渭北黄土区农林复合系统核桃根际土壤及根系分泌物化感作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化感作用是指一个活体植物(供体植物)通过茎叶挥发、淋溶、根系分泌等途径向环境中释放其产生的某些化学物质,从而影响周围植物(受体植物)的生长和发育的化学生态学现象。核桃(Juglans regia L.)是胡桃科(Juglandaceae)核桃属(Juglans L.)落叶乔木,在我国栽培历史悠久,分布很广,资源十分丰富。然而,核桃的生长会抑制周围其它作物的生长发育。本研究以渭北黄土区农林复合系统主要经济树种核桃为供体植物,在探讨其化感物质对几种常见作物化感作用的基础上,利用气相色谱-质谱联用技术分析了核桃树根际土壤浸提液的成分和核桃树根系分泌物浸提液的组分,同时研究了其对核桃树根际土壤微生态的影响,为渭北黄土区的农林复合系统优化经营模式的实践提供科学依据和奠定理论基础。结果表明:
     1.核桃叶水浸提液对受体植物贝母、小麦、萝卜、花生、绿豆和白菜的种子发芽和幼苗生长都有一定的影响,且表现出明显的化感效应和浓度效应,适宜受体植物为萝卜和白菜。
     2.不同生长年限的核桃树根际土壤四种不同溶剂(20%甲醇、甲醇、乙酸乙酯和正己烷)的浸提液均有明显的化感效应;2年生核桃树根际土壤浸提液含有酯类、醇类、烷烃类、烯烃类、酮类、醛类、萘类、醌类、酸类、酚类、酰胺类、苯类等12大类91种有机化合物;3年生核桃树根际土壤浸提液包含烷烃类、烯烃类、醇类、酸类、酯类、醛类、酮类、酚类、酰胺类、醌类等11大类90种有机化合物;4年生核桃树根际土壤浸提液含有烷烃类、烯烃类、醇类、酸类、酯类、酮类、酚类、醛类、醌类、酰胺类、苯环类、芳香烃类、氰类、苯类等14大类89种有机化合物。
     3.不同生长年限的核桃树根系分泌物均呈现出明显的化感效应;2年生核桃树根系分泌物浸提液中含有烷烃类、烯烃类、醇类、酸类、酯类、酰胺类、酚类、醌类、苯类等9大类35种有机化合物;3年生核桃树根系分泌物浸提液含有烷烃类、醇类、酸类、酯类、酮类、酰胺类、酚类、醌类、烯烃类、醛类等10大类43种有机化合物;4年生核桃树根系分泌物浸提液包含烷烃类、醇类、酸类、酯类、胺类、酚类、烯烃类、醌类、芳香烃类等9大类50种有机化合物。
     4.在核桃树生长过程中,根际土壤有机养分和无机养分含量基本高于非根际土壤,随着生长年限增加,土壤有机质、全氮、速效氮、全钾及速效钾呈现逐年升高的趋势,土壤全磷、速效磷及pH值呈现逐年降低的趋势,且除了pH值随着土壤深度的增加明显升高,土壤养分均随着土层深度的增加呈现明显降低的趋势;与非根际土壤相比,核桃树根际土壤中的过氧化氢酶、脲酶、磷酸酶和蔗糖酶活性都有不同程度的降低,四种酶活性的空间变化随着土层剖面的加深而活性降低,说明土壤中各种酶的活性可能和核桃根系的分泌物有关,脲酶和蔗糖酶活性均随生长年限的增加而增强,磷酸酶活性随生长年限的增加而降低,随着生长年限的不同,各种土壤酶活性的变化规律不一致,可能是因为核桃根系分泌物的种类和数量以及根系周围的微生物对每种土壤酶的合成影响不同所致;在不同生长年限的核桃树根际土壤中,土壤微生物数量发生了较大的变化,与非根际土壤相比,土壤中细菌和真菌随着生长年限的增加而增多,放线菌则表现出随着生长年限的增长而降低,且均随着土层深度的增加呈现明显降低的趋势。
Allelopathy is one of the most important chemoecological phenomena, which refersto one plant (donor) impact the growth and development on its neighboring plants (accepter)through the release of secondary metabolism chemical compounds into the environment viavolatilization, leaching, excretion, and decomposition. Walnut (Juglans regia L.) is awidespread tree in walnut genus (Juglans) of walnut family (Juglamdacea). It is plantedoriginally for a long history in China. However, all of the foliage, root and fruit peel of walnutcan inhibit the growth of neighbor plants signigicantly. In this study, bioassay methods wereused to probe into the walnut allelopathic effect on receiver plants, and chemical componentswere analyzed and identified with gas chromatograph-mass spectrometer (GC-MS), therhizosphere soil extracting effects with different solvents,root exudates extracts of walnuttrees, and the effect of root exudates on rhizosphere soil microecology were studied to providea scientific basis and the theoretical basis for optimizing the practice of the economic modelfor agroforestry systems in the loess area of nothern Wei River. The results showed:
     1. Walnut leaf aqueous extract affected the seed germination and seedling growth offritillaria, wheat, turnip, peanut, mung bean, and cabbage, showing significant allelopathiceffect and concentration effect. Receiver plants for further study were selected, which wereturnip and cabbage.
