基于产品族的机械产品模块化配置设计关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大规模定制致力于以大规模生产的效率和成本向市场提供多样化和个性化的产品,已经逐步成为现代制造模式发展的主要趋势。产品配置设计是实现大规模定制的关键使能技术之一,有助于企业提高获取客户订单的效率,缩短产品设计周期,以较低成本迅速满足用户的个性化需求,从而提升企业的响应能力和竞争能力。基于模块化的产品配置设计作为一种主要的配置技术手段,是实现产品快速定制的核心与关键。论文围绕复杂机械产品模块化配置设计目前面临的关键理论和技术问题展开系统而深入的研究,设计了基于模块化的产品配置设计总体方案,重点讨论了模块聚类与优化、产品平台构建、多目标配置优化、配置性能预测和配置功能求解等关键技术,建立了产品模块化配置设计的技术体系结构模型,有助于形成覆盖产品模块化配置设计全过程的技术体系。论文的研究工作及取得的主要成果如下:
     ⑴提出了产品非均匀粒度模块聚类与优化方法,基于相关性分析进行零部件模糊聚类,建立零部件分层递阶结构,将不同粒度层级的模块进行组合并采用改进型非支配排序遗传算法,生成非均匀粒度模块聚类方案的Pareto解集。该方法使得模块划分更具柔性,从而在丰富可行解空间的同时有利于实现划分方案集的全局优化,能够满足客户和企业对各个分目标的不同需求和动态需求,有助于解决模块聚类方案对客户需求和企业侧重点的适应性问题。
     ⑵提出了自底向上的模块化产品平台构建方法,利用产品族与模块特征参数的映射、聚类和匹配分析,从模块化产品族中有效地提取公共平台要素,自底向上地形成产品平台。该方法能够充分基于已有的设计资源形成模块化产品平台,保证了较高的资源重用率,而且一定程度上有助于在面向大规模生产的通用性需求和面向定制生产的个性化需求之间找寻到较好的平衡点,使得建立的产品平台具备良好的代表性和合理性。
     ⑶提出了面向不确定信息的产品多目标配置优化方法,综合考虑产品实际配置信息可能呈现的多种不确定形式,通过对各种不确定配置信息的一致化表达,采用改进型非支配排序遗传算法对多目标配置问题进行求解,得到配置方案Pareto解集。该方法有效弥补了基于确定信息的准确配置方法和基于模糊信息的模糊配置方法的缺陷,进一步拓展了产品配置优化方法的适用范围。
     ⑷提出了基于灰关联分析与支持向量机的配置性能预测方法,通过在有限的历史产品族数据中挖掘模块参数与配置产品性能的非线性关系,建立配置性能预测模型,从而预测新配置产品的性能参数取值。该方法不同于传统的试验方法,而是通过软计算技术评估配置产品的性能参数,降低了产品生产成本,缩短了产品研制周期,并能有效解决预测模型结构复杂和预测误差大等问题,为配置产品性能的准确快速预测提供了新的技术途径。
     ⑸提出了面向产品配置设计的功能求解与建模方法,在考虑合理的映射分层和映射关系的基础上,建立了一种新的多层级混合功能求解模型,并将其应用于产品配置设计的后置处理阶段。建立的功能求解模型能够有效结合设计师的创新思维和计算机的逻辑推理能力,兼顾设计创新与资源继承,能够有效保证配置方案改进设计结果的有效性和合理性,以及客户满意度的最大化。
     ⑹建立了计算机辅助的产品模块化配置设计系统,选择通用三维建模软件作为产品结构设计工具,基于论文的研究成果,设计并开发了计算机辅助的产品配置设计系统。该系统可以有效覆盖产品模块化配置设计过程,能够实现配置设计过程的可视与可控,进而提高产品配置设计的效率和成功率,具备广阔的工程化应用前景。
Mass customization, being committed to provide various and individual productsto the market with high efficiency and low cost of mass production, has already been themain trend of modern manufacturing. As one of the key enabling technologies of masscustomization achievement, product configuration design contributes to improve theorder acquisition ratio, shorten the product design cycle, save the cost, and increaseresponse ability and competition ability of firms. Module-based configuration design,regarded as a primary configuration technique, is the core and key of realizing rapidproduct customization. Several academic and technological problems weresystematically and deeply studied in this thesis. The overall scheme of modularconfiguration design was proposed, and some critical technologies such as moduleidentification and optimization, product platform development, multi-objectiveconfiguration optimization, configuration performance prediction, configurationfunction solving, and configuration system development were derived, which form atechnological architecture that could cover the whole configuration design process. Themain achievements are described as follows:
     (1) A new method for module identifying and optimizing based on unevengranularity was put forward. The parts of a product were fuzzily clustered usingrelativity analysis so as to set up a hierarchical structure. All the universes of thegranular layers in the hierarchical structure were gathered and the uneven granularitybased module clustering scheme was formally presented. Four quantified indices wereproposed to set up four optimization objective functions. Use nondominated sortinggenetic algorithm II to solve the problem in order to obtain the Pareto optimal set. Thisapproach makes module identification more flexible, enlarges the solution space ofmodule clustering, and administers to reach the global optimum solution. Moreover, theproposed method can satisfy diverse and dynamic requirements of customers andcompanies to different objectives, which helps to enhance the adaptability of moduleschemes to customers’ requirements and enterprise emphasis.
     (2) A bottom-up method for module-based product platforming through mapping,clustering and matching analysis was presented. The framework consisted of three steps:mapping parameters from existing product families to functional modules, clustering themodules within existing module families based on their parameters so as to generatemodule clusters, and selecting the satisfactory module clusters based on commonality,and matching the parameters of the module clusters to the functional modules in orderto capture platform elements. This method ensures the effectiveness of design resourcereusing, and is helpful to obtain a balance between the universal requirements orientedto mass production and individual requirements oriented to personalized customization. The approach could enable the developed product platform be representative andfeasible.
