Celecoxib联合Cisplatin通过PI3K/Akt途径诱导骨肉瘤MG-63细胞凋亡的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨肉瘤(osteosarcoma)是儿童和青少年最常见的起源于间充质细胞的恶性骨肿瘤。随着骨肉瘤治疗手段的进展,如扩大切除术、放疗和新辅助化疗,其5年生存率已经增加到50~60%。以铂类为基础的药物,例如顺铂,是骨肉瘤化疗常用的有效的药物。
     环氧化酶(cyclooxygenase,COX)是催化花生四烯酸合成前列腺素(PG)的限速酶。研究表明,COX至少有两种同工酶,结构型COX即COX-1基因定位于染色体9q32~33.3,在各种组织细胞中稳定表达;诱导型COX即COX-2基因定位于染色体1q25.2~25.3,是一种诱导性即刻反应基因,在正常组织中一般没有明显表达;COX-3是COX-1的一种剪接变体,在哺乳动物的大脑皮层有丰富的表达。研究发现COX-2.高表达存在潜在的致瘤性,并且与肿瘤的发生发展及其生物学行为密切相关。非甾体类抗炎药(NSAIDs)是COX的抑制剂,能够诱导细胞凋亡和促进化疗药物的细胞毒作用。选择性COX-2抑制剂Celecoxib是近年来开发的新型非甾体类抗炎药,其特点是选择性作用于COX-2,对COX-1的活性几乎没有抑制作用。尽管Celecoxib精确的机制尚不明确,然而它的抑制细胞增殖和诱导凋亡是众所周知的,这在结直肠肿瘤和家族性腺瘤性息肉病中已经得到了证实。
     在本实验中,我们研究Celecoxib和/或Cisplatin诱导骨肉瘤MG-63细胞的凋亡现象,并探讨其机制。
     我们研究发现,MG-63细胞经过Celecoxib(50,100μmol/L)和/或Cisplatin(10μg/ml)处理48h后,细胞增殖抑制实验(MTT)证实Celecoxib和Cisplatin均能够抑制MG-63细胞的增殖,并且Celecoxib呈现剂量依赖效应。Celecoxib联合Cisplatin对MG-63细胞的生长具有协同抑制作用。倒置显微镜观察药物干预后的MG-63细胞,发现细胞体积变小、皱缩、变圆、脱落。电镜检测发现药物作用后细胞变圆收缩,染色质凝集成半月形附于核膜,核裂解并可见凋亡小体。在Celecoxib(100μmol/L)和Cisplatin(10μg/ml)联合作用于MG-63 48h后可见到特征性的梯形DNA ladder条带。利用流式细胞仪分析药物作用后的MG-63细胞,检测到G1期阻滞和凋亡,并且Celecoxib(100μmol/L)和Cisplatin(10μg/ml)联合的凋亡率明显的高于其他的实验组,这与DNA ladder的结果吻合。
     Celecoxib为选择性的COX-2抑制剂,其诱导凋亡可分为COX-2和非COX-2途径。在我们的实验中,我们通过RT-PCR和Western blot证实Celecoxib联合Cisplatin作用于骨肉瘤细胞MG-63并没有发现COX-2表达的下调。研究发现,Celecoxib联合Cisplatin明显的降低了PI3K/Akt、survivin、bcl-2的表达,更为重要的是检测到了procaspase-9,procaspase-3和PARP的裂解片段。因此,Celecoxib通过非COX-2途径诱导MG-63的凋亡,可能与PI3K/Akt、survivin、bcl-2相关。为了证实PI3K/Akt途径在西乐葆抗肿瘤中的作用,我们使用特异性的PI3K抑制剂wortmannin(1μmol/L)作用于MG-63细胞48h,检测到pAkt(Thr308),bcl-2,survivin表达的下调,这证实西乐葆诱导肿瘤凋亡作用是通过PI3K/Akt途径。因此,PI3K/Akt途径在survivin、bcl-2表达调控中发挥重要作用,可能是Celecoxib药物干预的中心环节。
Osteosarcoma (OS) is the most common primary bone tumor in children and young adults. With current therapies of OS, such as extensive surgical excision, radiotherapy and neoadjuvant chemotherapy, five-year survival rate has increased up to 50%-60%. Platinum-based drugs, such as cisplatin, are an important class of the most active chemotherapeutic agents that are widely used to OS. Cisplatin cytotoxicity involves the formation of intra and interstrand DNA adducts, and the resulting DNA damage triggers apoptosis.
