含二氮杂萘酮联苯结构新型聚芳醚腈的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚芳醚腈以其优良的耐热性能和机械性能在高性能高分子材料领域占有重要的地位,具有广泛的应用前景。然而,已商品化聚芳醚腈是结晶型聚合物,导致其溶解性能较差,只能溶解于浓硫酸,限制了其在一些领域的应用,例如:绝缘漆、涂料及分离膜等领域。本文将扭曲、非共平面的二氮杂萘酮联苯结构引入到聚芳醚腈的主链中,合成了一系列含二氮杂萘酮联苯结构的新型聚芳醚腈高性能聚合物,系统研究其结构与性能关系,优化合成条件,以期优选出综合性能优异,制备成本较低的新型聚芳醚腈树脂,为其进一步放大产业化提供依据。
     本文首先从分子设计出发,以含二氮杂萘酮联苯结构类双酚单体4-(4-羟基苯基)-2,3-二氮杂萘-1-酮(简称二氮杂萘酮联苯酚单体DHPZ),和2,6-二氟苯腈(DFBN)为主要原料,通过亲核取代逐步聚合反应,将扭曲非共平面的二氮杂萘酮联苯结构引入到聚芳醚腈主链中,成功地合成了含二氮杂萘酮联苯结构聚芳醚腈新品种(PPEN)。并系统研究了影响聚合反应的各种因素,对聚合反应工艺进行了优化,聚合物的特性粘度达到1.02 dL/g。聚合物的玻璃化转变温度为295℃,N_2气氛下10%的热失重温度为527℃,可溶解于NMP、DMAc和氯仿等溶剂中。PPEN既耐高温又可溶解,综合性能优于传统聚芳醚腈品种。
     为降低制备成本,在上述聚合体系中采用价廉易得的2,6-二氯苯腈(DCBN)直接代替DFBN,结果发现,由于前者的反应活性较低,得不到高分子量的聚合物。
     本文通过在DHPZ苯环上引入供电性的取代基,提高其与DCBN的反应活性,从而实现DCBN替代DFBN,成功地合成了三种具有不同取代侧基的聚芳醚腈类高分子量聚合物。室温下可溶解于NMP、DMAc和氯仿等极性非质子溶剂中,并具有良好的成膜性。FT-IR、~1H NMR证明聚合物的结构与设计结构一致。采用差示扫描量热(DSC)、热重分析(TGA)、广角X衍射(WAXD)等分析手段对聚合物的主要性能进行了研究,结果表明取代基的存在降低了聚合物的耐热性能,其中苯基取代的聚合物具有最低的玻璃化转变温度T_g为277℃,两个甲基取代的聚合物具有最低的热失重温度,N_2气氛下10%的热失重温度为451℃之间。
     采用氟化钾(KF)作为聚合反应体系的共催化剂,在DHPZ和DCBN聚合反应体系中同时加入K_2CO_3和KF。DCBN在KF的作用下转化为DFBN,此新生态的DFBN在K_2CO_3的催化作用下与DHPZ发生亲核取代逐步聚合反应。通过对聚合过程中的影响因素进行研究,成功地制得了高分子量的聚芳醚腈聚合物PPEN,其特性粘度达到0.90dL/g,大幅降低了含二氮杂萘酮联苯结构聚芳醚腈的原料成本。
     本文研究开发了含二氮杂萘酮联苯结构新型聚芳醚腈共聚物。一方面,引入4,4’-二氟二苯酮(DFK)、4,4’-二氯二苯砜(DCS)和1,4-二(4-氟代苯甲酰基)苯(DFKK)三种双卤单体作为第三单体,制备得到聚芳醚腈酮(PPENK)、聚芳醚腈砜(PPENS)和聚芳醚腈酮酮(PPENKK)三个系列的聚芳醚腈类共聚物。对聚合物的热性能、电性能和结晶性能等方面进行了测试。研究了聚合物的结构与性能的关系。该类聚芳醚腈共聚物同时具有优异的耐热性能和良好的溶解性能。其玻璃化转变温度T_g在252~323℃之间,N_2气氛下10%的热失重温度在449~541℃之间,可溶解于NMP、DMAc和氯仿等极性非质子溶剂中。通过聚合物结构的调整实现了对聚合物性能的调控。
     另一方面,采用对苯二酚(HQ)和双酚A(BPA)两种双酚单体作为第三单体,部分代替DHPZ,与DCBN进行共聚合,制备得到了两个系列的共聚型聚芳醚腈(PPEN-HQ、PPEN-BPA)。对聚合物的热性能、溶解性能、电性能、结晶性能等方面进行了测试。研究了聚合物的结构与性能的关系。结果表明,高活性的双酚单体HQ和BPA的引入在适当降低了聚合物的耐热性能的同时,提高了聚合物的特性粘度,聚合物的玻璃化转变温度T_g在200~277℃之间,N_2气氛下10%的热失重温度在449~517℃之间,并且可溶解于NMP、DMAc和氯仿等极性非质子溶剂中。通过共聚降低了聚芳醚腈的原料成本,实现了对聚合物性能的调控。
     将二氮杂萘酮联苯结构聚芳醚腈酮应用于绝缘漆领域,制备了新型的绝缘漆和漆包线。绝缘漆的附着力等级为1级,铅笔硬度为6H,表面电阻为10~(13)Ω,体积电阻为10~(16)Ω·cm;漆包线的最小刮破力大于9.1 N,25℃时的击穿电压大于6800 V,耐热冲击温度最低为400℃。绝缘漆和漆包线在耐酸、耐碱和耐盐腐蚀性方面表现出良好的稳定性。