     (3) A new multi-objective optimization approach to configuration design with theconsideration of several types of uncertain information was brought forward. Theuncertain configuration information was uniformly described with interval numbers. Amulti-objective optimization model was generated by integrating three mathematicalmodels such as the performance, cost and term. The non-dominated sorting geneticalgorithm II was used to solve the model and a Pareto optimal set of productconfiguration schemes was obtained. This method can effectively deal with the problemof configuration optimization under uncertain information, which remedies the defectsof specific configuration and fuzzy configuration. Therefore, the scope of theconfiguration optimization approach could be further extended.
     (4) A novel prediction approach based on the integration of grey relational analysisand support vector machine through discovering the knowledge from the historicalconfiguration information was proposed. Product performance prediction at the end ofthe configuration process can estimate the performance parameter values through thesoft computing method instead of practical test experiments, which is propitious toreduce the cost, shorten the development cycle, decrease the complexity of predictionmodel and reduce the prediction error. This methodology, ensuring the performanceprediction executed in a short period of time with a high degree of precision, even underthe small sample conditions, leads to a new technique for predicting configurationperformance.
     (5) An approach to function solving and modeling oriented to configuration designwas raised. Considering rational design domains including function, working principle,behaviour and structure, a hierarchical functional solving model with hybrid mappingswas established, which could be used to address the problem during the post processingstage of configuration design. The model can effectively combine the creative thinkingof designers with the power of reasoning computing of computers, and administers tothe implementation of inheritance and innovation. The application of this functionalsolving model to configuration design could ensure the validity and feasibility of designresults and the maximization of the customers’ satisfaction.
     (6) A prototype of computer-aided modular configuration design software wasdeveloped and implemented to verify the above theories and technologies. Theprototype was built based on the general CAD platform and consisted of the functionssuch as configuration data management, configuration model establishment,configuration model management and configuration model solving. The preliminaryapplication was carried out to demonstrate the proposed methods. This prototype,covering the whole process of product configuration design, enables to realizesynchronous visualization and complete control of the configuration process, improve the efficiency and success rate of configuration design, and it shows a broad marketableprospect.
引文
[1] Naken W. Methodologies for providing rapid and effective response to request forquotation (RFQ) of mass customization products [D]. Boston, Massachusetts:Northeastern University,2001.
    [2] Ronald S M L. Mass customization: The Next Industrial Revolution [J]. IndustrialManagement,1995,37(5):18~19.
    [3] Giovani D S, Denis B, Flavie S F. Mass customization: Literature review andresearch directions [J]. International Journal of Production Economics,2001,72:1~13.
    [4] Halal W E. The Top10Emerging Technologies [J]. The Futurist,2000,34(4):29~38.
    [5] Pine B J, Victor B, Boynton A C. Making mass customization work [J]. HarvardBusiness Review,1993,71(5):108~119.
    [6] Hart C W L. Mass customization: conceptual underpinnings, opportunities andlimits [J]. International Journal of Service Industry Management,1995,6(2):36~45.
    [7] Kipp T, Krause D. Design for variety–efficient support for design engineers[C]//International Design Conference–Design2008, Dubrovnik, Croatia, May19-22,2008.
    [8] Tseng M M, Jiao J X, Merchant M E. Design for mass customization [J]. CIRPAnnals Manufacturing Technology,1996,45(1):153~156.
    [9] Duray R, Ward P T. Approaches to mass customization: configurations andempirical validation [J]. Journal of Operations Management,2000,18(6):605~625.
    [10] Jiao J X. Design for mass customization by developing product familyarchitecture [D]. Hong Kong: Hong Kong University of Science and Technology,1998.
    [11] Meyer M H, Tertzakian P, Uterback J M. Metrics for managing research anddevelopment in the context of product family [J]. Management Science,1997,43(1):88~111.
    [12] Nepal B, Monplaisir L, Singh N. Integrated fuzzy logic-based model for productmodularization during concept development phase [J]. International Journal ofProduction Economics,2005,96:157~174.
    [13] Nanda J, Thevenot H J, Simpson T W. Product family representation and redesign:Increasing commonality using formal concept analysis [C]//ASME2005International Design Engineering Technical Conferences and Computers andInformation in Engineering Conference Long Beach,California, USA, September24~28,2005.
    [14] Souza B D, Simpson T W. A genetic algorithm based method for product familydesign optimization [J]. Engineering Optimization,2003,35(1):1~18.
    [15] Ye X L. Product family design and evaluation based on the commonality/varietytradeoff [D]. Michigan: Michigan Technological University,2008.
    [16] Agard B, Kusiak A. Data-mining-based methodology for the design of productfamilies [J]. International Journal of Production Research,2004,42(15),2955~2969.
    [17] De Lit P G, Delchambre A. Integrated design of a product family and its assemblysystem [M]. Massachusetts: Kluwer Academic Publishers,2003.
    [18] Erens F, Verhulst K. Architectures for product families [J]. Computers in Industry,1997,33(2–3),165~178.
    [19] Zamirowski E J, Otto K N. Identifying product portfolio architecture modularityusing function and variety heuristics [C]//ASME design engineering technicalconferences, Las Vegas, NV,1999.
    [20] Simpson T W, Maier J R A, Mistree F. Product platform design: method andapplication [J]. Research in Engineering Design,2001,13(1),2~22.
