D.; Gorlach, J.; Mayo, J. M.; Hu, A.; Goff, S.; Schmid, J.; Ligon, J. M. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum Soce90. Chemistry & Biology 2000,7:97-109.
    [39]Du, L.; Sanchez, C.; Chen, M.; Edwards, D. J.; Shen, B. The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC 15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. Chemistry & Biology 2000,7:623-42.
    [40]Cox, R. J. Polyketides, proteins and genes in fungi:programmed nano-machines begin to reveal their secrets. Organic & Biomolecular Chemistry 2007,5:2010-2026.
    [41]Schumann, J.; Hertweck, C. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. Journal of Biotechnology 2006,124: 690-703.
    [42]Song, Z.; Cox, R. J.; Lazarus, C. M.; Simpson, T. J. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem:A European Journal of Chemical Biology 2004,5:1196-1203.
    [43]Fischbach, M. A.; Walsh, C. T. Assembly-line enzymology for polyketude and nonribosomal Peptide antibiotics:logic, machinery, and mechanisms. Chemical Reviews 2006,106:3468-3496.
    [44]Koglin, A.; Walsh, C. T. Structural insights into nonribosomal peptide enzymatic assembly lines. Natural Product Reports 2009,26:987-1000.
    [45]Schumann, J.; Hertweck, C. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. Journal of American Chemical Society 2007,129: 9564-9565.
    [46]Kennedy, J.; Auclair, K.; Kendrew, S. G.; Park, C.; Vederas, J. C.; Hutchinson, C. R. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 1999,284:1368-1372.
    [47]Hertweck, C. The biosynthetic logic of polyketide diversity. Angewandte Chemie (International Edition in English) 2009,48:4688-4761.
    [48]Oppermann, U.; Filling, C.; Hult, M.; Shafqat, N.; Wu, X.; Lindh, M.; Shafqat, J.; Nordling, E.; Kallberq, Y; Persson, B.; Jornvall, H. Short-chain dehydrogenases/reductases (SDR):the 2002 update. Chemico-Biological Interactions 2003,143-144:247-253.
    [49]Oikawa, H.; Murakami, Y.; Ichihara, A. Biosynthetic study of chaetoglobosin A:origins of the oxygen and hydrogen atoms, and indirect evidence for biological Diels-Alder reaction. Journal of the Chemical Society, Perkin Transactions 11992,21:2955-2959.
    [50]Oikawa, H.; Tokiwano, T. Enzymatic catalysis of the Diels-Alder reaction in the biosynthesis of natural products. Natural Product Reports 2004,21:321-352.
    [51]Stocking, E. M.; Williams, R. M. Chemistry and biology of biosynthetic Diels-Alder reaction. Angewandte Chemie (International Edition in English) 2003,42:3078-3115.
    [52]Kelly, W. L. Intramolecular cyclizations of polyketide biosynthesis:mining for a "Diels-Alderase". Organic & Biomolecular Chemistry 2008,6:4483-4493.
    [53]Katayama, K.; Kobayashi, T.; Oikawa, H.; Honma, M.; Ichihara, A. Enzymatic activity and partial purification of solanapyrone synthase:fisrt enzyme catalyzing Diels-Alder reaction. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1998,1384:387-395.
    [54]Auclair, A. S. K.; Kennedy, J.; Witter, D. J.:Van den Heever, J. P.; Hutchinson, C. R.; Vederas, J. C. Lovastatin nonaketide synthase catalyzes an intramolecular Diels-Alder reaction of a substrate analogue. Journal of the the American Chemical Society 2000, 122:11519-11520.
    [55]Thomas, E. J. Cytochalasan synthesis:macrocycle formation via intramolecular Diels-Alder reactions. Accounts of Chemical Research 1991,24:229-235.
    [56]Haidle, A. M.; Myers, A. G. An enantioselective, modular, and general route to the cytochalasins:synthesis of L-696,474 and cytochalasin B. Proceeding of the National Academy of Sciences of the United States ofAmerica 2004,101:12048-12053.
    [57]Amnuaykanjanasin, A.; Punya, J.; Paungmoung, P.; Rungrod, A.; Tachaleat, A.; Pongpattanakitshote, S.; Cheevadhanarak, S.; Tanticharoen, M. Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiology Letters 2005,251:125-136.