Poly(arylene ether nitrile)s has been noted as a kind of important polymeric material which present a combination of outstanding properties such as high thermal stability, good chemical resistance and excellent mechanical properties. However, the commercial poly(arylene ether nitrile)s was crystalline polymer with poor solubility in most organic solvents at room temperature, which resulted in difficulty for application in the insulating coating and separative membrane etc. In this work, our efforts had been focused on synthesis of poly(arylene ether nitrile)s with good solubility and high thermal properties by the introduction of twisted, noncoplanar phthalazinone moieties into poly(arylene ether nitrile)s backbone.
     In this thesis, the twist and noncoplanar phthalazinone moieties had been successfully introduced into poly(arylene ether nitrile)s by the nucelophilic reaction of the bisphenol-like monomer, 4-(4-hydroxyphenyl)-phthlazin-1(2H)-one (DHPZ) and 2,6-difluorobenzonitrile (DFBN) firstly. The synthesis process was optimized. After the optimization of the polymerization, the inherent viscosity of this polymer could reach 1.02 dL/g. The poly(phthalazinone ether nitrile)s (PPEN) showed amorphous nature as determined by wide angle X-ray diffraction (WAXD) and was soluble in a variety of aprotic polar solvents, such as N-methyl-2-pyrrolidinone (NMP), N, N-dimethylacetamide (DMAc), chloroform etc. The PPEN exhibited outstanding thermal properties with glass transition temperature (T_g) of 295℃and 10% loss temperature (T_(10%)) of 527℃in nitrogen atmosphere.
     In order to reduce the cost, 2,6-dichlorobenzonitrile(DCBN) had been used to replace DFBN. But we couldn't obtain high molecular weight because of DCBN's lower reactivity.
     With the help of the molecular design, the bisphenol-like monomer DHPZ's reactivity was increased by the incorporation of electron-donating group. Three substituted PPENs were synthesized by the substituted bisphenol-like monomer and DCBN. All polymers showed good solubility in polar solvents such as NMP, DMAc, chloroform etc. The structures of these PPENs were confirmed by FT-IR and ~1H NMR techniques. The thermal properties, crystalline properties were characterized through differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and WAXD. All polymers exhibited lower thermal properties compared with the unsubstituted PPEN, and the lowest Tg of these copolymers was 277℃, the lowest T_(10%) was 451℃in N_2 atmosphere.