    [21] Messac A, Martinez M P, Simpson T W. Effective product family design usingphysical programming and the product platform concept exploration method [J].Engineering Optimization,2002,3(3),245~261.
    [22] Akundi S, Simpson T W, Reed P M. Multi-objective design optimization forproduct platform and product family design using genetic algorithms [C]//ASMEdesign engineering technical conferences, Long Beach, CA,2005.
    [23] Du X, Jiao J X, Tseng M M. Architecture of product family: Fundamentals andmethodology [J]. Concurrent Engineering: Research and Application,2001,9(4),309~325.
    [24] Ulrich K. The role of product architecture in the manufacturing firm [J]. ResearchPolicy,1995,24(3),419~440.
    [25] Chakravarty A C, Balakrishnan N. Achieving product variety through optimalchoice of module variations [J]. IEEE Transactions,2001,33(7):587~598.
    [26]龚京忠.基于FPBS的机械系统模块化设计方法与应用研究[D].长沙:国防科学技术大学,2008.
    [27] Fixson S K. Linking modularity and cost: A methodology to assess costimplications of product architecture differences to support product design [D].Cambridge: Massachusetts Institute of Technology,2002.
    [28] Muffatto M, Roveda M. Product architecture and platforms: a conceptualframework [J]. International Journal of Technology Management,2002,24(1),1~16.
    [29]鲁玉军.面向大规模定制的ETO产品配置设计方法研究[D].杭州:浙江大学,2007.
    [30] Hong E P, Park G J. Modular design method using the independence axiom anddesign structure matrix in the conceptual and detailed design stage [C]//The SixthInternational Conference on Axiomatic Design, Daejeon, March30-31,2011.
    [31] Bryant C R, Sivaramakrishnan K L, Wie M V, et al. A modular design approachto support sustainable design [C]//Proceedings of DETC’04, Salt Lake City, USA,2004.
    [32] Moon S K, Kumara S R T, Simpson T W. Data mining and fuzzy clustering tosupport product family design [C]//ASME2006International DesignEngineering Technical Conferences&Computers and Information in EngineeringConference, Philadelphia, Pennsylvania, USA, September10-13,2006.
    [33] Stone R B, Wood K L, Crawford R H. A heuristic method for identifyingmodules for product architectures [J]. Design Studies,2000(21):5~31.
    [34] Tsai Y T, Wang K S. The development of modular-based design in consideringtechnology complexity [J]. European Journal of Operational Research,2000(119):692~703.
    [35]王海军,孙宝元,魏小鹏.基于模糊聚类的产品模块化形成过程分析[J].计算机集成制造系统,2003,9(12):123~126.
    [36]龚京忠,邱静,李国喜.基于图分割的机械系统概念模块划分[J].国防科技大学学报,2007,29(3):103~108.
    [37]龚京忠,李国喜,邱静.基于功能-行为-结构的产品概念模块设计研究[J].计算机集成制造系统,2006,12(12):1921~1927.
    [38] Teng X Y, Zhang T J. Module partition method based on hybrid fuzzy clustering
    [C]//Proceedings of the2010IEEE International Conference on Mechatronics andAutomation, Xi’an, China,2010.
    [39] Huang C C, Liang W Y, Chuang H F, et al. A novel approach to productmodularity and product disassembly with the consideration of3R-abilities [J].Computers&Industrial Engineering,2011.
    [40] Shan Q, Chen Y. Research on numerical module identification approaches [C]//Eight IEEE/ACIS International Conference on Computer and Information Science,2009.
    [41] Stiassnie E, Shpitalni M. Axiomatic modular system design for service-orientedproducts [C]//The Sixth International Conference on Axiomatic Design, Daejeon,March30-31,2011.
    [42]谢清,谭建荣,冯毅雄,等.面向配置设计的产品功构单元粒度划分方法[J].机械工程学报,2006,42(11):109~114.
    [43]安相华,冯毅雄,谭建荣,等.基于智能聚类算法的产品粒度确定方法[J].计算机集成制造系统,2010,16(4):689~695.
    [44]贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160~167.
    [45]侯亮,王浩伦,贾鸿翅,等.考虑企业资源配置的产品模块化规划[J].计算机集成制造系统,2009,15(9):1749~1757.
    [46]王日君,张进生,葛培琪,等.面向设计的产品模块划分方法[J].武汉理工大学学报,2010,32(1):174~178.
    [47]樊蓓蓓,祁国宁,纪杨建.基于复杂网络的产品族模块化过程[J].农业机械学报,2009,40(7):187~191.
    [48]樊蓓蓓,祁国宁.基于复杂网络的产品族结构建模及模块分析方法[J].机械工程学报,2007,43(3):187~192.
    [49] Meng X H, Jiang Z H, Huang G Q. On the module identification for productfamily development [J]. International Journal of Advanced ManufacturingTechnology,2007(35):26~40.
    [50] Lee M. Product modularity: a multi-objective configuration approach [D].Loughborough University,2010.
    [51] Nepal B, Monplaisir L, Singh N, et al. Product modularization considering costand manufacturability of modules [J]. International Journal of IndustrialEngineering,2008,15(2):132~142.
    [52]魏巍,谭建荣,冯毅雄,等.基于SPEA2+的产品族模块单元多目标规划方法研究[J].机械工程学报,2009,45(12):143~150.
    [53] Liu Y L, Zhang Z Y, Liu Z X. Customized configuration for hierarchical products:component clustering and optimization with PSO [J]. International Journal ofAdvanced Manufacturing Technology,2011(57):1223~1233.
    [54]史俊友,陶庆斌,翟红岩.基于遗传算法的产品族模块划分[J].青岛科技大学学报,2010,31(2):188~193.