     2. The rhizosphere soil of walnut trees was extracted with different solvents (20%methanol, methanol, ethyl acetate, and n-hexane). Bioassay methods were used to probe intothe four different extracts of walnut trees rhizosphere soil, which showed the significantallelopathic effect. Totally12sorts91components were identified from the rhizosphere soilof2-year-old walnut trees, which included esters, alcohols, alkanes, olefins, ketones,aldehydes, naphthalenes, acids, phenols, amides, benzene, and quinones; totally11sorts90components were identified from the rhizosphere soil of3-year-old walnut trees, whichincluded alkanes, olefins, alcohols, acids, esters, aldehydes, ketones, phenols, and amides;totally14sorts89components were identified from the rhizosphere soil of4-year-old walnuttrees, which included alkanes, olefins, alcohols, acids, esters, ketones, phenols, aldehydes, quinones, benzene rings, aromatic hydrocarbons, cyanogens, benzenes.
     3. Root exudates extracts of walnut trees in different ages all showed the significantallelopathic effect. Totally9sorts35components were identified from the root exudates of2-year-old walnut trees, which included alkanes, olefins, alcohols, acids, esters, amides,phenols, quinones, benzenes; totally10sorts43components were identified from the rootexudates of3-year-old walnut trees, which included alkanes, alcohols, acids, esters, amides,ketones, phenols, quinones, olefins, and aldehydes; totally9sorts50components wereidentified from the root exudates of4-year-old walnut trees, which included alkanes, alcohols,acids, esters, amines, phenols, olefins, quinones, aromatic hydrocarbons.
     4. In the growth process of walnut trees, the contents of organic and inorganic nutrientsin rhizosphere soil were basically higher than those in bulk soil and the contents of organicmatter, total N, available N, total K, and available K increased with the age increasing; total Pand available P content and pH value reduced with the age increasing, and excepting the pHvalue significantly increased with the increase of soil depth, obviously decreased with theincrease of soil depth. Compared to bulk soil, the catalase, urease, phosphatase and sucraseactivities in rhizosphere soil of walnut trees decreased and activities of the four enzymesdecreased with the depth of spatial profile, indicated that the soil enzymes activities may berelated with the root secretion. Urease and sucrase activities in rhizosphere soil increased withthe ages of walnut trees; phosphatase activities decreased with the ages of walnut trees. In therhizosphere soil of walnut trees in different ages, variation rules of different soil enzymeactivities were inconsistent, this was because of rhizosphere of the walnut secretion types andquantity, and microorganism that displayed the different functions to each kind of soilenzyme's synthesis. The microorganism numbers in the rhizosphere soil varied significantlywith ages of walnut trees. Compared with the bulk soil, the bacterium and fungi quantity inrhizosphere soil increased along with the age increasing, actinomycetes quantity reducedalong with the age increasing and bacterium, fungi, and actinomycetes quantity reduced withthe depth of spatial profile.