     Aim to prepare high molecular weight PPEN from DHPZ and DCBN, utilized potassium fluoride (KF) as the cocatalyst of the polymerization system. K_2CO_3 and KF were added in the polymerization system of DHPZ and DCBN together. The fluoridation and nucleophilic replacement polymerization had carried in the same reaction system. The high molecular weight PPEN was obtained by the optimization of the reaction conditions. The inherent viscosity of this polymer could reach 0.90dL/g. The utilization of KF as cocatalyst could obviously reduce the cost.
     The high reactivity third monomer such as 4,4'-difluoro benzophenone(DFK)、4,4'-dichloro diphenyl sulfone(DCS) and bis(4-fluorobenzoyl)-benzene (DFKK) had been used to synthesize the PPEN copolymers. PPENK, PPENS, and PPENKK had been successfully prepared. The thermal properties, solubilities, electronical properties and crystalline properties of copolymers were characterized. New copoly(arylene ether nitrile)s had good thermal properties and solubility. T_g of these copolymers ranged from 252 to 323℃, T_(10%) ranged from 449 to 541℃in nitrogen atmosphere. All polymers showed good solubility in polar solvents. The polymers' properties could be controlled by the structure adjustment.
     The high reactivity and cheap third monomer such as hydroquinone (HQ) and 2, 2-bis (4-hydroxyphenyl)-propane (BPA) had been used to partilly replaced DHPZ to synthesize the PPEN copolymers. Two series of PPENs copolymers including PPEN-HQ and PPEN-BPA had been synthesized. The polymers' thermal properties, solubilities, electronical properties and crystalline properties had been studied. The results showed that the introduction of HQ and BPA could increase the polymers' inherent viscosities with the little decrease of the thermal properties. T_g of these copolymers ranged from 200 to 277℃, T_(10%) ranged from 449 to 517℃in nitrogen atmosphere. All polymers showed good solubility in polar solvents. We could reduce the cost by the copolymerization.
     The application of poly(phthalazinone ether nitrile ketone)s in insulating varnish was reported. The insulating varnish prepared from PPENKs had excellent mechanical properties electro-insulating properties and thermal properties. The adhesion of the coatings was 1 grade and pencil hardness was 6H. The surface resistance coefficients and volume resistance coefficients were 10~(13)Ωand 10~(16)Ω·cm respectively. The minimum scrape forces were larger than 9.1 N. The breakdown voltages was larger than 6800 V (25℃). The thermal shock temperatures was larger than 400℃. Both insulting coatings and enamel wires showed good stability in strong acid, strong base and salt solutions.
引文
[1] 周其凤,范星河.耐高温聚合物及其复合材料-合成、应用与进展.北京:化学工业出版社,2004.
    [2] Cassidy P E. Thermally stable polymers, synthsis and properties, New York: Marcel Dekler, 1980.
    [3] Critchley J P. Kmight G J. Coright W W. Heat Resistant polymers (Technological Useful Materials). New York and London: Pknum Pr., 1983. Chapter 5, 185-322.
    [4] Clagett D C. Encycl. Polym. Sci. Eng, New York: John Wiley, 1986. vol. 6, 94-131.
    [5] Landrock A H. Handbook of plastics flammability and combustion toxicology. Park Ridge NJ: Noyes Publications, 1983.
    [6] 卢凤才,杨桂生.耐高温胶料.北京:科学出版社,1993:1-181,261-292.
    [7] Rose J B. High Performance Polymers: Their Origin and Development, Seymour, R B. 1986. 169-200.
    [8] Jones D P, Leach D C, Moore D R. Mechanical properties of poly(ether-ether-ketone) for engineering applications. Polymer. 1985. 26, 1385-1393.
    [9] Crevecoeur G, Groeninckx G. Binary blends of poly(ether ether ketone) and poly(ether imide): miscibility, crystallization behavior and semicrystalline morphology. Macromolecules. 1991. 24, 1190-1195.
