基于光纤光栅的微波光子滤波器品质因数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微波光子滤波器以其高带宽,低损耗,抗电磁干扰等优点广泛应用于各种通信领域。光纤光栅由于具备良好的波长选择性能和可控性,在微波光子滤波器中扮演重要角色。品质因数Q (Q-value, Quality Value)是衡量微波光子滤波器的重要指标之一,代表滤波器的选频性能。如何获得高品质因数的微波光子滤波器是当前微波光子领域的研究热点之一
     本文重点分析了基于光纤光栅的微波光子滤波器的品质因数,主要工作和创新点如下:
     首先,基于光纤光栅波长选择性能的理论模型,分析了基于光纤光栅的微波光子滤波器原理。并重点分析了基于光纤光栅的典型微波光子滤波器的特性,得出影响微波光子滤波器性能的主要因素。
     其次,理论分析了高阶微波光子滤波器的通用传输函数中极点和阶次对品质因数Q值的影响,并获得提高高阶微波光子滤波器Q值的有效方法。结论表明提高微波光子滤波器传输函数中的阶数可以提高Q值,并且通过合理设置结构参数使极点趋近于1可以大幅度的提高Q值。
     第三,运用信号流程图方法分析基于一阶,二阶和三阶结构的高Q值微波光子滤波器,获得了不同的结构参量对Q值的影响。结论证明了阶数的提高可以增大品质因数,但是同时会受到结构参量的限制。同时提出了一种基于光纤光栅和马赫曾德尔干涉滤波器级联的微波光子滤波器实现高Q值的方法。
     第四,提出了一种新型的基于光纤光栅的环状微波光子滤波器结构,并对其传输函数进行了分析。
     最后,提出了实现微波光子滤波器的可调谐性和负抽头系数的方法,并分析了基于光源阵列和色散光纤的可调谐微波光子滤波器以及基于电光调制器偏置电压点的负抽头系数平坦微波光子滤波器特性。结果表明增大光源的个数可以提高微波光子滤波器的自由频程FSR (Free Spectrum Range);通过合理设置耦合系数κ和增益g的关系可以使微波光子滤波器达到很好的平坦效果。
Microwave Photonic Filter (MPF) is widely used in kinds of communication domain, thanks to the numerous advantages such as high bandwidth, low loss, and immunity to electromagnetic interference. The FBGs have been considered a good candidate for the microwave filtering because of the excellent property of wavelength choosing and controllability. The Q-value represents the quality of frequency choosing, which is one of the most important factors to measure the character of MPF.
     The main work of this paper is to analyze the influence to Q-value of MPF, which is based on the structure of FBGs. The main points are as follows:
     1. Analyzing the theory of MPF based on the structure of FBGs, and the character of wavelength filtering of the FBGs is also analyzed. Besides, the factors which influence the quality of MPF are got.
     2. The influence of the pole and order to the Q-value in the transform function is been theoretically analyzed. The conclusion is that the Q-value could be improved by increase order of the function. Besides, better results can be got through making the pole of the function approach to the unit circle.
     3. The high-Q MPF based on first-order, second-order and third-order of function of MPF are analyzed through the way of signal flow chart. Also, the results prove that increasing the value of order can improve the Q-value, but it is limited by other structure parameters. Moreover, a kind of MPF based on the connected structure between Fiber Bragg Gratings and Mach-Zehnder Interferometer is proposed and analyzed, which has high Q-value.
     4. A new structure of MPF is proposed and analyzed through signal flow chart.
     5. The new way of implementation in tunable MPF and negative coefficients MPF is discussed. Also, the tunable MPF based on array lasers and dispersion fiber is manipulated. The result shows that increasing the number of laser can improve the Q-value. Besides, the negative coefficients MPF based on two electronic modulators which are driven at different opposing bias points is analyzed, and it proves that the better results can be got when the couple coefficient and gain of EDFA (Erbium-Doped Fiber Amplifier) is set up appropriately.
引文
[1]K. P. Jackson, S. A. Newton, B. Moslehi, M. Tur, C. C. Cutler, J.W. Goodman, and H. J. Shaw, Optical fiber delay line signal processing, IEEE Trans. Microw. Theory Tech.,1985, vol.33, pp. 193-209.