引文
曹光球,林思祖,刘雁.2002.几个树种化感物质的初步分离与生物测定.中国生态农业学报,10(2):22-25
    曹慧,孙辉,杨浩,孙波.2003.土壤酶活性及其对土壤质量的指示研究进展.应用与环境生物学报,9(1):105-109
    曹潘荣,骆世明.1996.柠檬桉的他感作用研究.华南农业大学学报,17(2):7~11
    曹潘荣,骆世明.1997.茶园的他感作用研究.华南农业大学学报,15(2):129~133
    柴强,黄高宝.2003.植物化感作用的机理、影响因素及应用潜力.西北植物学报,23(3):509-515
    陈立新.2000.施肥对落叶松人工林根际土壤生化特性的影响.水土保持学报,17(3):133-137
    陈龙池,汪思龙.2003.杉木根系分泌物化感作用研究.生态学报,23(2):393-398
    陈龙池,廖利平,汪思龙.2002.根系分泌物生态学研究.生态学杂志,21(6):57-62
    陈文新.1990.土壤和环境微生物学.北京:北京农业大学出版社
    程智慧,耿广东,张素勤,孟焕文.2005.辣椒对葛芭的化感作用及其成分分析.园艺学报,32(1):100-104
    戴伟,白红英.1995.土壤过氧化氢酶活度及其动力学特征与土壤性质的关系.北京林业大学学报,17(l):37-40
    戴子浠.2004.有机物国际命名.北京:中国石化出版社
    杜玲,曹光球,林思祖.2003.杉木根际土壤提取物对杉木种子发芽的化感效应.西北植物学报,23(2):323-327
    杜英君,靳月华.1999.连作大豆植株化感作用的模拟研究.应用生态学报,10(2):209-212
    冯文煦.1990.杂草的异株克生现象.杂草学报,4(4):46-48
    傅慧兰,战景仁,孟民,邹永久.1997.大豆连作的过氧化氢酶活性与根系分泌物.吉林农业科技,4:34-36
    阚文杰,吴启堂.1994.一个定量综合评价土壤肥力的方法初探.土壤通报,25(6):245
    高俊凤.2000.植物生理学试验技术.西安:世界图书出版社
    高子勤,张淑香.1998.连作障碍与根际微生态研究:根分泌物及其生态效应.应用生态学报,9(5):549-554
    管长志,曾骧,孟昭清.1993.巨峰葡萄晚秋叶施15N-尿素的吸收、运转、贮藏和再分配.园艺学报,20:237-242
    关松荫,张德生,张志明.1986.土壤酶及其研究法.北京:农业出版社,278-313
    郭鸿儒,沈慧敏,杨顺义.2008.黄花蒿化感物质对受体燕麦化感作用机理的初步研究.甘肃农业大学,43(1):102-104
    郭炎荣,路玫,张国宏.2004.高效液相色谱法测定左氧氟沙星眼用凝胶中左氧氟沙星的含量.药物鉴定,(12):38-40
    何华勤,沈荔花,宋碧清,郭玉春,梁义元,梁康迳,林文雄.2005.几种化感物质替代物间的互作效应分析.应用生态学报,16(5):890-894
    黄健浩,林小毅.2004.高效液相色谱法测定盐酸左氧氟沙星含量.海峡药学,(5):87-89
    黄志群,廖利平,汪思龙.2000.杉木根桩和周围土壤酚含量的变化及其化感效应.应用生态学报,22(2):190-192
    胡飞,孔垂华.1997.胜红蓟化感作用研究水溶物的化感作用及其化感物质分离鉴定.应用生态学报,8(3):304-308
    胡俊.2000.微生物学实验技术.内蒙古文化出版社
    胡开辉,罗庆国,汪世华.2005.化感水稻根际微生物类群及酶活性变化.应用生态学报,17(6):1060-1064
    韩丽梅,王树起,鞠会艳.2000.大豆根分泌物的鉴定及化感作用的初步研究.大豆科学,19(2):119-125
    韩雪,潘凯,吴风芝.2006.不同抗性黄瓜品种根系分泌物对枯萎病病原菌的影响.中国蔬菜,(5):13-15
    贾黎明,翟明普.1995.油松辽东栎混交林中生化他感作用的研究.林业科学,31(6):491-495
    孔垂华.1998a.胜红蓟化感作用之间相互作用的研究.植物学报,22(5):403-408
    孔垂华.1998b.植物化感作用研究中应注意的问题.应用生态学报,9(3):332~336
    孔垂华,胡飞.2001.植物化感(相生相克)作用及其应用.中国农业出版社
    孔垂华,徐效华.2003.有机物的分离和结构鉴定.北京:化学工业出版社
    孔垂华,徐涛,胡飞.1998.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性.应用生态学报,9(3):257-260
    科学出版社名词室.2004.英汉化学化工词汇.4版.北京:科学出版社
    李阜棣.1996.土壤微生物学.北京:中国农业出版社
    李合生.2000.植物生理生化试验原理和技术.北京:高等教育出版社
    李寿田,周健民,王火焰.2001.植物化感作用机理的研究进展.农村生态环境,17(4):52-55
    李绍文.1989.生态生物化学(二).高等植物之间的生化关系.生态学杂志,8(l):66-70
    厉婉华.1994.苏南庄陵区不同林分下根际根外土壤微生物区系及酶活性.生态学杂志,13(6):11-14
    廖馥荪译.1986.高等植物的化学间的相互作用.草原与牧草,2:33
    林群慧,何华勤,林文雄.2001.水稻化感作用物质特性的研究.中国生态农业学报,(9):84-85
    林思祖.1999.杉木自毒作用的研究.应用生态学报,(6):661-664
    林思祖,黄世国,曹光球.1999.杉木自毒作用研究.应用生态学报,10(6):661-662
    刘彬彬.2005.核桃叶生物活性成分的研究(III).[硕士学位论文].杨凌:西北农林科技大学
    刘雁,林思祖,曹光球.2001.杉木及其伴生树种化感物质的分离与生物测定.福建林学院学报,21(3):268-271
    龙章富,刘世贵.1995.四川东北部退化草地土壤生物化学活性初报.土壤学报,32(2):221-227
    鲁如坤.1999.土壤农业化学分析方法.北京:中国农业科技出版社
    吕卫光.2002.化感物质抑制连作黄瓜生长的作用机理.中国农业科学,35(l):106-109
    牟金明,李万辉,张风霞.1996.根系分泌物及其作用.吉林农业大学学报,18(4):114-118
    聂呈荣,曾任森,骆世明.2004.三裂叶蟛蜞菊对水稻化感作用的初步研究.作物学报,30(9):942-946