    [10] Matsuo S, Murakami T. Novel copolymer and prbcess for producing the same. EP 192177. 1986.
    [11] Matsuo S, Murakami T and K Nagatoshi. Polycyanoarylether, method for preparing the same and uses thereof. EP 243000. 1987.
    [12] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. Novel polymer and its production. JP 60144328. 1985.
    [13] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether. JP 61171730. 1986.
    [14] Matsuo S, Murakami T, Takazawa R. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether powder. JP 61246233. 1986.
    [15] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether. JP 63122731. 1988.
    [16] Matsuo S. Idemitsu Kosan Co., Ltd. Preparation of polycyanoaryl ether. JP 0129426. 1989.
    [17] Matsuo S. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether. JP 01123821. 1989.
    [18] Matsuo S, Shinoda J, Yamukai N. Idemitsu Kosan Co, Ltd. Production of polycyanoaryl ether. JP 01126330. 1989.
    [19] Matsuo S, Shinoda J, Bando T. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether powder. JP 01135833. 1989.
    [20] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether. JP 01129028. 1989.
    [21] Yumukai N, Ohama H, Matsuo S, Kayano C. Idemitsu Kosan Co., Ltd. Polycyanoaryl ether, its production and its purification. JP 01225631.1989.
    [22] Matsuo S, Yumukai N, Kayano C. Idemitsu Kosan Co., Ltd. Polycyanoaryl ether and preparation thereof. JP 01221425. 1989.
    [23]Tagami S, Matsuo S. Idemitsu Kosan Co., Ltd. Polycyanoaryl ether and its production. JP 01299823. 1989.
    [24]Yumukai N, Matsuo S, Kayano C. Idemitsu Kosan Co., Ltd. Polycyanoaryl ether and its production thereof. JP 0245526.1990.
    [25] Matsuo S, Kayano C, Murakami T. Idemitsu Kosan Co, Ltd. Plasticizer for heat-resistant resin. JP 03181518.1991.
    
    [26]Takazawa R. Idemitsu Kosan Co., Ltd. Production of polycyanoaryl ether. JP 03281530.1991.
    [27] Muramoto T, Shinozaki T, Takizawa T. Idemitsu Kosan Co., Ltd. Recovery of N-methyl-2-pyrrolidone. JP 03281531.1991.
    
    [28]Higuchi H, Matsuo S. Idemitsu Kosan Co, Ltd. Laminate. JP 03286857.1991.
    [29] Matsuo S, Nakao M. Idemitsu Kosan Co., Ltd. Polyether copolymer and its preparation. JP 0446929. 1992.
    [30] Takazawa R, Yamazaki H, Shinoda J. Idemitsu Kosan Co., Ltd. Production of heat-resistant composition. JP 0450227.1992.
    [31] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. Process for preparing polycyanoaryl ether powder. EP 186153. 1986.
    [32] Matsuo S, Murakami T. Idemitsu Kosan Co., Ltd. polyetheric copolymer, process for preparing the same, compositions containing the same, their molded products, and their use. EP 373633.1990.
    [33] Shinoda J, Yamasaki H. Idemitsu Kosan Co, Ltd. Process for producing polycyanoaryl ether powder. EP 459332.1991.
    [34]Verborgt J, Marvel C S. Aromatic polyethers, polysulfones, and polyketones as laminating resins. J. Polym. Sci., Polym. Chem. Ed. 1973,11, 261-273.
    [35] Sivaramakrishnan K P, Marvel C S. Matrix polymerization on an ionene template. The formation of an ordered polyelectrolyte complex. J. Polym. Sci., Polym. Chem. Ed. 1974,12, 651-658.
    [36] Heath D R, Wirth J G. Process for making cyanoaryloxy polymers and products derived therefrom. US Patent 3730946,1973.