    [55] Simpson T W. Product platform design and customization: status and promise [J].Artificial Intelligence for Engineering Design, Analysis and Manufacturing,2004,18(1):3~20.
    [56] Jiao J X, Simpson T W, Zahed S. Product family design and platform-basedproduct development: a state-of-the-art review [J]. Journal of IntelligentManufacturing,2007,18(1):5~29.
    [57] H ltt-Otto K, Tang V, Otto K. Analyzing module commonality for platformdesign using dendrograms [J]. Research in Engineering Design,2008,19(2-3):127~141.
    [58] Ben-arieh D, Easton T, Choubey A M. Solving the multiple platformsconfiguration problem [J]. International Journal of Production Research,2009,47(7):1969~1988.
    [59] Yang T W, Beiter K A, Ishii K. Product platform development: consideringproduct maturity and morphology [C]//Proceedings of IMECE2005, ASMEInternational Mechanical Congress and Exposition, Orlando, USA,2005.
    [60] Jose A, Tollenaere M. Modular and platform methods for product family design:literature analysis [J]. Journal of Intelligent manufacturing,2005,16(2):371~390.
    [61] Otto K, Conzales-zugasti J, Dahmus J. Modular product architecture [J]. DesignStudies,2001,22(5):409~424.
    [62] Martin M V, Ishii K. Design for variety: developing standardized andmodularized product platform architectures [J]. Research in Engineering Design,2002,13(4):213~235.
    [63] Sered Y, Reich Y. Standardization and modularization driven by minimizingoverall process effort [J]. Computer-Aided Design,2006,38(5):405~416.
    [64] Hsiao S, Liu E. A structural component-based approach for designing productfamily [J]. Computers in Industry,2005,56(1):13~28.
    [65] Kuang J S, Jiang P Y. Product platform design for a product family based onKansei engineering [J]. Journal of Engineering Design,2009,20(6):589~607.
    [66] Gao F, Xiao G, Simpson T W. Module-scale-based product platform planning [J].Research in Engineering Design,2009,20(2):129~141.
    [67] Suh E S, Weck O L, Chang D. Flexible product platforms: framework and casestudy [J]. Research in Engineering Design,2007,18(2):67~89.
    [68] Suh E S, Weck O L, Kim I Y, et al. Flexible platform component design underuncertainty [J]. Journal of Intelligent manufacturing,2007,18(1):115~126.
    [69] Ericsson A, Erixon G. Controlling design variants: modular platforms [M].Dearborn, MI: ASME Press,1999.
    [70] Siddique Z, Rosen D W. Product family configuration reasoning using discretedesign spaces [C]//ASME Design Theory and Methodology Conference,2000,Baltimore, MD.
    [71] Nayak R U, Chen W, Allen J K, et al. A variation-based methodology for productfamily design [C]//ASME Design Theory and Methodology Conference,2000,Baltimore, MD.
    [72] Ishii K, Martin M V. Design for variety: a methodology for developing productplatform architectures [C]//Proceedings of DETC2000, ASME DesignEngineering and Technical Conference and Computers and Information inEngineering Conference, Baltimore Maryland,2000.
    [73] Meyer M H, Lehnerd A P. The power of product platforms: building value andcost leadership [M]. New York: The Free Press,1997.
    [74] Otto K N, Sudjianto A. Modularization to support multiple brand platforms[C]//Proceedings of DETC2001, ASME Design Engineering and TechnicalConference and Computers and Information in Engineering Conference,Pittsburgh, PA,2001.
    [75] Allen J K, Mistree F, Seepersad C C. A quantitative approach for designingmultiple product platforms for an evolving portfolio of products [C]//Proceedingsof DETC02/DAC, SAME Design Engineering Technical Conferences andComputer and Information in Engineering Conference, Montreal, Canada,2002
    [76] Chen C, Wang L. Product platform design through clustering analysis andinformation theoretical approach [J]. International Journal of Production Research,2008,46(15):4259~4284.
    [77] Christopher B W. Platform design for customizable products and processes withnon-uniform demand [D]. Atlanta: Georgia Institute of Technology,2003.
    [78] Dai Z H, Scott M J. Product platform design through sensitivity analysis andcluster analysis [J]. Journal of Intelligent Manufacturing,2007,18:97~113.
    [79] Chowdhury S, Messac A, Khire R A. Comprehensive product platform planning(CP3) Framework [J]. Journal of Mechanical Design,2011,133(11):101004-1~101004-15.
    [80] Kumar R, Allada V. Function-technology-based product platform formation [J].International Journal of Production Research,2007,45(24):5687~5714.
    [81] Gonzalez-Zugasti J P, Otto K N. Modular platform-based product family design[C]//Proceedings of DETC’00, ASME Design Engineering TechnicalConferences and Computers and Information in Engineering Conference,Baltimore, Maryland, September10-13,2000.
    [82] Qin H B, Zhong Y F, Xiao R B, et al. Product platform commonization: platformconstruction and platform elements capture [J]. International Journal of AdvancedManufacturing Technology,2005,25(11-12):1071~1077.
    [83] H ltt-Otto K. Modular product platform design [D]. Finland: HelsinkiUniversity of Technology,2005.
    [84] Cormier P, Horn D V, Lewis K. Investigating the use of (re)configurability toreduce product family cost and mitigate performance losses [C]//Proceedings ofthe ASME2009International Design Engineering Technical Conferences&Computers and Information in Engineering Conference, San Diego, California,USA,2009.
    [85] Qu T, Bin S, Huang G Q, et al. Two-stage product platform development for masscustomization [J]. International Journal of Production Research,2011,49(8):2197~2219.