    [1]Frelek, J.; Szczepek, W. J. [Rh2(OCOCF3)4] as an auxiliary chromophore in chiroptical studies on steroidal alcohols. Tetrahedron:Asymmetry 1999,10:1507-1520.
    [2]Bari, L. D.; Pescitelli, G.; Pratelli, C.; Pini, D.; Salvadori, P. Determination of absolute configuration of acyclic 1,2-diols with Mo2(OAc)4.1. Snatzke's method revisited. The Journal of Organic Letters 2001,66:4819-4825.
    [3]Krohn, K.; Bahramsari, R.; Florke, U.; Ludewig, K.; Spory, C. K.; Michel, A.; Aust, H.-J.; Draeger, S.; Schulz, B.; Antus, S. Dihydroisocoumarins from fungi:isolation, structure elucidation, circular dichroism and biological activity. Phytochemistry 1997, 45:313-320.
    [4]Henderson, G. B.; Hill, R. A. Synthesis of chlorinated lsocoumarin derivatives. Journal of the Chemical Society, Perkin Transactions 1:Organic and Bio-Organic Chemistry 1982,4:1111-1115.
    [5]Henderson, G B.; Hill, R. A. The biosynthesis of chlorine-containing metabolites of Periconia macrospinosa. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry 1982,12:3037-3039.
    [6]Magahren, W. J.; Mitscher, L. A. Dihydroisocoumarins from a Sporormia fungus. The Journal of Organic Chemistry 1968,33, (4):1577-1580.
    [7]Rukachaisirikul, V.; Arunpanichlert, J.; Sukpondma, Y; Phongpaichit, S.; Sakayaroj, J. Metabolites from the endophytic fungi Botryosphaeria rehodina PSU-M35 and PSU-M114. Tetrahedron 2009,69:10590-10595.
    [8]Fujii, Y.; Asahara, M.; Ichinoe, M.; Nakajima, H. Fungal melanin inhibitor and related compounds from Penicillium decumbens. Phytochemistry 2002,60:703-708.
    [9]赵余庆,袁昌鲁,李铣,吴立军.红毛五加化学成分的研究.中国中药杂志,1991,16,(7):421-423.
    [1]国家药典委员会.中华人民共和国药典(一部)2010版.北京:中国医药科技出版社,2010,70.
    [2]黄璐琦.丹参植物学(丹参大全).北京:人民卫生出版社,2008,32.
    [3]尚志均辑校.神农本草经校点.芫湖:皖南医学院科研处印,1981,89.
    [4]国家药典委员会.中华人民共和国药典(一部)2010版.北京:中国医药科技出版社,2010,71.
    [5]中尾万三,福岛总藤.汉药丹参成分的研究(第一报).药学杂志,1934,54,(9):844.
    [6]泷浦洁.丹参成分的研究(第二报).Cryptotanshinone的结构.药学杂志,1941,61:482.
    [7]泷浦洁.丹参成分的研究(第三报).Tanshinone的结构.药学杂志,1943,63(1):40.
    [8]黎莲娘,罗厚蔚.丹参植物化学(丹参大全).北京:人民卫生出版社,2008,35-41.
    [9]黎莲娘,罗厚蔚.丹参植物化学(丹参大全).北京:人民卫生出版社,2008,4-6.
    [10]Li, Y.-G.; Song, L.; Liu, M.; Hu, Z.-B.; Wang, Z.-T. Advancement in analysis of Salviae miltiorrhizae Radix et Rhizoma (Danshen). Journal of Chromatography A 2009,1216: 1941-1953.
    [11]Xu, Y.-Y.; Wan, R.-Z.; Lin, Y.-P.; Yang, L.; Chen, Y.; Liu, C.-X. Recent advance on research and application of Salvia miltiorrhiza. Asian Journal of Pharmacodynamics and Pharmacokinetics 2007,7, (2):99-130.
    [12]Chang, H. M.; Cheng, K. P.; Choang, T. F.; Chow, H. F.; Chui, K. Y.; Hon, P. M.; Tan, F. W. L.; Yang, Y.; Zhong, Z. P. Structure elucidation and total synthesis of new tanshinones isolated from Salvia miltiorrhiza Bunge (Danshen). The Journal of Organic Chemistry 1990,55:3537-3543.