    [37]Haddad I, Hurley S, Marvel C S. Poly (arylene sulfides) with pendant cyano groups as high temperature laminating resins. J. Polym. Sci., Polym. Chem. Ed. 1973.11, 2793-2811.
    [38]Mohanty D K, Hedrick J L, Gobetz K. Poly(arylene ether sulfones) and Related Materials via a Potassium Carbonate, N-Methyl Pyrrolidone Process. Polym. Prepr, 1982, 23: 284-286.
    [39] Bobenheim G B, Boehl-Iggelheim H B, Wiesloch P N. Branched, high molecular weight, thermoplastic polyarylene ethers containing nitrile groups, and their preparation. US Patent 4567248, 1986.
    [40] Matsuo S, Murakami T, Takasawa R. Synthesis and properties of new crystalline poly (arylene ether nitriles). J. Polym. Sci., Polym. Chem. Ed. 1993.31,3439-3446.
    [41]Hlil A R, Meng Y, Hay A S, Abu-yousef I A. Poly(arylene ether)s from new biphenols containing imidoarylene and dicyanoarylene moieties. J. Polym. Sci., Polym. Chem. Ed. 2000. 38,1318-1322
    [42] Rao V L, Sabeena P U, Ninan K N. Synthesis and properties of polyether ketone and polyether ketone sulfone copolymers. European Polymer Journal, 1998, 34: 567-570.
    [43] Rao V L, Sabeena P U, Ninan K N. Synthesis and characterization of poly(ether sulfone) and poly(ether sulfone ketone) copolymers. J. Appl. Polym. Sci, 1999, 73: 2113-2121.
    [44] Saxena A, Sadhana R, Rao V L et al. Synthesis and Properties of Polyarylene ether Nitrile Copolymers. Polymer Bulletin. 2003, 50:219-226.
    [45] Saxena A, Rao V L, Ninan K N. Synthesis and properties of polyether nitrile copolymers with pendant methyl groups. European Polymer Journal, 2003, 39: 57-61.
    [46] 刘孝波,蒋启泰,唐安斌,张军华,蔡兴贤.聚芳醚腈的合成与性能.四川联合大学学报(工程科学版),1997,1(6):56-60.
    [47] 张军华,刘孝波,米军,蔡兴贤.酚酞型聚芳醚腈的合成与性能.塑料工业,1997,6:63.
    [48] 徐刚.酚酞型聚芳醚腈共聚物的合成与性能研究.江西师范大学学报(自然科学版),1999,23(4):352-355.
    [49] 廖维林.间苯二酚-2,6-二氟苯甲腈-酚酞三元共聚合成及表征.江西师范大学学报(自然科学版),1998,22(1):48-52.
    [50] 张军华,米军,刘孝波.聚芳醚腈共聚物的合成与性能.合成化学,1999,7(1):42.
    [51] 章家立,黄晓东,王卫.酚酞改性聚芳醚腊的研究.华东交通大学学报,2004,21(1):140.
    [52] 曾小君,徐刚等.核磁共振法测定酚酞聚芳醚腈的分子量.高分子材料科学与工程,2001,17:160-162.
    [53] 刘孝波,张军华等.3,3’-二苯甲酰基双酚-S及苯甲酰侧基聚芳醚腈的合成.合成化学,1998,6(3):223-225.
    [54] 唐安斌,蒋启泰等.聚芳醚腈砜的合成.绝缘材料通讯,1997,3:4-7.
    [55] 唐安斌,罗鹏辉.酚酞型聚芳醚腈的合成与性能研究.化工新型材料,1998,26(11):27-31.
    [56] 唐安斌,朱蓉琪,蒋启泰,蔡兴贤.聚芳醚腈砜的研究.绝缘通讯材料.2000,1:9-12.
    [57] 唐安斌,蒋启泰.聚芳醚腈砜的结构与热性能的研究.中国塑料,1998,12(4):16-21.
    [58] 徐曲,蔡明中,宋才生.含氰基聚芳醚醚酮酮(PEEKK)的合成.应用化学,2003,20(3):238-241.