    [2]K. Wilner and A. P. Van den Heuvel, Fiber-optic delay lines for microwave signal processing, in Proc. IEEE,1976, vol.64, pp.805-807.
    [3]刘崇正,陈建国,周涛,微波光子滤波技术,激光与光电子进展,2008,vol.45,no.10,pp.32-38.
    [4]刘明,吴椿烽,张慧等,ROF技术在通信领域中的研究与应用,光通信技术,2009,no.6,pp.43-46.
    [5]冀云帅,ROF技术在智能交通系统中的应用分析,无线光通信,2009,no.6,pp.57-59.
    [6]博兵,我国宽带无线频率规划将积极适应产业发展,信息产业报,2003,no.10.
    [7]Fei Zeng, Jianping Yao, All-optical microwave filters using uniform fiber bragg gratings with identical reflectivities, Journal of lightwave technology,2005, vol.23, no.3.
    [8]Wake, D. Trends and prospects for radio over fiber picoeells, Mierowave Photonies, Nov.2002. International Topical Meeting on 5-8, pp.21-24.
    [9]徐坤,林金桐,大都市网络的解决方案——ROF技术,专家论坛,pp.2-5.
    [10]孟晟,宋荣方,罗忠生,4G无线接入网拓扑结构展望,中兴通信技术,Mar. 2004,pp.28-31.
    [11]曹培炎,ROF技术在无线接入网中的应用,光通信技术,Oct.2005,pp.47-50.
    [12]黄嘉明,陈舜儿,刘伟平,黄红斌,ROF技术分析及应用,光纤与电缆及其应用技术,Feb.2007,no.2,pp.32-35.
    [13]J. Capmany, B. Ortega, D. Pastor, S. Sales, Discrete-time optical processing of microwave signal, J. Lightwave Technol.,2005, vol.23, no.2, pp.702-723.
    [14]T. A. Cusick, S. Iezekiel, R. E. Miles, S. Sales, and J Capmany, Synthesis of all-optical microwave filters using Mach-Zehnder lattices, IEEE Trans. Microw. Theory Tech.,1997, vol. 45, pp.1458-1462.
    [15]D. Norton, S. Johns, C. Keefer, and R. Soref, Tunable microwave filtering using high dispersion fiber time delays, IEEE Photon. Technol. Lett.,1994, vol.6, pp.831-832.
    [16]V. Polo, B. Vidal, J. L. Corral, and J. Marti, Novel tunable photonics microwave filter based on laser arrays and N*N AWG-based delay lines, IEEE Photon, Technol, Lett.,2003, vol.15, pp. 584-586.
    [17]D. B. Hunter and R. Minasian, Reflectivity tapped fiber optic transversal filter using in-fiber Bragg gratings, Electron. Lett., Jun.1995, vol.31, pp.1010-1012.
    [18]J. Marti, F. Ramons, and R. I. Laming, Photonic microwave filter employing multimode optical sources and wideband chirped fiber gratings, Electron, Lett.,1998, vol.34, no.18, pp. 1760-1761.
    [19]G. Yu, W. Zhang, and J. A. R. Williams, High-performance microwave transversal filter using fiber Bragg grating arrays, IEEE Photon. Technol. Lett., Sep.2000, vol.12, pp.1183-1185.
    [20]D. B. Hunter and R. A. Minasian, Microwave optical filters using in-fiber Bragg grating arrays, IEEE Microw. Guided Wave Lett.,1996, vol.6, no.2, pp.103-105.
    [21]D. Pastor, J. Capmany, and B. Ortega, Broad-band tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters, IEEE Photon. Technol. Lett., 2001, vol.13, no.1, pp.726-728.
    [22]W. Zhang, J. A. R. Williams, L. A. Everall, and I. Bennion, Fiber-optic radio frequency notch filter with linear and continuous tuning by using a chirped fiber grating, Electrol. Lett.,1998, vol.34, no.18, pp.1770-1772.