    潘丹,翟明普,郭素娟.2007.核桃植株挥发性气体化学成分分析.山东农业大学学报,38(2):234-238
    齐泽民,杨万勤.2006.苞箭竹根际土壤微生物数量与酶活性.生态学杂志,25(11):1370-1374
    秦嗣军,吕德国,李作轩,于翠.2006.樱桃根际生物活性因子动态变化初步研究.吉林农业大学学报,28(3):274-278
    邱孝煊,刘振兴,林增泉.1995.施肥对水稻土壤过氧化氢酶的影响.福建农业科技,3:14-14
    沈慧敏,郭鸿儒,黄高宝.2005.不同植物对小麦、黄瓜和萝卜幼苗化感作用潜力的初步评价.应用生态学报,16(4):740-743
    史瑞和.1998.土壤农化分析.北京:农业出版社
    施月红,谷文祥.1998.生化他感作用研究中的生物测定方法.生态科学,17(1):85-89
    孙芳.2007.龙葵中糖普生物碱的结构及其化感作用研究.[硕士学位论文].哈尔滨:东北师范大学
    孙文浩,余叔文.1992.相生相克效应及其应用.植物生理学通讯,28(2):81-87
    覃广战,卢林,秦小玲.2000.巨尾桉枝叶水浸提液对3种作物种子萌发的影响.广西科学院学报,16(1):14-17
    谭仁祥.2003.植物成分功能,北京:科学出版社
    唐静成.2003.核桃叶生物活性成分的研究(I).[硕士学位论文].杨凌:西北农林科技大学
    汪思龙,陈龙池,廖利平.2002.几种化感物质对杉木幼苗生长的影响.应用与环境生物学报,8(6):588-591
    王大力,祝心如.1996.豚草的化感作用研究.生态学报,16(1):11-19
    王大力,马瑞霞,刘秀芬.2000.水稻化感抗草种质资源的初步研究.中国农业科学,33(3):94-99
    王珊,李廷轩,张锡洲,周建新.2006.设施土壤微生物学特性变化研究.水土保持学报,20(5):82-86
    王树起,韩丽梅,杨振明.2000.大豆根茬腐液和营养残液对大豆生长发育的自感效应.中国油料作物学报,22(3):43-47
    王婷.2008.核桃青皮化感活性及作用机理研究.[硕士学位论文].杨凌:西北农林科技大学
    韦琦,曾任森,孔垂华.1997.胜红蓟地上部化感作用物的分离与鉴定.植物生态学报,21:360-366
    吴凤芝,孟立君,文景芝.2002.黄瓜根系分泌物对枯萎病菌菌丝生长的影响.中国蔬菜,(5):26-27
    夏百根,黄乾明.2002.有机化学.中国农业出版社
    西北农业大学植物生理生化教研室.1987.植物生理实验指导.西安:陕西科学技术出版社
    胥耀平,唐静成,高锦明,李世安.2003.核桃叶提取物化感作用的研究(I).林产化学与工业,23(4):45-48
    阎凤鸣编著.2002.化学生态学.科学出版社
    阎飞,韩丽梅,孙衍.2000.大豆连作土壤中化感物质浸提剂的生物筛选.吉林农业科学,25(1):7-12
    严昶升,周礼恺,张德生.1988.土壤肥力研究法.北京:农业出版社
    杨东,魁永红,张东勇.2003.甘肃省临夏太子山林区土壤化学性质与生化活性的相关性研究.西北师范大学学报(自然科学版),39(3):68-72
    杨立学.2006.落叶松水浸提液对胡桃楸种子萌发和幼苗生长的影响.应用生态学报,17(6):1145-1147
    杨期和,叶万辉,廖富林.2005.植物化感物质对种子萌发的影响.生态学杂志,24(12):1459-1465
    杨善元,孙文浩.1992.凤眼莲根系中抑藻物质的分离鉴定.植物生理学报,18(4):399-402
    姚焕英,唐静成,张鞍灵.2003.核桃属植物化学成分及生物活性研究.西北植物学报,23(9):1650-1655
    于凤兰,马茂华,孔令韶.1999.油蒿挥发油的化感作用研究.植物生态学报,23(2):325-350
    由海霞,梁银丽,吕文.2006.不同作物根系分泌物对黄瓜的化感作用.西北农林科技大学学报(自然科学版),34(6):101-105
    曾任森,林象联,骆世明,曾强,谭惠芬.1996.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定.生态学报,16(1):20-28
    曾任森,骆世明.1993.香茅、胜红蓟和三叶鬼针草植物他感作用的研究.华南农业大学学报,14(4):69-72
    翟梅枝,高小红,赵彩霞.2006.核桃枝叶水溶物的化感作用研究.西北农业学报,15(3):179-182
    赵福庚,何龙飞,罗庆云.2004.植物逆境生理生态学.北京:化学工业出版社,6:24-34
    张宝琛.1981.斑唇马先篙提取物生化相克作用的初步研究.生态学报,1(3):227-234
    张建林,陆欣,王申贵.2001.有机物料配比施用对土壤碱性磷酸酶活性的影响.土壤通报,32(2):75-79
    张茂新,凌冰,孔垂华.2002.薇甘菊挥发油的化感潜力.应用生态学报,13(10):1300-1302
    张汝民,张丹,陈宏伟,白静,高岩.2007.梭梭幼苗根系分泌物提取方法的研究.干旱区资源与环境,21(3):145-149
    张学利,杨树军.2004.章古台固沙林主要树种根际十壤性质研究.中国沙漠,24(1):72-76
    张奕.2003.连作大豆化感作用及化感物质种类的鉴定.吉林:东北师范大学出版社
    张咏梅,周国逸,吴宁.2004.土壤酶学的研究进展.热带亚热带植物学报,12(1):83-90
    郑洪元,张德生.1982.土壤动态生物化学研究法.北京:科学出版社
    朱南文,闵航,陈美慈.1996. TTC-脱氢酶测定方法的探讨.中国沼气,14(2):3-5
    朱丽霞,章家恩,刘文高.2003.根系分泌物与根际微生物相互作用研究综述.生态环境,12(1):102-105
    中国科学院南京土壤研究所微生物室.1985.土壤微生物研究法.北京:科学出版社
    中国科学院上海植物生理研究所.1999.现代植物生理学实验指南.上海:科学出版社
    周志红.1999.植物化感作用的研究方法及影响因素.生态科学,18(l):33-38
    周志红,骆世明,牟子平.1997.番茄的化感作用研究.应用生态学报,8(4):445-449
    周志红,骆世明,牟子平.1998.番茄植株中几种化学成分的化感效应.华南农业大学学报,19(3):56-60
    Barkosky R R and Einhellig R A.2003. Allelopathic interference of plant-water relationships byparahydroxybenzoic acid. Botanica Bulletin Academiae Sinica,44:53-58