    [86] Turner C, Ferguson S, Donndelinger J. Exploring heterogeneity of customerpreference to balance commonality and market coverage [C]//Proceedings of theASME2011International Design Engineering Technical Conferences&Computers and Information in Engineering Conference, Washington, DC, USA,2011.
    [87] Farrell R S, Simpson T W. A method to improve platform leveraging in a marketsegmentation grid for an existing product line [J]. Journal of MechanicalEngineering,2008,130(3):031403-1~031403-11.
    [88] Farrell R S, Simpson T W. Improving cost effectiveness in an existing productline using component product platforms [J]. International Journal of ProductionResearch,48(11):3299~3317.
    [89] Osman K, Boj eti N, Marjanovi D. Multi criteria decision making in productplatform development and evaluation [C]//International DesignConference-Design2010, Dubrovnik, Croatia, May17-20,2010.
    [90]贡智兵.基于产品平台的快速设计关键技术研究及实现[D].南京:南京理工大学,2006.
    [91]秦红斌.基于公共产品平台的产品族设计技术研究[D].武汉:华中科技大学,2006.
    [92]辛志杰.面向产品族的机床结构可适应动态设计理论、方法与应用[D].天津:天津大学,2008.
    [93] Salvador F, Forza C. Configuring products to address the customizationresponsiveness squeeze: a survey of management issues and opportunities [J].International Journal of Production Economics,2004,91(3):273~291.
    [94] Trentin A, Perin E, Forza C. Overcoming the customization-responsivenesssqueeze by using product configurators: beyond anecdotal evidence [J].Computers in Industry2011;62(3):260~268.
    [95]王世伟,谭建荣,张树有,等.基于GBOM的产品配置研究[J].计算机辅助设计与图形学学报,2004,16(5):654~659.
    [96]李妮娅,张健,刘大有.基于广义产品结构的产品配置[J].计算机集成制造系统,2010,16(1):17~23.
    [97]张劲松,王启付,刘清华,等.基于模型的产品智能化配置研究[J].机械工程学报,2003,39(6):128~134.
    [98]张萌,李国喜,龚京忠,等.基于有序树的产品快速配置设计技术[J].计算机集成制造系统,2010,16(11):2333~2340.
    [99] Gut J A W, Pinto J M. Optimal configuration design for plate heat exchangers [J].International Journal of Heat and Mass Transfer,2004,47(22):4833~4848.
    [100]刘明周,葛茂根,刘正琼,等.基于约束的可定制产品配置模型[J].计算机辅助设计与图形学学报,2006,18(2):225~230.
    [101] Andreas G, Christian K. Knowledge-based configuration-survey and futuredirections [C]//Proceedings of the5th Biannual German Conference onKnowledge-Based Systems. Berlin, Germany: Springer,1999:47~66.
    [102] Zeng F S, Jin Y. Study on product configuration based on product model [J].International Journal of Advanced Manufacturing Technology,2007,33(7-8):766~771.
    [103]苏楠.基于可拓逻辑的产品族配置设计方法[D].杭州:浙江工业大学,2009.
    [104]苏楠,郭明,陈建,等.基于可拓挖掘的产品方案再配置方法[J].计算机集成制造系统,2010,16(1):2346~2354.
    [105]高鹏,林兰芬,蔡铭,等.基于本体映射的产品配置模型自动获取[J].计算机集成制造系统,2003,9(9):810~816.
    [106] Wang S W, Tan J R, Zhang S Y, et al. Case-based product configuration andreuse in mass customization [J]. Chinese Journal of Mechanical Engineering,2004,17(2):233~236.
    [107]肖刚,包志炎,高飞,等.基于相似实例的板构件产品配置方法[J].计算机集成制造系统,2010,16(2):233~237.
    [108] Li B, Chen L, Huang Z, et al. Product configuration optimization using amulti-objective genetic algorithm [J]. The International Journal of AdvancedManufacturing Technology,2006,30(1–2):20~29.
    [109] Yeh J Y, Wu T H, Chang J M. Parallel genetic algorithms for productconfiguration management on PC cluster systems [J]. The International Journal ofAdvanced Manufacturing Technology,2006,31(11–12):1233~1242.
    [110] Yeh J Y, Wu T S. Solutions for product configuration management: an empiricalstudy [J]. Artificial Intelligence for Engineering, Design, Analysis andManufacturing,2005,19(1):39~47.
    [111] Hong G, Hu L, Xue D, et al. Identification of the optimal product configurationand parameters based on individual customer requirements on performance andcosts in one-of-a-kind production [J]. International Journal of ProductionResearch,2007,46(12):3297~3366.
    [112] Xuanyuan S S, et al. Multi-objective optimization of product configuration[C]//Proceedings of ASME International Design Engineering TechnicalConferences and Computers and Information in Engineering Conference,2008,New York, ASME, pp.961~968.
    [113] Jiang L, Xuanyuan S S, Li L, et al. Inventory-shortage driven optimization forproduct configuration variation [J]. International Journal of Production Research,2011,49(4):1045~1060.
    [114] Hulubei T, Freuder E C, Wallace R J. The goldilocks problem [J]. ArtificialIntelligence for Engineering Design, Analysis and Manufacturing,2003,17(1),3~11.
    [115] Xu Z H, Liang M. Concurrent optimization of product module selection andassembly line configuration: a multi-objective approach [J]. Journal ofManufacturing Science and Engineering,2005,127(4),875~884.
    [116] Viswanathan S, Allada V. Product configuration optimization for disassemblyplanning: a differential approach [J]. International Journal of ManagementScience,2006,34(6),599~616.
    [117] Zhou C J, Lin Z H, Liu C T. Customer-driven product configuration optimizationfor assemble-to-order manufacturing enterprises [J]. International Journal ofAdvanced Manufacturing Technology,2008,38:185~194.