    [23]F. Coppinger, S. Yegnanarayanan, P. D. Trinh, and B. Jalali, Continuously tunable Photonic radio—frequency notch filter, IEEE Phton.. Technol. Lett.,1997, vol.9, pp.339-341.
    [24]Xioake Yi, Chao Lu, et al., Continuously tunable microwave—photonic filter design using high-birefringence linear chirp grating, IEEE Photon. Technol. Lett.,2003, vol.15, no.5, pp. 754-756.
    [25]K. H. Lee, W. Y. Choi, S. Choi, K. Oh, A novel tunable fiber-optic microwave filter using multimode DCF, IEEE Photon. Technol. Lett.,2003, vol.15, no.7, pp.969—971.
    [26]J. Capmany, D. Pastor, B. Ortega, Experimental demonstration of tenability and transfer function of reconfiguration in fiber-optic microwave filters composed of linearly chirped fiber grating fed by laser array, Electronics Lett.,1998, vol.34, no.23, pp.2262-2264.
    [27]B. Vidal, V. Polo, J. L. Corral, J.Marti, Photonic microwave filter with tuning and reconfiguration capabilities using optical swithes and dispersive media, Electronics Lett.,2003, vol.39, no.6, pp.547-549.
    [28]D. Hunter and R. Minasian, Microwave optical filters using an active-fiber Bragg-grating-pair structure, IEEE Trans. Microwave Theory Tech.,1997, vol.45, no.8, pp.1463-1466.
    [29]D. Hunter and R. Minasian, Microwave optical filters based on a fiber grating in a loop structure, Proceedings of International Topical Meeting on Microwave Photonics,1996, pp. 273-276.
    [30]Zhou L N, Zhang X L, Xu E M, Huang D X. Q value analysis of a first-order IIR microwave photonic filter based on SOA. Acta Physica Sinica,2009, pp.1036-1041.
    [31]N. You and R. A. Minasian, A novel high-Q optical microwave processor using hybrid delay line filters, IEEE Trans. Microwave Theory Tech.,1999, vol.47, pp.1304-1308.
    [32]Alan D. Kersey. et, al. Fiber grating sensors, Invited pater. Journal of Light wave Technology, 1997, vol.15, no.8, pp.142-1463.
    [33]江天府,陈卫红,光纤光栅传感器复用技术述评,1997,vol.16,no.4,pp.1-3.
    [34]李丰丽,光纤光栅特性及应用研究[硕士学位论文],广州,暨南大学,2002.5,pp.30-36.
    [35]Mizrahi V, Sipe JE. Optical properties of photosensitive fiber phase gratings. IEEE Journal of Lightwave Technology,1993, pp.1513-1517.
    [36]Erdogan T. Fiber grating spectra. IEEE Journal of Lightwave Technology,1997, no.15, pp. 1277-1294.
    [37]Kogelnik H. Theory of optical waveguides in Guided-Wave Opto-Electronics. Tamir, editor New York Springer-Verlag,1990.
    [38]王伟,辛丽,赵海发,张立彬,光纤Bragg光栅的频谱特性,物理实验,Feb.2007,vol.27,no.2,pp.3-7.
    [39]饶云江,王义平,朱涛,光纤光栅原理及应用,第一版,北京,科学出版社,2006.8,pp.111-119.
    [40]佘显斌,光纤光栅在微波信号处理中的应用[博士学位论文],杭州,浙江大,2005.4,pp.54-55.
    [41]卢金跃,微波光子滤波器的理论和实验研究[硕士学位论文],杭州,浙江大学,2006.6,pp.29-33.
    [42]Seeds, A. J., Microwave photonics, IEEE Trand.Microw Theory Tech.,2002. vol.50, no.3, pp. 877-887.
    [43]Jackson, K. P., Newton, S. A. et al., Optical fiber delay-line signal processing, IEEE Trans. Microw. Theory Tech.,1985, vol.33, no.3, pp.193-210.
    [44]祁春慧,裴丽,郭兰,吴树强,赵瑞峰,光纤光栅在微波光子滤波器中的应用,光纤与电缆及其应用技术,2009,no.2.