    Barnes J P and Putnam A R.1986. Evidence for allelopathy by residues and aqueous of Rye (Secalecereale). Weed Science,34(3):384-390
    Baziramakenga R and Leroux G D.1995. Effects of benzonic and cinnamic on menmbrane permeability ofsoybean roots. Journal of Chemical Ecology,4(21):1271-1285
    Bhowmik P C and Doll J D.1983. Growth analysis of corn and soybean response to allelopathic effects ofweed residues at various temperatures and photosynthetic photon flux densities. Journal of ChemicalEcology,9:1263-1280
    Binkley D.1991. Allelopathic effects of nitrogen-fixing and non-nitrogen-fixing tree species. Ecology.23-54
    Birkett M A, Chamberlain K, Hooper A M.2001. Does allelopathy offer real promise for practical weedmanagement and for explaining rhizosphere interactions involving higher plants. Plant and Soil,232:31-39
    Booker F L, Blumu, Flscus E L.1992. Short term of ferulic acids on ion uptake and water relations oncucumber seedlings. Journal of Experimemtal Botany,43(250):649-655
    Bruneton J.1993. Pharmacogosie, Phytochimie, Plantes. Medicinales.Tec.&Doc. Lavoisier, Paris
    Brunn S A, Muday G K, Haworth P.1992. Auxin transport and the interaction of phytotropins. PlantPhysiology,98:101-107
    Calera M R, Anaya A L, Gavilanes-Ruiz M.1995. Effects of phytotoxic resin glycoside on activity ofH-ATAase from plasma membrane. Journal of Chemical Ecology,21:289-297
    Chung I M and Miller D A.1995. Natural herbicide potential of alfalfa residues on selected weed species.Agronomy Journal,87(5):920-925
    David S S.1996. Chemistry and mechanisms of Allelopathic interactions. Agronomy Journal,88:876-885
    Devi S R and Prasad M N V.1996. Ferulic acid mediated changes in oxidative enzymes of maize seedlings:implications in growth. Biologia Plantarum,3(38):387-395
    Einhelling F A.1986. Mechanisms and modes of action of allelochemicals. The Science of Allelopathy,171-188
    Einhellig F A.1995. Mechanism of action of allelochemicals in allelopathy, In: Indedit, Dakshini K M M,Einhellig F A. Eds. Allelopathy Organisms, Processes, and Applications[C]. Washington, DC:American Chemical Society,582:96-116
    Einhellig F A and Eckrich P C.1984. Interactions of temperature and ferulic acid stress on grain sorghumand soybeans. Journal of Chemical Ecology,10:161-170
    Einhelling F A, Rice E L, Rosser P G, Wender S H.1970. Effects of scopoletin on growth, CO2exchangerate, and concentration scopoletin, scopolin and pigweed. Bulletin of the Torrey Botanical Club,97(1):22-23
    Fitter A.2003. Making allelopathy respectable. Science,301:1337-1338
    Gresse J B and Hollm L G.2006. Chemical inhibition of crop germination by weed seeds and the nature ofinhibition by abutilon theophrasbt. Weed Research,4(1):44-53
