改善重庆地区村镇住宅热湿环境的节能围护结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进入21世纪,我国村镇经济发展迅速,村镇居民对居住环境的要求越来越高。据有关资料显示:尽管村镇居民经济承受能力较低,能源消费水平低,住宅耗能却占村镇能耗的60%以上。因此,如何降低村镇住宅建筑能耗是摆在我们面前亟待解决的问题。本文依托重庆市建委科技计划项目(城科字2009第24号),对改善重庆地区村镇住宅热湿环境的节能围护结构进行研究,结合重庆村镇地区的资源状况、气候特点和经济水平推荐给出热工性能良好、经济可行、施工方便、环境友好的村镇节能围护结构,推动村镇住宅建设走可持续发展道路。
     本文首先对重庆村镇地区展开实地调研,收集了重庆地区村镇住宅现有围护结构的典型类型,发现村镇地区目前应用最为普遍的围护结构组合方式为:坡屋顶、心红砖墙、木质窗框单层浅色玻璃、内外实木门
     然后,对村镇住宅典型墙体形式进行热工性能计算分析:墙体热工性能最好的是180实心红砖墙内外水泥砂浆、外贴瓷砖的组合方式,其传热系数k=1.531w/m2.k,热惰性指标D=3.03,但热工性能远未达到《夏热冬冷地区居住建筑节能设计标准》关于外墙k≤1.5,D≥3.0或K≤1.0,D≥2.5节能50%的标准,更达不到重庆节能65%的地标。并分析了调研问卷和现场测试数据:自然通风条件下夏季室内外温差相差很小,温差小于3℃的占调研样本总数的90%;相对湿度在65%以上占调研样本总数的72%,村镇居民对室内热湿环境不满意率达79%,迫切希望改善室内热湿环境。
     选择目前重庆地区围护结构热工性能较好和应用最为普遍的村镇住宅,对典型房屋进行室内外全年温湿度的连续监测,获得了实际使用条件下重庆村镇住宅室内的热湿环境参数,并利用重庆地区自然通风的适应性热舒适评价模型对全年实测数据进行评价:冬季达到舒适温度的天数分别只有6天和2天;夏季达到舒适温度范围的天数为53天和72天。
     根据正交试验原理,使用DeST-h软件对重庆地区村镇住宅围护结构进行优化模拟实验,筛选出坡屋顶、180实心墙、内外水泥砂浆抹灰的围护结构形式为目前村镇地区的较优方案。并对较优方案中对墙体砌筑方式和保温砂浆两方面进行优选,确定出适合于重庆地区村镇地域特点和经济水平的围护结构优化方案为坡屋顶、240空斗墙(稻壳填充)、稻壳砂浆内外抹灰。
     最后对优化后的墙体进行传热系数测试,传热系数为1.326 W/m2.℃,比重庆地区村镇住宅现有热工性能较好的180mm红砖实心墙内外水泥砂浆抹灰墙的传热系数低0.286 W/m2.℃。模拟全年在自然通风条件下的舒适温度天数为138天,比现有热工性能较好的围护结构住宅多3天,在夏季室内平均温度基本保持不变的情况下冬季平均室温升高0.3℃。室内热湿环境条件有所改善。
In the past twenty years, With the process of chinese rural reform ,opening up and the implementation of agricultural incentives,the rural economy and living standards have been improved markly . village socio-economic and technological development is accelerating, living standards of rural residents are also increasingly high requirements. However, according to the data shows that: the residential energy consumption accounts for 60% of villages and towns total energy consumption, and almost none of the energy of the relevant standards related to this area. Therefore, how to reduce energy consumption of residential buildings in towns and villages is urgent problem in front of us. If we do not fundamentally solve the problem, the region will be repeated a large number of high-low energy consumption of residential comfort. However, due to economic conditions in the region can not copy from the city limits of various energy conservation measures, must be combined with the resource situation of rural areas, climate and the economic level of thermal performance and then given a good recommendation, economically feasible, construction convenient, environmentally friendly rural energy envelope, take the road of sustainable development.
     This article relies on supported by Urban and Rural Construction Commission, Chongqing City Construction Projects, firstly a collection of villages and towns in Chongqing typical residential building envelope of existing species been collected. The roof have three types of which are sloping roof, the roof of water storage, flat roof; some kinds of wall are 180(120)thick brick walls, 190 single row of holes hollow concrete brick, rubble walls, etc. red brick and hollow concrete brick wall most widely used; and the glass types are mostly single-colored glass windows, wooden window frames, sometimes aluminum window frames can be seen, the whole of this windows have no shading measures; door mostly solid wood, a few iron door. By thermal calculation found that the best is 180 solid red brick walls, inside and outside the cement mortar, external tiling, and the heat transfer coefficient is 1.531w/m2.k, the thermal inertia index is 3.03. However, the existing rural residential form of enclosure can not reach the relevant energy-saving standards.