    [118] Yang D, Dong M. A constraint satisfaction approach to resolving productconfiguration conflicts [J]. Advanced Engineering Informatics,2012.http://dx.doi.org/10.1016/j.aei.2012.03.008.
    [119] Zhu B, Wang Z, Yang H C, et al. Applying fuzzy multiple attributes decisionmaking for product configuration [J]. Journal of Intelligent Manufacturing,2008,19:591~598.
    [120] Agard B, Barajas M. Fuzzy product configuration based on market segmentationto form a product family [C]//42nd CIRP Conference on Manufacturing Systems,Grenoble, France,2009.
    [121] Barajas M, Agard B. Iterative product configuration with fuzzy logic
    [C]//International Conference on Industrial Engineering and SystemsManagement, Montreal, Canada,2009.
    [122] Liu Y L, Liu Z X. Multi-objective product configuration involving newcomponents under uncertainty [J]. Journal of Engineering Design,2010,21(4):473~494.
    [123] Deciu E R, Ostrosi E, Ferney M, et al. Configurable product design usingmultiple fuzzy models [J]. Journal of Engineering Design,2005,16(2):209~235.
    [124] Ostrosi E, Tié B S. Generalised design for optimal product configuration [J].International Journal of Advanced Manufacturing Technology,2010,49:13~25.
    [125] Ostrosi E, Fougeres A J, Ferney M, et al. A fuzzy configuration multi-agentapproach for product family modeling in conceptual design [J]. Journal ofIntelligent Manufacturing,2011.
    [126] Ostrosi E, Fougeres A J, Ferney M. Fuzzy agents for product configuration incollaborative and distributed design process [J]. Applied Soft Computing,2012.DOI:10.1016/j.asoc.2012.03.005.
    [127] Yang D, Dong M. A hybrid approach for modeling and solving productconfiguration problems [J]. Concurrent Engineering,2012. DOI:10.1177/1063293X11436219.
    [128]刘飞,李世新,刘胜.面向大规模定制的用户需求协同配置思想及其应用[J].机械工程学报,2004,40(1):109~113.
    [129]王海军,孙宝元,张建明,等.客户需求驱动的模块化产品配置设计[J].机械工程学报,2005,41(4):85~91.
    [130]王海军,孙宝元,张强.支持个性化产品定制的变型配置设计方法[J].机械工程学报,2006,42(1):90~97.
    [131]魏巍,谭建荣,冯毅雄,等.基于改进的非支配排序遗传算法的模块化产品多目标配置优化研究[J].计算机集成制造系统,2007,13(11):2092~2098.
    [132]刘琼,赵韩,郑彩霞,等.模块化产品优化配置问题的混合PSO求解方法[J].农业机械学报,2008,39(11):117~121.
    [133]汪文旦,秦现生,应伸舜,等.基于隐马尔可夫模型的产品功能实例模块选取方法[J].计算机集成制造系统,2008,14(2):268~274.
    [134]张雷,刘光复,刘志峰,黄海鸿.面向绿色设计的产品优化配置方法[J].农业机械学报,2008,39(9):122~128.
    [135]赵凯,于天彪,唐亮,等.基于多色图理论的产品配置模型寻优及其系统[J].东北大学学报,2009,30(4):531~534.
    [136]任彬,张树有,伊国栋.基于模糊多属性决策的复杂产品配置方法[J].机械工程学报,2010,46(16):108~116.
    [137] Deng Y M, Zhu Y W. Function to structure/material mappings for conceptualdesign synthesis and their supportive strategies [J]. International Journal ofAdvanced Manufacturing Technology,2009,44(11–12):1063~1072.
    [138]贾振元,马建伟,王福吉,等.多零件几何要素影响下的装配产品特性预测方法[J].机械工程学报,2009,45(7):168~173.
    [139]贾振元,马建伟,刘巍,等.多几何要素影响下液压阀件特性的混合神经网络预测模型[J].机械工程学报,2010,46(2):126~131.
    [140]王忠浩,邵新宇,张国军,等.基于粗糙集神经网络的产品族配置性能预测方法[J].机械工程学报,2007,43(5):85~90.
    [141] Zhu H P, Liu F M, Shao X Y, et al. Integration of rough set and neural networkensemble to predict the configuration performance of a modular product family[J]. International Journal of Production Research,2010,48(24):7371~7393.
    [142]艾辉,陈立平,李玉梅,等.基于性能仿真的产品配置设计方法[J].中国机械工程,2011,22(7):853~859.
    [143] Samui P. Prediction of friction capacity of driven piles in clay using the supportvector machine [J]. Canadian Geotechnology Journal,2008,45:288~295.
    [144]Vapnik V. The nature of statistical learning [M]. New York, N.Y., USA: Springer,1995.
    [145] Hou J, Li Z Q, Cao X L, et al. Integrating genetic algorithm and support vectormachine for polymer flooding production performance prediction [J]. Journal ofPetroleum Science and Engineering,2009,68:29~39.
    [146] Hsueh Y W, Yang C Y. Prediction of tool breakage in face milling using supportvector machine [J]. International Journal of Advanced Manufacturing Technology,2008,37:872~880.
    [147] Salgado D R, Alonso F J, Cambero I, et al. In-process surface roughnessprediction system using cutting vibrations in turning [J]. International Journal ofAdvanced Manufacturing Technology,2009,43:40~51.
    [148] Khandelwal M. Evaluation and prediction of blast-induced ground vibration usingsupport vector machine [J]. International Journal of Rock Mechanics&MiningSciences,2010,47:509~516.