    Grierson P F.1992. Organic acids in the rhizosphere of banksia integr lia L F. Plant Soil,144:259-265
    Grummer G.and Beyer H.1960. The influence extracted by species of Camelia on flax by means of toxicsubstances. Symposium of British Ecological Society,26:456-458
    Halligan J P.1973. Bare areas associated with shrub stands in grassland: The case of artemistia california.Bioscience,23:429-432
    Harper J R and Balke N E.1981. Characterization of the inhibition of K+absorption in oat roots bysalicylic acid. Plant Physiology,68:1349-1353
    Hejl A M, Einhelig F A, Rasmussen J A.1993. Effects of juglone on growth, photosynthesis andrespiration. Journal of Chemical Ecology,19(3):559-568
    Hollapa L D and Blum U.1991. Effect of exogenously applid ferulaic acid, a potential allelopathiccompound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato,cucumber and bean. Journal of Chemical Ecology,17(3):865-886
    Inderjit and Dakshini K M M.1995. Allelopathic potential of an annual weed polypogon monspeliensisincrops in India. Plant Soil,173:251-257
    Inderjit and Duke S O.2003. Ecophysiological aspects of allelopathy. Planta,217:529-539
    Jeffrey D, Weidenhamer.2004. Allelopathic mechanisms and experimental methodology. Proceeding ofInternational Symposium on Allelpathy Reseatrch and Application,29-39
    Jimenez J J, Sckultz K, Anaya A L.1983. Allelopathic potential of corn pollen. Journal of ChemicalEcology,9(8):1011-1025
    Kennydy A C and Smith K L.1995. Soil microbial diversity index and the sustainability of agriculturalsoils. Plant and Soil,170:75-86
    Komai K, Iwuamrua J, Ueki K.1983. Plant growth inhibitor in the seed of catch weed. Weed Resarch,28:205-209
    Leather G R and Einhelling F A.1986. Bioassays in the study of allelopathy. The Science of Allelopathy,133-145
    Li Q, Cai J, Jiang Z M, Zhang S X.2010. Allelopathic effects of walnut leaves leachate on seedgermination, seedling growth of medicinal plants. Allelopathy Journal,26(2):235-242
    Liao L P, Deng S J, Yu X J.2001. Growth, distribution and exudation of fine roots of Chinese fir treesgrowth in continuously cropped plantations. Acta Ecologica Sinica,21(4):569-573
    Liu D L and Lovett J V.1993. Biologically active secondary metabolites of barley.Ⅱ.phytotoxicity ofbarley allelochemicals. Journal of Chemical Ecology,19(10):2231-2244
    Lodhi M A K.1978. Allelopathy effects of decaying litter of dominant trees and their associated trees inlowland forest community.American Journal Botany,65(3):340-344
    MacDaniels L H and Pinnow D L.1976. Walnut toxicity, an unsolved problem. Annual Report, North NutGrowers Association,67:114-122
    Mallik A U.1998. Allelopathy and competition in coniferous forests. Environ.Forest Science,54:309-315
    Mandave N B.1985. The Chemistry of Allelopathy.Washington DC: Americab Chemical Society