    [13]沈映君.中药药理学[M].北京:人民卫生出版社,2000:632-634.
    [14]Ukubelen, A.; Oksuz, S.; Kolak, U.; Birman, H.; Voelter, W. Cardioactive terpenoids and a new rearranged diterpene from Salvia syriaca. Planta Medica 2000,66, (7): 627-629.
    [15]Wu, Y.-J.; Hong, C.-Y.; Lin, S.-J.; Wu, P.; Shiao, M.-S. Increse of vitamin E content in LDL and Reduction of Atherosclerosis in Cholestero-Fed Rabbits by a Water-soluble Antixidant-Rich Fraction of Salvia miltiorrhiza. Arteriosclerosis Thrombosis and Vascular Biology 1998,18:481-486.
    [16]Ding, M.; Zhao, G.-R.; Ye, T.-X.; Yuan, Y.-J.; Guo, Z.-X. Saliva miltiorrhiza protects endothelial cells against oxidative stress. The Journal of Alternative and Complementary Medicine 2006,12, (1):5-6.
    [17]徐长庆,王孝铭,范劲松,郝雪梅,周盈颖,刘秦.丹参酮ⅡA对豚鼠单个心室肌细胞跨膜电位及L型钙电流的影响.中国病理生理杂志,1997,13,(1):43-47.
    [18]李琳,孙莉莎,徐江平.丹酚酸B对犬心肌梗死的治疗作用.中成药,2004,26,(3):215-218.
    [19]戚心广,稻田丰.丹参、赤芍对实验性肝损作肝细胞保护作用的机理研究.中国中西医结合杂志,1991,11,(2):102-105.
    [20]严仲瑜.丹参对胃粘膜屏障的作用.中华外科杂志,1990,28,(5):298-300.
    [21]董静,罗桂林,苗维纳,刘绍唐.丹参对实验性肺纤维化小鼠病理变化和核因子KB表达的影响.中国药理学通报,2003,19,(12):1428-1431.
    [22]吴杲,何招兵,吴汉斌.丹参酮的药理作用研究进展.现代中西医结合杂志,2005,14,(10):1382-1385.
    [23]Yuan, S.-L.; Wang, X.-J.; Wei-, Y.-Q. Anticancer effect of tanshinone and its mechanisms. Chinese Journal of Cancer 2003,22, (12):1363-1366.
    [24]孙吉兰,常云亭,宋海英,邱世翠.丹参对体外抑菌作用研究.时珍国医国药:2003,14,(12):725-728.
    [25]Yu, S.-Y.;Kuang, P.-G.; Kanazawa, T.; Onodera, K.; Metoki, H.; Oike, Y. The effects of radix Salviae miltiorrhizae on lipid accumulation of peroxidized low density lipoprotein in mouse peritoneal macrophageslipid analysis and morphological studies. Journal of Traditional Chinese Medicine 1998,18, (4):292-299.
    [26]Ding, M.; Ye, T.-X.; Zhao, G-R.; Yuan, Y.-J.; Guo, Z.-X. Aqueous extract of Salvia miltiorrhiza attenuats increased endothelial permeability induced by tumor necrosis factor-a. International Immunopharmacology 2005,5, (11):1641-1651.
    [1]Lin, F.-W.; Damu, A. G.; Wu, T.-S. New abietane diterpene alkaloids possessing an oxazole ring from Salvia trijuga. Heterocycles 2006,68:159-165.
    [2]Don, M.-J.; Shen, C.-C.; Lin, Y.-L.; Syu, W.-J.; Ding, Y.-H.; Sun, C.-M. Nitrogen-containing compounds from Salvia miltiorrhiza. Journal of Natural Products 2005,68:1066-1070.
    [3]An, L.-K.; Bu, X.-Z.; Wu, H.-Q.; Guo, X.-D.; Ma, L.; Gu, L.-Q. Reaction of tanshinones with biogenic amine metabolites in vitro. Tetrahedron 2002,58:10315-10321.