    [59] 张连来,顾宜,江璐霞等.特种工程塑料——聚芳醚腈.中国塑料,1995,9(3):11-18.
    [60] 廖维林,章家立,崔国娣等.刚性聚芳醚腈合成与性能研究.高分子学报,1998,3:287-292.
    [61] Keller T M. Phthalonitrile-based high temperature resin. J. Polym. Sci. Part A: Polym. Chem., 1988, 26: 3199-3212.
    [62] Keller T M. Imide-containing phthalonitrile resin. Polymer, 1993, 34: 952-955.
    [63] Owusu A O, Martin G C, Gotro J T. Triazine formation in cyanate-based resin system at room tepmperature conditions. Polymer, 37: 4869-4872.
    [64] Smolin E M, Rapoport L. The Chemistry of Heterocyclic Compounds (s-Triazines), Interscience, New York, 1959.
    [65] Anderson D R, Holovka J M. Thermally resistant polymers containing the s-triazine ring. J. Polym. Sci. Part A: Polym. Chem., 1966, 4: 1689-1702.
    [66] Abed J C, Mercier R, Mcgrath J E. Synthesis and Characterization of New Phosphorus and Other Heteroatom Containing Aryl Cyanate Ester Monomers and Networks. J. Polym. Sci. Part A: Polym. Chem., 1997, 35: 977-987.
    [67] Grassiz N, Mcguchar R. Pyrolysis of polyacrylonitrile and related polymers—Ⅵ. Acrylonitrile copolymers containing carboxylic acid and amide structures. European Polymer Journal, 1972, 8: 257-269.
    [68] Goodhew P J, Clarke A J, Bailey J E. A review of the fabrication and properties of carbon fibres. Mater. Sci. Eng, 1975, 17: 3-30.
    [69] Cook A H and Jones D G. Experiments in the triazine and the glyoxaline series. J. Chem. Soc, 1941: 278-281.
    [70] 唐安斌.聚芳醚腈砜的合成与性能研究:(博士学位论文).四川:四川大学,1999.
    [71] Matsuo S, Murakami T. Polycyanoaryl ether fiber. JP 61174419. 1985.
    [72] 唐安斌,朱蓉琪,蒋启泰.聚芳醚腈砜碳布层压板和玻璃布层压板的研制.玻璃钢/复合材料,1999.3:3-7.
    [73] 曾小君,徐刚,廖维林.环氧端基酚酞聚芳醚腈改性环氧树脂胶粘剂性能的研究.中国胶粘剂,1999,9(5):7-9.
    [74] 廖维林,曾小君,崔国娣等.含环氧端基酚酞聚芳醚腈的合成及表征.高等学校化学学报,1998,19(4).661-663.
    [75] Matsuo S, Yakon N, Chino S. Aromatic polyethers, fluorescent resin compositions containing same, and processes for preparing same. US Pat 5153306. 1992.
    [76] Daly W H, Lee S, Rungaroonthaikul C. Chemical Reaction on Polymers, Chapter 1, ACS Symposium Series 364, Washington DC, 1988, 21.
    [77] Gao Y, Robertson G P, Guiver M D et al. Synthesis of Copoly (aryletherethernitrile)s Containing Sulfonic Acid Groups for PEM Application. Macromolecules. 2005, 38: 3237-3245.
    [78] Berard N, Hay A S. Polymers from hydroxyphenylphthalazinones. Polym. Prep. (Am. Chem. Soc., Div. Polym. Chem.), 1993, 34(1): 148-149.
    [79] 蹇锡高,孟跃忠,郑海滨等.含二氮杂萘酮结构的聚醚砜及制备法.CN ZL 93109180.2,1993.
    [80] 高红昌,方晓雯,张涛等.1,2-二氢-4-(4-羟基苯基)(2H)二氮杂萘-1-酮的NMR谱研究.波谱学杂志,2001,18(4):343-349.