    [149] Chen J H, Lin J Z. Developing an SVM based risk hedging prediction model forconstruction material suppliers [J]. Automation in Construction,2010,19:702~708.
    [150] W Li, Y Li, J Wang, et al. Functional solving process model toward productinnovation design based on a functional solving model with multiple elementsand evolutions [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2009,223(12):1601~1614.
    [151] Pahl G, Beitz W. Engineering design: a systematic approach [M]. London:Springer,1998.
    [152] Hubka V, Eder W E. Theory of technical systems [M]. London: Springer,1988.
    [153]Suh N P. The principles of design [M]. New York, USA: Oxford University Press,1990.
    [154] Umeda Y, Kondoh S, Shimomura Y, et al. Development of design methodologyfor upgradable products based on function-behaviour-state modeling [J]. ArtificialIntelligence for Engineering Design, Analysis and Manufacturing,2005,19(3):161~182.
    [155] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework[J]. Design Studies,2004,25(4):373~391.
    [156] Qian L, Gero J S. Function-behaviour-structure paths and their role inanalogy-based design [J]. Artificial Intelligence for Engineering Design, Analysisand Manufacturing,1996,10(4):289~312.
    [157] Prabhakar S, Goel A. Functional modeling for enabling adaptive design ofdevices for new environments [J]. Artificial Intelligent Engineering,1998,12(4):417~444.
    [158] Deng Y M, Tor S B, Britton G A. A computerized design environment forfunctional modeling of mechanical products [C]//5th ACM Symposium on Solidmodeling, Michigan, USA,1999:1~12.
    [159] Freeman P, Newell A. A model for functional reasoning in design[C]//Proceedings of the second International Joint Conference on ArtificialIntelligence, London, US,1971:621~640.
    [160] Malmqvist J. Improved function-means trees by inclusion of design historyinformation [J]. Journal of Engineering Design,1997,8(2):107~117.
    [161] Zhang S. Research on cyclic mapping model and solving approach for conceptualdesign [J]. WSEAS Transactions on Computers,2009,8(6):1000~1009.
    [162] Christophe F, Bernard A, Coatanea E. RFBS: A model of knowledgerepresentation of conceptual design [J]. CIRP Annals-ManufacturingTechnology,2010,59(1):155~158.
    [163] Erden M S, Komoto H, Van Beek T J, et al. A review of function modeling:Approaches and applications [J]. Artificial Intelligence for Engineering Design,Analysis and Manufacturing,2008,22(2):147~169.
    [164] Camelo D M, Mulet E. A multi-relational and interactive model for supportingthe design process in the conceptual phase [J]. Automation in Construction,2010,19(7):964~974.
    [165]宋慧军,林志航.机械产品概念设计多层次混合映射功能求解框架[J].机械工程学报,2003,39(5):82~87.
    [166]邹慧君,田永利,郭为忠.机构系统概念设计的基本内容[J].上海交通大学学报,2003,37(5):668~673.
    [167]曹东兴,檀润华,苑彩云,等.基于集合原理的产品概念设计过程建模[J].机械工程学报,2004,40(8):134~139.
    [168]冯培恩,张帅,潘双夏,等.复合功能产品概念设计循环求解过程及其实现[J].机械工程学报,2005,41(3):135~141.
    [169]肖人彬,刘勇,梅顺齐,等.基于多粒度共进化功能推理的机械运动方案设计新方法[J].机械工程学报,2005,41(12):108~117.
    [170]祖耀,肖人彬,刘勇.具有迭代特征的复杂机械产品概念设计模型[J].机械工程学报,2006,42(12):197~205.
    [171]曹国忠,檀润华,孙建广.基于扩展效应模型的功能设计过程及实现[J].机械工程学报,2009,45(7):157~167.
    [172]王玉新,张旭光,毛晓辉. FBS模型中行为与结构创新的商空间表达与实现[J].机械工程学报,2010,46(15):107~116.
    [173] Storm R, Axworthy A. Product configurators-the big picture [R]. MIDRANGEERP, July2000.
    [174] Joseph N, Helen X. Product configurators pave the way for mass customization[OL]. www.ntrustinfotech.com/pdfs/art/doc23.pdf. August21,2003.
    [175] Zahed S, Jiju A N. Modeling of modularity and scaling for integration ofcustomer in design of engineer-to-order products [J]. Integrated Computer-AidedEngineering,2006,13(2):133~148.
    [176] Dario C, Christian D R, Agostino D, et al. Morphos configuration engine: thecore of a commercial configuration system in CLP(FD)[C]//Proceedings of the24th Italian Conference on Computational Logic,2009.
    [177] DriveWorks Ltd. DriveWorks[OL]. http://www.driveworks.co.uk/,2004.
    [178] Design Power Inc. Instant Engineering-to-Order over the Web [OL].www.dp.com/pdffcustomwise/CustomWise.pdf,2005.
    [179] Encompix. Engineering-to-Order ERP now to include configuration [OL].www.24-7presssrelease.com/view_press_release.php?rID=5495,2005.
    [180]李涛,谭建荣,戴若夷.基于Web的订单配置系统的相关技术和应用方案的研究[J].中国机械工程,2003,(11):943~946.
    [181]肖新华,史明华,郝霄鹏,等.基于产品数据管理的并纱机模块化配置系统研究[J].计算机集成制造系统,2008,14(6):1078~1084.
    [182]裘乐淼,张树有,徐春伟,等.递归化产品配置设计技术研究[J].计算机集成制造系统,2008,14(6):1049~1056.
    [183]付启敏,刘伟.基于常用配置元的在线产品配置方法[J].计算机集成制造系统,2010,16(8):1607~1613.