     Through the questionnaire survey found that 89% of the rural residents dissatisfied with the indoor thermal comfort are eager to improve the indoor thermal environment, therefore to strengthen the retaining structure of rural areas is urgent and necessary.
     By this typical rural house of Chongqing indoor and outdoor housing for continuous monitoring of temperature and humidity throughout the year found that in Chongqing winter is cold but summer is hot, towns and villages housing conditions in the existing envelope of indoor and outdoor relative humidity throughout the year, almost all the above 60%; in natural ventilation for comfortable indoor temperature reaches the temperature range of winter days were only 6 days and 2 days; summer comfort temperature range to reach the number of days 72 days 53 days. So winter indoor thermal environment of residential village is very bad.
     Finally, combining theory with orthogonal test simulation software DeST-h and the use of adaptive Chongqing building ventilation standards for thermal comfort evaluation, determined the slope of the roof, Sloping roof, 240 Cavity Wall (rice husk filled), rice husk mortar plastering inside and outside the form is a combination of rural areas in the existing program of optimum combination of envelope combinations. Measured the optimal design wall of heat transfer coefficient is 1.326 W/m2.℃, lower than the normal rural residential walls. So it can be promote to use in Chongqing rural areas.
引文
[1]屈万英,葛翠玉.夏热冬冷地区村镇住宅的建筑节能[J].住宅科技, 2007. 1.
    [2]腾明邑.村镇住宅空斗墙体热工性能分析及节能技术研究[D].湖南:湖南大学, 2008.
    [3]杨子江.夏热冬冷地区村镇住宅建筑节能探索[J].工业建筑, 2005. 7.
    [4]建设部建筑节能中心,德国能源署.中国建筑节能手册.德国:德国能源署建筑节能部门, 2007, 1-60.
    [5]《重庆市住房建设规划(2006-2010年)》.
    [6]中华人民共和国建设部. JGJ26-95.民用建筑节能设计标准[S].北京:中国建筑工业出版社, 1995: 30-50.
    [7]中华人民共和国建设部. JGJ134-2001.夏热冬冷地区居住建筑节能设计标准[S].北京:中国建筑工业出版社, 2001: 10-35.
    [8]重庆市建设委员会. DBJ5024-2002.重庆市居住建筑节能设计标准. 2002.
    [9]重庆市建设委员会. DBJ50-071- 2007.居住建筑节能65%设计标准. 2007.
    [10]滕明邑,周晋,张国强.建筑围护结构节能.大众用电, 2007, (3): 37-39.
    [11]武志东.寒冷地区建筑外墙保温技术性能评价.
    [12] Klems. A new method for predicting the solar heat gain of complex fenestration systems: LOverview and derivation of the matrix layer calculation. ASHRAE Transacitons 100(1): 1065 -1072.
    [13] Klems. A new method for predicting the solar heat gain of complex fenestraiton systems:Ⅱ. Detailed descripiton of the matrix layer calculaiton. ASHRAE Transactions 100(1): 1073 -1086.
    [14] Klems, Keley. Calorimetric measurements of inward-flowing fraction for complex glazing
    [15] Anichan Offiong, A. U. Ukpoho. External window shading treatment effects on internalenvironmental temperature of buildings. 29 (2004): 215-2165.
    [16]聂玉强,国内外建筑节能技术现状与发展趋势,建设科技, 2002.
    [17]徐永铭.国内外建筑节能现状及发展.徐州工程学院学报, 2005, 20(3): 71-73.
    [18]郑文享.国内外建筑节能现状及对比.制冷与空调, 2008, 22(4): 134-137.
    [19]王寝.发达国家建筑节能措施及借鉴意义.建筑科技, 2008, 20(15): 92.
    [20]国外保温材料发展趋势.
    [21] B. V. Venkatarama Reddy, Sustainable building technologies, CURRENT SCIENCE, 87(7), (2004)899~907.
    [22] A. K. Fisher, F. Bullen, D. Beal. The durability of cellulose fibre reinforoed concrete Pipes insewage applications[J]. Cement and Concrete Research, 2001, 31: 543-553.
    [23] M. SarigaPhuti, S. P. Shah, K. D. Vinson. Shrinkage cracking and durability characteristics of cellulose fiber reinforced concrete[J]. ACI Material Journal, 1993, 90(4): 309-318.
    [24]许贤敏译.棕搁树叶纤维增强混凝土的耐久性[J]. (译自美国“Concrete International”1995(6): 27-31. )港工技术与管理, 1995(5): 43-47.
    [25] Romildo D. Toledo Fillho, Karen Scrivener, et al. Development of vegetable fibre-mortar composites of improved durability[J]. Cement & Concrete Composites, 2003, 25: 185-196.
    [26]杨子江,黄恒栋,夏热冬冷地区小城镇住宅外墙体节能技术措施研究,四川建筑科学研究, 2007. 4.