    [81] Paventi M, Chan K P, Hay A S. Spectroscopic and magnetic resonance elucidation of the structure of the polymer derived from 1, 2-dihydro-4-(4-hydroxyphenyl)-1-oxo-(2H)-phthalazine and bis(4-fluorophenyl)sulfone. J. Macromol. Sci. Pure Appl. Chem., 1996, 33(2): 133-156.
    [82] Gao Y, Robertson G P, Guiver M D et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J. Membr. Sci., 2003, 227: 39-50.
    [83] 蹇锡高,朱秀玲,陈连周.二氮杂萘联苯型聚芳醚聚合机理的探讨.大连理工大学学报,1999,39(5):629-634.
    [84] 毛诗珍,张涛,袁汉珍等.1,2一二氢-4-苯基(2H)二氮杂蔡酮的NMR谱研究.波谱学杂志.2000,17(3):183-190.
    [85] 刘程.含二氮杂萘酮联苯结构聚芳酰胺的合成及耐热性能和溶解性研究:(博士学位论文).大连:大连理工大学,2004.
    [86] 尚蕾,蹇锡高,兰建武等.含二氮杂萘酮结构耐热胶粘剂的研究.粘接,2002,23(3):1-3.
    [87] 兰建武,蹇锡高,王国庆等.聚芳醚砜酮纤维的热性能.合成纤维工业,2003,26(2):24-26.
    [88] 王桂梅,蹇锡高,廖功雄等.玻纤增强PPESK复合材料及其性能研究.中国塑料,2004,18(2):40-43
    [89] Gao Y, Robertson G P, Guiver M D et al. Synthesis and characterization of sulfonated poly(phthalazinone ether ketone) for proton exchange membrane materials. J. Polym. Sci. Part A: Polym. Chem., 2003, 41: 497-507.
    [90] Jian X G, Dai Y, Zeng Let al. Application of poly (phthalazinone ether sulfone ketone)s to gas membrane separation. J. Appl. Polym. Sci. 1999, 71: 2385-2390.
    [91] 罗光红,徐宏德,蹇锡高.一种新型绝缘材料.杂萘联苯聚醚.绝缘材料通讯,1997,3:1-3.
    [92] Xiao S D, Wang J Y, Jin K, Jian X G. Synthesis and characterization of a fluorinated phthalazinone monomer 4-(2-fluoro-4-hydroxyphenyl)-phthalazin-l(2H)-one and its polymers from polycondensation reactions. Polymer. 2003, 44: 7369-7376.
    [93] Gao Y, Robertson G P, Guiver M D, Jian X G. Proton exchange membranes based on sulfonated poly(phthalazinone ether ketone)s/aminated polymer blends. Solid State Ionics. 2005, 176: 409-415.
    [94] Su Y, Jian X G, Zhang S H, Wang G Q. Preparation and characterization of quaternized poly (phthalazinone ether sulfone ketone) NF membranes. J. Membr. Sci. 2005, 241: 225-233.
    [95] Zhang S H, Jian X G, Dai Y. Preparation of sulfonated poly (phthalazinone ether sulfone ketone) composite nanofiltration membrane. J. Membr. Sci. 2005, 246: 121-126.
    [96] Sun Y M, Wu T C, Lee H C. Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells. J. Membr. Sci. 2005, 265: 108-114.
    [97] YangY Q, Jian X G, Yang D L. Poly (phthalazinone ether sulfone ketone)s (PPESK) hollow fiber asymmetric nanofiltration membranes: Preparation, morphologies and properties. J. Membr. Sci. 2006, 270: 1-12.
    [98] Yun Y B, Tian Y H, Shi G L. Preparation, morphologies and properties for flat sheet PPESK ultrafiltration membranes. J. Membr. Sci. 2006, 270: 146-153.
    [99] 蹇锡高,王瑞玲,朱秀玲等.新型可溶性聚芳酰胺及其共聚物的合成与性能研究.高分子学报,2001.5:576-579.