    Molisch H.1937. Der Einfluss einer Pflanze auf die andere-Allelopathie FischerJena1,106
    Murphy S D.1999. Pollen Allelopathy. In: Principles and practices in plant ecolopy: Allelochemicalinteractions CRC Press,129-146
    Peng S L, Wen J, Guo Q F.2004. Mechanism and Active Variety of Allelochemicals. Acta Botanica Sinica,46(7):757-766
    Penuelas J, Ribas-Carbo M, Giles L.1996. Effects of allelochemicals on plant respiration and oxygenisotope fractionation by the alternative oxidase. Journal of Chemical Ecology,22(4):801-805
    Poeppe D E.1972. Some reactions of isolated corn mitochondria influenced by juglone. Physiol Plant,27:89-94
    Politycka B.1996. Peroxidase activity and lidid peroxidation in roots of cucumber seedlings influenced byderivatives of cinnamic and benzoic acids. Acta Physiologiae Plantarum,18(4):365-370
    Politycka B.1997. Free and glucosylated phenolics,phenol-beta-glucosyltransferase activity and membranepermeability in roots affected by derivatives of cinnamic and benzoic acids. Acta PhysiologiaePlantarum,19(3):311-317
    Putnam A R and Tang C S.1986. The Science of Allelopathy. New York: John Wiley&Sons
    Reinking O A.1943. Possible black walnut toxicity on tomato and cabbage. Annual Report North NutGrowers Association,34:56-58
    Rice E L.1974. Allelopathy. NewYork, Academic Press,166-179
    Rice E L.1979. Allelopathy-An update. The Botanical Reviews,45:15-109
    Rice E L.1984. Allelopathy (2ed edition). Academic Press.1-50,309-315
    Richard P D.1994. Defining soil quality for a sustainable environment. Soil Science Society of AmericaInc., Madison Wisconsin, USA,107-124
    Rietveld W J.1983. Allelopathic effects of juglone on germination and growth of several herbaceous andwoody species. Journal of Chemical Ecology,9(2):295-308
    Rietveld W J, Schlesinger R C, Kessler K J.1983. Allelopathic effects of black walnut on European blackalder coplanted as a nurse species. Journal of Chemical Ecology,9(8):1119-1133
    Rocio C O, Luis U, Blanca L E.1998. Effects of Allelochemical Stress Proeuced by Sicyos deppei onSeedling Root Ultrastructure of Phaseolus vulgwris and Cucurbita ficifolia. Journal of ChemicalEcology,24(12):2039-2057
    Romagni J G, Allen S N, Dayan F E.2000. Allelopathic effects of volatile cineoles on two weedy plant.Journal of Chemical Ecology,26(1):303-314
    Roshchina V V and Roshchina V D.1993.The Excretory Function of Higher Plant. NewYork: Springerling,213-215
    Schneiderhan F J.1927. The black walnut (Juglans nigra L.) as a cause of death of apple trees.Phytopathology,17:529-540
    Schutter M E, Sandeno J M, Dick R P.2001. Seasonal, soil type, alternative management influences onmicrobial communities of vegetable cropping systems. Biology Fertility Soils,34:397-410
    Singh H P, Kohli R K, Batish D R.1999. Autotoxicity: concept, organisms, and ecological significance.Critical Reviews in Shoot Sciences,18(6):757-772