     The cyclooxygenase (COX) isoenzymes known as a prostaglandins (PGs) ratelimiting synthase catalyze the metabolism of arachidonic acid to PGs. Three isoforms of COX isoenzymes have been identified: COX-1, COX-2, and COX-3. COX-1 is considered a "housekeeping enzyme", constitutively expressed in human cells. COX-3, an alternate splice variant of COX-1, is most abundant in the canine cerebral cortex. COX-2 is an inducible enzyme and is associated with inflammatory diseases and carcinogenesis. The activity of COX-2 is suspected to promote angiogenesis and tissue invasion of tumors and COX-2 over-expression has been mentioned in connection with resistance to apoptosis. Over-expression of COX-2 has been found in many human malignancies, such as colorectal, liver, pancreatic, breast, lung tumors and osteosarcoma. Thus selective pharmacologic inhibition of COX-2 represents a viable therapeutic option for the treatment of malignancies.
     Nonsteroidal anti-inflammatory drugs (NSAIDs) are COX inhibitors that have been shown to induce apoptosis as well as potentialize the effects of chemotherapeutic agents including cisplatin in vitro and in vivo experimental studies. Consistent with the anti-apoptotic effect of COX-2, induction of cancer cell apoptosis is the principle mechanism by which NSAIDs inhibit cancer cell growth. Celecoxib is a new generation of NSAIDs that specifically inhibits COX-2 activity .Although the precise mechanisms of celecoxib are not yet known, the inhibition of cell proliferation and the induction of apoptosis have been well-known, which have been confirmed in colorectal tumors and familial adenomatous polyposis (FAP). Celecoxib induces apoptosis through COX-2-dependent and -independent pathways. So we exert celecoxib and cisplatin to osteosarcoma cell in vivo and detect the effects of the combination or each agent alone.
     Cyclooxygenase-2 (COX-2), involved in the inhibition of cell apoptosis and the potentiation of cell growth, is frequently overexpressed in human malignancies including osteosarcoma (OS).We have attempted to identify the anti-proliferation of celecoxib, a selective COX-2 inhibitor, and the combination of celecoxib and cisplatin in MG-63 cells, and to explore the potential molecular mechanisms involved.
     MG-63 cells were treated with the combination of celecoxib and cisplatin or either agent alone for 48 h in serum-supplemented medium. Celecoxib caused G1 phase arrest and significantly inhibited cell growth, as well as potentiating cisplatin-induced apoptosis. The effect was dose-dependent, and apoptotic changes such as DNA fragments and apoptotic bodies were observed.
     However, downregulation of COX-2 did not occur in cells treated with celecoxib. Phosphoinositide-3-kinase(PI3K)/Akt, survivin, bcl-2 were significantly downregulated in cells treated with the combination of celecoxib and cisplatin, and decreased survivin and bcl-2 levels were found in cells with wortmannin, a specific PI3K inhibitor. Moreover, the decreased expressions of procaspase-9, procaspase-3 and cleaved PARP-1 were detected by Western blot analysis. Therefore, celecoxib exerts its anti-tumor activities through COX-2-independent mechanisms, which may be PI3K/Akt-dependent, and survivin and bcl-2-related. PI3K may be at the center of the celecoxib effects, which play an essential role in the regulation of survivin and Bcl-2.
引文
1. Renard AJ, Veth RP, Schreuder HW,et al. Osteosarcoma: oncologic and functional results. A single institutional report covering 22 years. J. Surg. Oncol,1999; 72:124 -9.
    2. Stiller CA, Passmore SJ, Kroll ME, et al. Patterns of care and survival for patients aged under 40 years with bone sarcoma in Britain, 1980-1994.British Journal of cancer,2006;94:22-29.
    3. Bacci G, Longhi A, Fagioli F, et al. Adjuvant and neoadjuvant chemotherapy for osteosarcoma of the extremities: 27 year experience at Rizzoli Institute, Italy. Eur J Cancer,2005;41:2S36-45.
    4. Bacci G, Briccoli A, Rocca M, et al. Neoadjuvant chemotherapy for osteosarcomas of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol,2003;14:1126-34.
    5. Kalifa C, Brugieres L, Le Deley MC. Neoadjuvant treatment in osteosarcomas. Bull Gancer 2006;93:1115-20.
    6. Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell, 2000;57: 1229-1235
    7. Chandrasekharan NV, Dai H, Roos KL,et al. COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci, 2002; 99: 13926-31.
    8. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci, 1997; 94: 3336-40.
    9. Tsujii M, Kawano S, Tsuji S, et al. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell, 1998; 93:705-716.
    10. Tsujii M, DuBois RN. Alterations in cellular adhesions and apoptosis in epithelial cells overexpressing prostaglandin endoperoxidase synthase 2. Cell, 1995;83: 493-501.