    [4]An, L. K.; Bu, X. Z.; Wu, H. Q.; Guo, X. D.; Ma, L.; Gu, L. Q. The reaction of tanshinones with amines. Chinese Chemical Letters 2003,14:557-560.
    [5]Li, L.; Si, Y.-K. Study on the absolute configurations of 3-alkylphthalides using TDDFT calculations of chiroptical properties. Charility 2012,24:987-993.
    [6]Politi, M.; Braca, A.; Tommasi, N. D.; Morelli, I.; Manunta, A.; Battinelli, L.; Mazzanti, G. Antimicrobial diterpenes from the seeds of Cephalotaxus harringtonia var drupacea. Planta Medica 2003,69:468-470.
    [7]Fan, S.-Y.; Pei, Y.-H.; Zeng, H.-W.; Zhang, S.-D.; Li, Y.-L.; Li, L.; Ye, J.; Pan, Y.-X.; Li, H.-L.; Zhang, W.-D. Compounds from Platycladus orientalis and their inhibitory effects on Nitric Oxide and TNF-a production. Planta Medica 2011,77:1623-1630.
    [8]Lin, F.-W.; Damu, A. G.; Wu, T.-S. Abietane diterpene alkaloids from Salviayunnanensis. Journal of Natural Products 2006,69:93-96.
    [9]Bu, X. Z.; Huang, Z.-S.; Zhang, M.; Ma, L.; Xiao, G.-W.; Gu, L.-Q. Synthesis of new 1,1-dimethy-1,2,3,4-tetrahydrophenanthrene. Tetrahedron Letters 2001,42: 5737-5740.
    [10]Tezuka, Y.; Kasimu, R.; Li, J. X.; Basnet, P.; Tanaka, K.; Namba, T.; Kadota, S. Constituents of roots of Salvia deserta Schang. (Xingjian-Danshen). Chemical & Pharmaceutical Bulletin 1998,46:107-112.
    [11]Su, W.-C.; Fang, J.-M.; Cheng, Y.-S. Abietanes and kauranes from leaves of Cryptomeria japonica. Phytochemistry 1994,35:1279-1284.
    [12]Chao, K.-P.; Hua, K.-F.; Hsu, H.-Y.; Su, Y.-C.; Chang, S.-T. Anti-inflammatory activity of sugiol, a diterpene isolated from Calocedrus formosana Bark. Planta Medica 2005, 71:300-305.
    [13]Yang, Z.; Kitano, Y.; Chiba, K.; Shibata, N.; Kurokawa, H.; Doi, Y.; Arakawa, Y.; Tada, M. Synthesis of variously oxidized abietane diterpenes and their antibacterical activities against MRSA and VRE. Bioorganic & Medicinal Chemistry 2001,9: 347-356.
    [14]Ikeshiro, Y.; Hashimoto, I.; Iwamoto, Y.; Mase, I.; Tomita, Y. Diterpenoids from Salvia miltiorrhiza. Phytochemistry 1991,30:2791-2792.
    [15]Ikeshiro, Y.; Mase, I.; Tomita, Y Abietane type diterpenoids from Salvia miltiorrhiza. Phytochemistry 1989,28:3139-3141.
    [16]束昱,朱蔚华,胡秋.丹参组织培养物中二萜类成分的研究.中国中药杂志1998,23,(3):166-167.
    [17]Dong, M.-J.; Shen, C.-C.; Syu, W.-J.; Ding Y.-H.; Sun, C.-M. Cytotoxic and aromatic constituents from Salvia miltiorrhiza. Phytochemistry 2006,67:497-503.
    [18]林隆泽,王晓明,黄秀兰,黄勇,杨保津.新二萜醌去氢丹参新酮.药学学报1988,23,(4):273-275.
    [19]Asari, F.; Kusumi, T.; Zheng, G-Z.; Cen, Y.-Z.; Kakisawa, H. Cryptoacetalide and epicryptoacetalide, novel spirolactone diterpenoids from Salvia miltiorrhiza. Chemistry Letters 1990,19:1885-1888.
    [20]Katoh, T.; Akagi, T.; Noguchi, C.; Kajimoto, T.; Node, M.; Tanaka, R.; Nishizawa, M.; Ohtsu, H.; Suzuki, N.; Saito, K. Synthesis of DL-standishinal and its related compounds for the studies on structure-activity relationship of inhibitory activity against aromatase. Bioorganic & Medicinal Chemistry 2007,15:2736-2748.