    [45]A. Javan, W. R. Benett, Jr., and D. R. Herriott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture, Phys. Rev. Lett.,1961, vol.6, pp.106-110.
    [46]周俐娜,张新亮,徐恩明,黄德修,基于半导体光放大器的一阶IIR微波光子滤波器及其品质因数分析,物理学报,2009,vol.58,no.2,pp.1036-1040.
    [47]S.Gweon, C.E. Lee, and H.F. Taylor, Wide-band fiber optic signal processor, IEEE Photon. Technol. Lett.,1989, vol.1, pp.467-468.
    [48]J. Capmanu, J. Cason, D. Pastor, and B. Ortega, Reconfigurable fiber-optic delay line filters incorporating electroopic and electroabsorption modulators, IEEE Photon. Technol. Lett.,1999, vol.11, pp.1174-1176.
    [49]G Meltz, W. W. Morey, and W. H. Glenn, Formation of Bragg gratings in optical fibers by a transverse holographic method, Opt. Lett.,1989, vol.14, pp.823-825.
    [50]Lina Zhou, Xinliang Zhang, Enming Xu, Q value analysis of microwave photonic filters, Front. Optoelectron.China 2009, vol.2, no.3, pp.269-278.
    [51]Sungchul Kim and Byoungho Lee, Recirculating fiber delay-line filter with a fiber Bragg grating, Applied Optics,1998, vol.37, no.23.
    [52]Erwin H., W. Chan and Robert A. Minasian. Reflective Amplified Recirculating Delay line Bandpass Filter, Journal of Lightwave technology,2007, vol.25, no.6.
    [53]D. B. Hunter, R. A. Minasian, and P. A. Krug, Tunable optical transversal filter based on chirped gratings, Electron. Lett.,1995, vol.31, pp.2205-2207.
    [54]B. Vidal, V. Polo, J. L. Corral, and J. Marti, Harmonic suppressed photonic microwave filter, J. Lightwave Technol.,2003, vol.21, pp.3150-3153.
    [55]池灏,章献民,沉林放,基于光纤环的可调谐微波光子滤波器,光电子激光,2006,vol.17,no.1.
    [56]刘鱼勇,基于色散光纤的微波光子滤波器[硕士学位论文],杭州,浙江大学,2007.6.pp.27-29.
    [57]D. Pastor, J. Capmany, B. Ortega, A. Martinez, L. Pierno, and M. Varasi, Reconfigurable RF photonic filter with negative coefficients and flat-top resonaces using phase inversion in a newly designed 2*1 integrated Mach-Zehnder modulator, IEEE Photon. Technol. Lett.,2004, vol.16, pp.2126-2128.
    [58]S. Mansoori, A. Mitechell, and K. Ghorbani, Photonic reconfigurable microwave filter with negative coefficients, Electron. Lett.,2004, vol.40, pp.541-542.
    [59]X. Wang, and K. T. Chan, Tunable all optical incoherent bipolar delay line filter using injection locked F-P laser and fiber Bragg gratings, Electron. Lett.,2004, vol.36, pp.1370-1372.
    [60]Ningsi You, Robert A. Minasian, All-optical photonic signal processors with negative coefficients, Journal of Lightwave Technology,2004, vol.22, no.12.
    [61]B. Vidal, V. Polo, J. L. Corral, and J. Marti, Efficient architecture for WDM photonic microwave filters, IEEE Photo. Technol. Lett.,2004, vol.15, no.1, pp.257-259.
    [62]K. Sasayama, M. Okuno, and K. Habara, Coherent optical transversal filter using silica-based single mode waveguides, Electron. Lett.,1989, vol.25, no.22, pp.1508-1509.
    [63]K. Sasayama, M. Okuno, and K. Habara, Coherent optical transversal filter using silica-based waveguides for high speed signal processing, J. Lightw. Technol.,1991, vol.9, no.10, pp. 1225-1230.
    [64]K. Sasayama, M. Okuno, and K.Habara, Photonic FDM multichannel selector using coherent optical transversal filter, J. Lightw. Technol.,1994, vol.12, no.4, pp.664-669.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.