    [184]王海军.面向大规模定制的产品模块化若干设计方法研究[D].大连:大连理工大学,2005.
    [185] Konak A, Coit DW, Smith AE. Multi-objective optimization using geneticalgorithms: a tutorial [J]. Reliability Engineering and System Safety,2006(91):992~1007.
    [186] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective geneticalgorithm: NSGA-II [J]. IEEE Transactions on Evolutionary Computation,2002,6(2):182~197.
    [187]孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008,19(1):48~61.
    [188] Bezdek J C. Pattern recognition with fuzzy objective function algorithms [M].New York: Plenum Press,1981.
    [189] Bezdeck J C, Ehrlich R, Full W. FCM: fuzzy c-means algorithm [J]. Computersand Geoscience,1984,10(2-3):191~203.
    [190] Xie X L, Beni G. A validity method for fuzzy clustering [J]. IEEE Trans PattAnal Mach Intell,1991,13(8):841~847.
    [191] Ramze R M, Lelieveldt B P F, Reiber J H C. A new cluster validity index for thefuzzy c-mean [J]. Pattern Recognition Letters,1998,19:237~246.
    [192]于剑,程乾生.模糊聚类方法中的最佳聚类数的搜索范围[J].中国科学(E辑),2002,32(2):274~280.
    [193] Deng J L. Introduction to grey system [J]. The Journal of Grey system1989;1(1):1~24.
    [194]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].北京:科学出版社,2010.
    [195]夏军.灰色系统水文学——理论、方法及应用[M].武汉:华中理工大学出版社,2000.
    [196] John S T, Nello C. Kernel methods for pattern analysis [M]. Cambridge, UK:Cambridge University Press,2004.
    [197] Sch lkopf B, Smola A J. Learning with kernels support vector machines,regularization, optimization, and beyond [M]. Cambridge, UK: MITPress,2002.
    [198]张铃,张钹.问题求解理论及应用[M].北京:清华大学出版社,2007.
    [199]卜东波,白硕,李国杰.聚类/分类中的粒度原理[J].计算机学报,2002,25(8):810~816.
    [200]徐峰,张铃.基于商空间的非均匀粒度聚类分析[J].计算机工程,2005,31(3):26~28.
    [201] Tsai H C, Hsiao S W. Evaluation of alternatives for product customization usingfuzzy logic [J]. Information Sciences,2004,158(1):233~262.
    [202] Yao Y Y. Perspectives of granular computing [C]//The2005IEEE InternationalConference on Granular Computing, Beijing, China: IEEE,2005:85~90.
    [203] Tang X Q, Zhu P, Cheng J X. The structural clustering and analysis of matricbased on granular space [J]. Pattern Recognition,2010,(43):3768~3786.
    [204]Marc H M. Revitalize your product lines through continuous platform renewal [J].Research Technology Management,1997,40(2):17~28.
    [205] Zhang J J, Wu D S, Olson D L. The method of grey related analysis to multipleattribute decision making problems with interval numbers [J]. Mathematical andComputer Modeling,2005,42(9-10):991~998.
    [206] Kuo Y, Yang T, Huang G W. The use of grey relational analysis in solvingmultiple attribute decision-making problems [J]. Computers&IndustrialEngineering,2008,55(1):80~93.
    [207]尤天慧,张尧,樊志平,刘洋.信息不完全确定的多指标决策理论与方法[M].北京:科学出版社,2010.
    [208] Tan C K, Goh K C, Liu D S, et al. A competitive and cooperative co-evolutionaryapproach to multi-objective particle swarm optimization algorithm design [J].European Journal of Operation Research,2010,202:42~43.
    [209] Mizoguchi R. Functional ontology of artifacts [C]//Inter-disciplinary ontologyconference, Tokyo, Japan,26–27February2008, pp.1~10.
    [210] Kitamura Y, Koji Y, Mizoguchi R. An ontological model of device function:industrial deployment and lessons learned [J]. Applied Ontology,2006,1(3-4):237~262.
    [211] Dorst K, Vermaas P E. John Gero’s function-beha-viour-structure model ofdesigning: a critical analysis [J]. Research Engineeringg Design,2005,16(1–2):17~26.
    [212] Gu P, Xue D, Nee A Y C. Adaptable design: concepts, methods, and applications[J]. Proc IMechE, Part B: Journal of Engineering Manufacture,2009,223(11):1367~1387.
    [213] Kitamura Y, Mizoguchi R. Ontology-based systematization of functionalknowledge [J]. Journal of Engineering Design,2004,15(4):327~351.
    [214] Beek T J V, Tomiyama T. Connecting views in mechatronic systems design, afunction modeling approach [J].2008.
    [215]郑联语,纪录.产品族工装配置技术研究与实现[J].计算机集成制造系统,2011,17(3):585~594.
    [216]张芬,陈卓宁,严晓光等.基于事物特性表的产品配置模型[J].中国机械工程,2008,19(6):683~688.
    [217]齐从谦,贾新伟.支持变型设计的装配模型建模方法研究[J].机械工程学报,2004,40(1):38~42.
    [218] Hoyer, P O, Hyv rinen A. Independent component analysis applied to featureextraction from colour and stereo images [J]. Network: Computation in NeuralSystems,2000,11(3):191~210.
    [219] Yang G, Tian G Y, Que P W, et al. Independent component analysis-basedfeature extraction technique for defect classification applied for pulsed eddycurrent NDE [J]. Research in Nondestructive Evaluation,2009,20(4):230~245.
    [220] Erden Z, Erden A, Erkmen A M. A Petri net approach to behavioural simulationof design artifacts with application to mechatronic design [J]. ResearchEngineering Design,2003,14(1):34~46.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.