    [27]段义群.长江流域居住建筑围护结构隔热保温问题.山西建筑, 2008. 2.
    [28]王瑞.我国夏热冬冷地区节能住宅外围护结构的选择.四川建筑科学研究, 2007. 6.
    [29] C. K. Cheung, R. J. Fuller, M. B. Luther, Energy-efficient envelope design for high-rise apartments, Energy and Buildings, 37 (2005) 37~48.
    [30] M. Bojic, F. Yik, P. Sat, Influence of thermal insulation position in building envelope on the space cooling of high-rise residential buildings in Hong Kong, Energy and Buildings 33(6) (2001) 569~581.
    [31] M. Bojic, F. Yik, P. Sat, Influence of envelope and partition characteristics on the space cooling of high-rise residential buildings in Hong Kong, Building and Environment 37 (4) (2002) 347~355.
    [32]韦延年,夏热冬冷地区节能住宅外围护结构保温指标的确定方法,四川建筑科学研究, 2002. 1.
    [33]朱强,王厚华,重庆地区建筑围护结构对室内热环境的影响,山西建筑, 2007. 10.
    [34]王沛,丁小中,夏热冬冷地区建筑围护结构双面保温设计的构想,建筑节能, 2008. 4.
    [35]易南福.浅论新型建筑墙体材料的开发应用[J].建筑科学, 2007(14): 91.
    [36]胡涛.国内新型墙体材料的应用现状分析[J].科技咨询导报, 2007(18): 2.
    [37]章希胜.植物纤维水泥防渗漏面板研制[J].中国建筑防水, 1998(2): 13-l4.
    [38]邹惟前.植物纤维水泥复合板的性能应用[J].墙体革新与建筑节能, 1996(1): 32-37.
    [39]叶颖薇,冼定国,冼杏娟.竹纤维和椰纤维增强水泥复合材料[J].复合材料学报, 1998(8): 92-98.
    [40]李国忠,于衍真,司志明等.植物纤维增强水泥基复合材料的性能研究[J].硅酸盐通报, 1997(3): 42-45.
    [41]肖力光,李会生,张奇志.秸秆纤维水泥基复合材料性能的研究[J].吉林建筑工程学院学报, 2005, 22(l): l-6.
    [42]高汉忠,叶慧海,杨满宏等.稻壳水泥混凝土保温材料[J].新型建筑材料, 1996(12):18-20.
    [43]民用建筑热工设计规范.
    [44]沈韫元,建筑材料热物理性能,中国建筑工业出版社, 1981.
    [45]王继唐,混凝土小型空心砌块热工性能计算方法的探讨,墙材革新与建筑节能.
    [46]李永兵.重庆地区居住建筑通风期及通风有效性控制研究[D].重庆大学硕士论文.
    [47]采暖通风与空气调节设计规范.
    [48]荣嵘.湿度与健康的关系.医药与保健. 2006年01A期, P8-9.
    [49]苗平.湿空气对人体热舒适的影响.洁净与空调技术, 2003, 4: 13-16.
    [50]胡琳编.工业产品设计概论.北京:高等教育出版, 2006. 5.
    [51]纪秀玲,李国忠,戴自祝.室内热环境舒适性的影响因素及预测评价研究进展.卫生研究, 2003, 32(2): 295-298.
    [52]赵荣义,范存养等.空气调节.中国建筑工业出版社, 2003.
    [53]国家环境保护总局科技标准司中国环境科学学会编.室内环境与健康.北京:中国环境科学出版社, 2001.
    [54]张宏林主编.人因工程学北京:高等教育出版社, 2005.
    [55] John Martin Evans(2002): Evaluating comfort with varying temperatures: a graphic design tool, Energy and Building 1463 (2002) pp: 1-7.
    [56]燕达,谢晓娜,宋芳婷等.建筑模拟技术与DeST发展简介.
    [57] Tianzhen Hong, S. K. Chou, T. Y. Bong. Building Simulation: an overview of developments andinformation sources. Building and nvironment, 2000, 35: 347-361.
    [58]清华大学建筑技术科学系DeST开发小组. DeST-h技术资料. 2003, 5. 1.
    [59]付祥钊.夏热冬冷地区建筑节能技术[M].中国建筑出版社, 2002.
    [60]丁勇,李百战,罗庆,等.重庆市自然资源在改善室内热湿环境中的作用[J].重庆大学学报, 2007.
    [61]张慧玲.建筑节能气候适应性的时域划分研究[D].重庆:重庆大学城市建设与环境工程学院, 2009.
    [62]建筑基节能速查手册.
    [63]用稻壳做骨料的轻量砂浆的制法.
    [64]王沣浩,姚建波,王东洋等.既有建筑围护结构传热系数现场检测方法研究.建筑热能通风空调. 2008(27).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.