    11. Nzeako UC, Guicciardi ME, Yoon JH, et al. COX-2 inhibits Fas-mediate apoptosis in cholangiocarcinoma cells. Hepatolgy,2002;35:552-9.
    12. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology, 1994; 107: 1183-1188.
    
    13. Koga H, Sakisaka S, Ohishi M, et al. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. Hepatology, 1999;29: 688-696.
    14. Tucker ON, Dannenberg AJ, Yang EK, et al. Cyclooxygenase-2 expression is up-regulated in human pancreatic cancer. Cancer Research,19991 59: 987-990.
    15. Hwang D, Scollard D, Byrne J, Levine E. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. Journal of the National Cancer Institute, 1998;90:445-460.
    16. Hida T, Yatabe Y, Achiwa H,et al. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Research, 1998;58: 3761-3764.
    17. Dickens DS, Kozielski R, Khan J, et al. Cyclooxygenase-2 expression in pediatric sarcomas. Pediatric and Developmental Pathology,,2002; 5: 356-364.
    18. Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis.2006;27:584-92.
    19. Dickens DS, Kozielski R, Leavey PJ, et al. Cyclooxygenase-2 Expression Does Not Correlate With Outcome in Osteosarcoma or Rhabdomyosarcoma. Pediatric Hematology/Oncology. 2003; 25:282-285.
    20. Lin J, Hsiao PW, Chiu TH, Chao JI. Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochemical Pharmacology.2005; 70:658-67.
    21. Mohammed SI, Craig BA, Mutsaers AJ, et al. Effects of the Cyclooxygenase Inhibitor, Piroxicam, in Combination with Chemotherapy on Tumor Response, Apoptosis, and Angiogenesis in a Canine Model of Human Invasive Urinary Bladder Cancer.Mol Cancer Ther,2003 ;2: 183-188.
    22. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer, 2001 ;1 :11 -21.
    23. Williams CS, Watson AJM, Sheng H, Helou R, Shao J, DuBois RN. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: lack of correlation between in vitro and in vivo models. Cancer Research, 2000; 60:6045 -51.
    24. Masi L, Recenti R, Silvestri S, et al. Expression of cyclooxygenase-2 in osteosarcoma of bone. Appl Immunohistochem Mol Morphol 2007;15:70-6.
    25. Gately S, Kerbel R. Therapeutic potential of selective cyclooxygenase-2 inhibitors in the management of tumor angiogenesis. Prog Exp Tumor Res 2003 ;37:179-92.
    26. Krysan K, Dalwadi H, Sharma S, et al. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res 2004;64:6359-62.
    27. Lin J, Hsiao PW, Chiu TH, Chao JI. Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochem Pharmacol 2005;70:658-67.
    28. Mohammed SI, Craig BA, Mutsaers AJ, et al. Effects of the cyclooxygenase inhibitor, piroxicam,in combination with chemotherapy on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer.Mol Cancer Ther 2003;2:183-8.
    29. Davies NM, McLachlan AJ, Day RO, Williams KM. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor. Clin Pharmacokinet 2000;38:225-42.
    30. Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cancer Metast Rev 2005;24:425-39.
    31. Arico S, Pattingre S, Bauvy C, et al. Celecoxib induces apoptosis by inhibiting 3-Phosphoinositide-dependent protein kinese-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 2002;277:27613-21.
    32. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7.
    33. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science2004;304:554.
    34. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts.Genes Dev 1999; 13:2905-27.
    35. Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275:10761-6.
    36. Tamm I, Wang Y, Sausville E, et al. IAPfamily protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, Caspases, and anticancer drugs. Cancer Res1998;58:5315-20.
    37. Asanuma H, Torigoe T, Kamiguchi K, et al.Survivin expression is regulated by coexpression of human epidermal growth factor receptor 2 and epidermal growth factor receptor via phosphatidylinositol 3-Kinase/AKT signaling pathway in breast cancer cells.Cancer Res 2005;65:11018-25.
    38. Naruse T, Nishida Y, Hosono K, Ishiguro N. Meloxicam inhibits osteosarcoma growth, invasiveness and metastasis by COX-2-dependent and independent routes. Carcinogenesis 2006;27:584-92.
    39. Dickens DS, Kozielski R, Khan J, Forus A, Cripe TP. Cyclooxygenase-2 expression in pediatric sarcomas. Pediatr Dev Pathol 2002;5:356-64.