    [21]Lin, H.-C.; Chang, W.-L.; Wu, P.-L.; Wu, T.-S. Tanshinketolactone, a new tanshinone from Salvia miltiorrhiza. Journal of the Chinese Chemical Society 1996,43:199-201.
    [22]Xu, G.; Yang, J.; Wang, Y.-Y.; Peng, L.Y.; Yang, X.-W.; Pan, Z.-H.; Liu, E.-D.; Li, Y.; Zhao, Q.-S. Diterpenoid constituents of the roots of Salvia digitaloides. Journal of Agricultural and Food Chemistry 2010,58,12157-12161.
    [23]Tezuka, Y.; Kasimu, R.; Basnet, P.; Namba, T.; Kadota, S. Aldose reductase inhibitory constituents of the root of Salvia miltiorrhiza. Chemical & Pharmaceutical Bulletin 1997,45:1306-1311.
    [24]Xu, G.; Peng, L.-Y.; Lu, L.; Weng, Z.-Y.; Zhao, Y.; Li, X.-L.; Zhao, Q.-S.; Sun, H.-D. Two new abietane diterpenoids from Salvia yunnanensis. Planta Medica 2006,72: 84-86.
    [25]Huang, H.; Sun, H.-D.; Zhao, S.-X. Triterpenoids of Isodon loxothyrsus. Phytochemistry 1996,42 (6):1665-1666.
    [26]Tatiana, L.-E.; Fausto, J. R. C.; Su, B.-N.; Chai, H.-B.; Cordell, G. A.; Pezzuto, J. M.; Swanson, S. M.; Soejarto, D. D.; Kinghorn, A. D. Constituents of the leaves and Twigs of Calyptranthes pallens collected from an experimental plot in Southern Florida. Journal of Natural Products 2005,68:577-580.
    [27]郭启雷,杨峻山.掌叶覆盆子的化学成分研究.中国中药杂志2005,30,(3):198-200.
    [28]谭俊杰,谭昌恒,陈伊蕾,蒋山好,朱大元.肾茶化学成分的研究.天然产物研究与开发2009,21:608-611.
    [29]刘普,段宏泉,潘勤,张彦文,姚智.委陵菜三萜成分研究.中国中药杂志,2006,31,(22):1875-1879.
    [30]Kojima, H,; Tominaga, H.; Sato, S.; Ogura, H. Pentacyclic triterpenoids from Pruenlla vulgaris. Phytochemistry 1987,26:1107-1111.
    [31]盖春艳,孔德云,王曙光.夏枯草化学成分研究.中国医药工业杂志2010,41,(8):580-582.
    [32]梁洁,甄汉深,李生茂,张薇薇,王新盛,梁臣艳.广西产美味猕猴桃根正丁醇部位化学成分研究.中国中药杂志2008,33,(11):1275-1277.
    [33]肖艳华,张爱莲,张国林.尼泊尔水东哥的化学成分研究.天然产物研究与开发2007,19:978-981.
    [34]Numata, A.; Yang, P.; Takahashi, C.; Fujiki, R.; Nabae, M.; Fujita, E. Cytotoxic triterpenes from a Chinese medicine, Goreishi. Chemical & Pharmaceutical Bulletin 1989,37:648-651.
    [35]戴畅,刘屏,刘超,王波,陈若芸.藓类植物回心草化学成分研究Ⅱ.中国中药杂志2006,31,(13):1080-1082.
    [36]Mcrae, J. M.; Yang, Q.; Crawford, R. J.; Palombo, E. A. Antibacterial compounds from Planchonia careya leaf extracts. Journal of Ethnopharmacology 2008,116:554-560.
    [37]Lee, I. K.; Kim, D. H.; Lee, S. Y; Kim, K. R.; Choi, S. U.; Kong, J. K.; Lee, J. H.; Park, Y. H.; Lee, K. R. Triterpenoic acid of Prunella vulgaris var. lilacina and their cytotoxic activities in vitro. Archives of Pharmacal Reseach 2008,31, (12):1578-1583.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.