    [100] 朱秀玲,蹇锡高,王瑞玲等.苯取代杂萘联苯型聚芳酰胺的合成与表征及性能.高分子学报,2002,1:83-87.
    [101] 朱秀玲,蹇锡高,卢冶等.含3-甲基苯基-2,3-二氮杂萘-1-酮结构聚醚酰胺的合成、表征与性能.高等学校化学学报,2003,24(2):355-358.
    [102] Zhu X L, Jian X G. Soluble aromatic poly(ether amide)s containing aryl-, alkyl-, and chloro-substituted phthalazinone segments. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 2026-2030.
    [103] 朱秀玲,卢冶,李建丰等.含杂萘类三联苯结构聚芳酰胺酰亚胺合成与性能.大连理工大学学报,2002,42(7):424-427.
    [104] 王锦艳,肖树德,蹇锡高等.含3,5-二甲基二氮杂萘酮联苯结构聚醚酰亚胺的合成与性能.高等学校化学学报,2003,24(3):555-558.
    [105] Wang J Y, Liao G X, Liu C et al. Poly(ether imide)s derived from phthalazinone-containing dianhydrides. J. Polym. Sci. Part A: Polym. Chem., 2004, 42: 6089-6097.
    [106] 张守海,蹇锡高,朱秀玲等.含二氮杂萘酮结构聚芳酰胺超滤膜的研制.应用化学,2001,18(12):1012-1013.
    [107] Higashi F, Akiyama N, Koyama T. Preparation of polyaryl esters by a new direct polycondensation reaction with arylsulfonyl chlorides in pyridine. J. Polym. Sci. Polym. Chem. Ed., 1983, 21: 3233-3239.
    [108] 高玉荣.新型杂萘联苯结构聚芳酯的设计、合成及性能研究:(博士学位论文).大连:大连理工大学,2005.
    [109] GAO Y R, WANG J Y, LIU C, JIAN X G. Synthesis of New Soluble Polyarylates Containing Phthalazinone Moiety. Chinese Chemical Letter, 2006, 16(1): 140-142.
    [110] 徐杰,张伟.芳香族含氟化合物的合成及应用.精细化工原料及中间体,2005,11:3-7.
    [111] Miyajima F, Iijima T, Tomoi M. Aromatic nucleophilic fluorination with KF catalyzed by polymer-supported phosphonium salts under solid-solid-liquid phase transfer conditions. Reactive & Functional Polymers, 2000, 43: 315-324.
    [112] 陈卫东,钱旭红,宋恭华.相转移催化在芳香氟化反应中的应用.化工生产与技术,2003,10(2):1-5.
    [113] 户业丽,汪先义,曾颖.相转移催化法合成2,6-二氟苯甲腈.PESTICIDES,1998,37(7):14-15.
    [114] 沈之芹,陈金华.氟代苯腈系列化合物的合成研究.化学世界,2005,34-37.
    [115] 祁同生,李新颖,赵龙惠等.提高2,6-二氟苯甲腈合成收率的研究.农药,1995,34(10):15-18.
    [116] Hoffmann U, Metzmann F H, Klapper M. Poly(ether ketone)s by Fluoride Catalyst Systems. Macromolecules, 1994, 27: 3575-3579.
    [117] 程能林.溶剂手册(第二版).北京:化学工业出版社,1994.
    [118] 张志昌.漆包线的现状及其发展动向.电线电缆,1999,2:2-8.
    [119] 王雪秋,吴缀图,赵慈义,吴渊海.H级无溶剂浸渍绝缘漆制备研究.华东理工大学学报,1999,4:386-389.
    [120] 楼南寿.我国绕组线用绝缘漆展望.绝缘材料,2001,1:34-37.
    [121] 凌春华,楼南寿.阻燃性漆包线漆。绝缘材料通讯,2001,4:7-9.
    [122] 扬志青.国外复合涂层漆包线发展概况.电线电缆,1997,4:13-20.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.