    40. Waskewich C, Blumenthal RD, Li H, et al. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 2002;62:2029-33.
    41. Pyrko P, Soriano N, Kardosh A, et al. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2 -inhibitory analog, dimethyl-celecoxib(DMC), in tumor cells in vitro and in vivo. Mol Cancer 2006;5:19.
    42. Monick MM, Robeff PK, Butler NS, et al. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase-2 mRNA. J Biol Chem 2002; 277:32992-3000.
    1. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002;296:1655-7.
    2. Samuels Y, Wang Z, Bardelli A, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science2004;304:554.
    3. Pene F, Claessens YE, Muller 0, et al, Role of the phosphatidylinositol 3-kinase/Akt and mTOR/P7OS6-kinase pathways in the proliferation and apoptosis in multiple myeloma.Oncogene.2002;21:6587-97.
    4. Hill MM, Hemmings BA.Inhibition of protein kinase B/Akt implications for cancer therapy.Pharmacol Ther.2002; 93:243-251.
    5. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Dev 1999; 13:2905-2927.
    6. Nakatani K, Thompson DA, Barthel A, et al. Up-regulation of Akt3 in estrogen receptor-deficient breast cancers and androgen-independent prostate cancer cell lines. J Biol Chem1999; 274: 21528-32.
    7. Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection:More than just a road to PKB. Biochem J 2000; 346: 561-576.
    8. Brodbeck D Cron P, Hemmings BA. A human protein kinase By with regulatory phosphorylation sites in the activationloop and in the C-terminal hydrophobic domain. J Biol Chem1999; 274: 9133-9136.
    9. Jimenez C, Jones DR, Rodriguez-Viciana P, et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide-3 kinase. EMBO J 1998;17:743-753.
    10. Datta SR, Brunet A, Greenberg ME. Cellular survival: A play in three Akts. Genes Dev 1999; 13: 2905-2927.
    11. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2:489-501.
    12. Gao N, Flynn DC, Zhang Z, et al. The Gl cell cycle progression and the expression of Gl cyclins are regulated by PI3K/AKT/mTOR/p70S6Kl signaling in human ovarian cancer cells. Am J Physiol Cell Physiol 20042004;287: 281-91.
    13. Cross D, Alessi D, Cohen P, Andjelkovich M, Hemmings B.Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785-789.
    14. Muise-Helmericks RC, Grimes HL, Bellacosa A, et al. Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3- kinase/Akt-dependent pathway. J Biol Chem 1998; 273: 29864-72.
    15. Inoki K, LiY, Zhu T,Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2*002; 4: 648-657.
    16. Tee AR, Fingar DC, Manning BD, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 2002; 99: 13571-76.
    17. Li Y, Corradetti MN, Inoki K, Guan KL. TSC2: Filling the GAP in the mTOR signaling pathway. Trends Biochem Sci 2004; 29: 32-38.
    18. Datta SR, Dudek H, TaoX, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91:231-241.
    19. 35. Pugazhenthi S, Nesterova A, Sable C, et al. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275:10761-6.
    20. Derouet M ,Thmmas L,Cross A, et al. Granulocyte Macrophage colony Stimulating factor signaling and proleasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-L. J Biol Chem 2004;279:26915-21.
    21. Nicholson KM, Anderson NG. The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 2002; 14:381-395.
    22. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts.Genes Dev 1999; 13:2905-27.
    23. Li N,Banin S,OuYang H ,et al.ATM is required for Ikappa B kinase (IKKk) activation in response to DNA double strand breaks.J Biol Chem.2001;276:8898- 8903.
    24. Babaei S, Teichert-Kuliszewska K, Zhang QW, et al .Angiogenic actions of angiopoietin-1 require endotheliumderived nitric oxide.Am J Pathol.2003;162: 1927-1936.
    25.Tan PH,XHe SA,M anunta M et al.Effect of vectors on human endothelial cell signal transduction:implications for cardiovascular gene therapy.Arterioscler Thromb Vasc Bio12006;26:462-7.
    26.Thiel A,Heinonen M,Rintahaka I,et al.Expression of cyclooxygenase-2 is regulated by GSK-3beta in gastric cancer cells.J Biol Chem.2006;281:4564-9.
    27.Zhan g R,Xu Y,Ekman N,et al.Etk/Bmx transactivates vascular endothelial growth factor 2 an d recruits phosphatidylinositol 3-kinase to m ediate the tumor necrosis factor induced angiogenic pathway.J Biol Chem 2003;278:51267-76.
    28.Qiau Y,Corum L,Meug Q,et al.PI3K induced actin filament remodeling through Akt and p70S6K1:implication of essential role in cell migration.Am J Physiol Cell Physiol.2004;286:153-163.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.