    Shibu J and Andrew R G.1998. Allelopathy in black walnut (Juglans nigra L.) alley cropping.II. Effectsof juglone on hydroponically grown corn (Zea mas L.) and soybean (Glycine max L. Merr.) growthand physiology. Plant and Soil,203(2):199-206
    Tang C H and Yong C C.1982. Colleetion and identification of allelopathic compounds from theundisturbed root system of biganlta1impograss (Hemarthria altissima). Plant Physiology,69(1):155-160
    Turk M A and Tawaha A M.2002. Inhibitory effects of aqueous extracts of black mustard on germinationand growth of lentil. Pakistan Agronomy Journal,1:28-30
    Valnet J.1992. La Phytotherapie-Traitement Desmaladies Parles Plantes. Maloine, Paris
    VanBruggen A H C, Semenov A M, Zelenev V V.2000. Wavelike distributions of microbial populationsalong an artificial root moving through soil. Microbial Ecology,40:250-259
    Vaughan D and Ord B.1990. Influence of phenolic acids on morphological changes in roots of Pisumsativum. Journal of Science of Food and Agriculture,52(3):289-299
    Waller G R, Cheng C S, Chou C H.1995. Allelopathic activity of naturally occurring compounds frommung beans (Vigna radiata) and surrounding soil. ACS Symposium Series,582:242-259
    Weir T L, Park S W, Vivanco J M.2004. Biochemical and physiological mechanisms mediated byallelochemicals. Current Opinion in Plant Biology,7:472-479
    Whitehead D C.1983. Bound phenolic compounds in wheat extracts of soil, plant roots and leaf litter. SoilBiology and Biochemistry,15(2):133-136
    Williamson G B, Obee E M, Weidenhamer J D.1988. Bioassays for allelopathy: Mersuring treatmentresponses with independent controls. Journal of Chemical Ecology,14(1):181-187
    Wu L and Guo X.1998. Allelopathic effects of phenolic acids detected in buffalograss(Buchloedactyloides)clippings on growth of annual bluegrass(Poa annua)and buffalograss seedlings.Environment and Experimental Botany,39:159-167
    Yang C H and David E C.2000. Rhizosphere microbial community structure in relation to root locationand plant iron nutritional status. Applied and Environmental Microbiology,66(1):345-351
    Yao H, He Z, Wilson M J, Campbell C D.2000. Microbial biomass and community structure in a sequenceof soils with increasing fertility and changing land use. Microbial Ecology,40:223-237
    Yu J Q and Matsui Y.1994. Hytoloxic substances in root exudates of cucumber (Cucumis sativus L.).Journal of Chemical Ecology,20(l):21-31
    Yu J Q and Matsui Y.1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals onIon uptake by cucumberse edlings. Journal of Chemical Ecology,23:817-827
    Yu J Q and Yoshihisa M.1993. Extract and identification of phytotoxic substances accumulated in nutrientsolution for hydroponic culture of tomato. Soil Science and Plant Nutrition,39(4):691-700
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.