紫外诱导麦长管蚜DNA变异检测及差异片段克隆与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于环境污染,大气臭氧层渐趋变薄,导致大量紫外线的辐射至地表。试验证明大气中臭氧每减少1%,照射到地球表面的紫外就增加2%。过量的紫外线进入生物圈,势必对生物的遗传与变异产生强大的选择压。
     蚜虫是一类重要的农业害虫,个体小、繁殖快且孤雌生殖。为了生存和繁衍,蚜虫对环境的选择压力必须产生相应的遗传进化和抗性机制以应对环境变化。
     本研究以麦长管蚜Maciosiphum avenae (Fabricius)为材料,运用AFLP技术综合分析不同紫外处理样品间(不同胁迫时间、不同寄主条件下、不同体色间和不同世代)基因组的遗传变异,并对差异片段进行回收克隆测序分析,以期发现蚜虫对UV响应的DNA片段或基因,从而为蚜虫抗UV胁迫的分子生态遗传与进化机理提供理论依据。主要结果如下:
     1. UV辐射时间与DNA变异频率呈正相关
     紫外处理时间的长短对蚜虫发育的影响差异极显著(P<0.01)。处理时间与变异频率之间存在正相关(r=0.9466),随着处理时间的增加,蚜虫DNA变异频率不断增加。
     2. F1代对F2代DNA变异的累代效应
     蚜虫在F1代和F2代均发生了不同程度的DNA变异。F2代蚜虫DNA的变异频率总体均低于F1代,表明经诱导的蚜虫DNA变异在F2代有可能恢复,这可能与蚜虫体内的DNA损伤修复机制有关。
     3.红色型蚜虫DNA变异频率高于绿色型
     红、绿色型蚜虫对紫外处理的反应存在差异。红色型蚜虫在受到照射后DNA变异频率明显高于绿色型,在小偃-22上表现的尤其明显,差异显著(P<0.05):说明紫外处理对红色型蚜虫遗传进化的影响程度比对绿色型蚜虫的影响更强。
     4.小偃-22上的蚜虫DNA变异频率强于Astron
     紫外处理对不同品种寄主蚜虫遗传变异影响存在差异。总体表现为品种小偃-22上蚜虫的DNA变异频率强于Astron品种上的蚜虫,在红色型蚜虫上表现的尤其明显,差异显著(P<0.05)。说明相对于综合抗逆品种小偃-22,专性抗蚜品种Astron上的蚜虫可以直接或间接地发展其对不利环境的抗性,而这种抗性在某种程度提高了其紫外处理的适应能力。
     5.克隆获得5类对紫外响应基因
     对63个测序成功的序列根据基因的功能将其分为以下各类:
     第1类是直接发挥保护作用的相关基因,如热激蛋白15(HSP15)、Fgd6、凝集素样蛋白等。
     第2类是在能量和信号转导过程中起调节作用有关的基因,如质膜蛋白(mpd1)、铁调素(hepcidin)、4sin1(光系统I P700脱辅基蛋白)等。
     第3类是与蛋白质合成有关的基因,如L11、S12、肽酰转移酶等。
     第4类基因涉及伤害反应,如94sin1(硫酸糖基化蛋白)、α-溶血素等。
     其余为未知功能基因及未知基因,它们的具体功能还有待进一步确定。由以上结果可知蚜虫对紫外所做出的反应非常复杂,涉及多种代谢过程的众多基因。
     虽然部分测序结果所获得的信息不够全面,但这些有限的信息为阐明蚜虫抗辐射的分子机理提供理论依据,阐明其分子机制需要更多努力,对备受关注的全球气候变化对于地球生物的影响也具有重要的意义。
As a result of environmental pollution, the gradual thinning of the ozone layer, resulting in a large number of ultraviolet radiation to the surface, tested and proven to reduce ozone in the atmosphere for every 1%, exposure to UV on the Earth's surface increased by 2%, an excessive amount of ultraviolet light to enter the biosphere, it is bound to the biological heredity and variation of the choice of strong pressure.
     Aphids are a class of important agricultural pests、small、quick reproduction and parthenogenesis. For survival and reproduction , aphids must have a corresponding mechanism for the genetic evolution and resistance to cope with environmental change.
     In this study, a comprehensive analysis of genome genetic variation of Maciosiphum avenae (Fabricius) of the different treatment samples (time of different UV stress and different host conditions, different colors and different generations) by the AFLP technology, Cloning and Sequence Analysis of AFLP Specific Fragments, in order to identify aphid gene fragment of DNA responsing to UV, so as to provide a theoretical basis of aphid resistance UV stress molecular ecology and evolution of the genetic mechanism and. The main discoveries are as follows:
     1. Radiation time and the frequency variation was positively correlated
     The length of time of UV treatment on aphid is very significant differences (P <0.01). A positive correlation between treatment time and the frequency variation (r = 0.9466). With the increase in processing time, DNA mutation frequency is increased.
     2. The Cumulative effects of DNA variation from F1 to F2
     Aphids in the F1 and F2 generations are both occurred in DNA mutation. F2 generation of DNA mutation frequencies were lower than the overall F1 generation, indicating that F2 generation may be recovered, which may be related to the mechanism of DNA damage repair-related.
     3. Mutation frequency of the red type is higher than the green type
     Red and green aphid-type responded to UV treatment exist differences, the red type aphids were significantly higher than the green type at the frequency of DNA mutation, particularly evident on the performance of Xiaoyan-22 (P<0.05), that the impact of the genetic evolution of the red-type by UV treatment is stronger than the green type.
     4. Mutation frequency of Xiaoyan -22 aphids is stronger than the Astron
     UV treatment of different aphid host species differences in the impact of genetic variation. Overall performance on the frequency of DNA variation for the variety Xiaoyan -22 aphids are stronger than the Astron, obviously, a significant difference (P<0.05)of the red type on the performance of aphids. Illustrated that in relation to general resistance varieties of Xiaoyan -22, the anti-aphid Astron can be directly or indirectly developed their resistance to adverse environments, which enhance resistance to a certain degree at the UV treatment adaptability.
     5. Five types of the UV response genes are cloned
     (1) The direct protective genes, such as heat shock protein 15 (HSP15)、Fgd6、TML protein.
     (2) Gene of energy and signal transduction, such as mpd1、hepcidin、4sin1.
     (3) Protein Synthesis Related Gene, such as L11、S12 and peptidyl transferase.
     (4) Injury Gene, such as 94sin1、α-hemolysins.
     (5) Unknown Gene.
     The results from the above we can see aphids responsed to the UV are very complex, involving a variety of metabolic processes of many genes. Although some of the results obtained by sequencing of the information are not comprehensive enough, but these limited aphid information to clarify the molecular mechanism of radiation to provide the theoretical basis, to clarify the molecular mechanism of its need for more efforts on the areas of concern for global climate change the Earth's biological impact of great significance.
引文
[1]张广学,钟铁森.中国经济昆虫志[M].北京:科学出版社,1893.
    [2]张广学.西北农林蚜虫志[M].北京:中国环境科学出版社,1999.
    [3] Bergamason R.,Horn D.H.S.,Roger G.H.,et al..Invertebrate Endoerinology[M].NewYork:Alan R.Liss,Inc.,1983.
    [4] Rossiter M.,Sehultz J.C.,Baldwin I.T..Relationships among defo1iation,red oak Phenolies,and gypsy moth growth and reproduetion[J].Ecology1988,69(l):267-277.
    [5] Raupp M.J.,Dermo R.F..The suitability of damaged willow leaves as food for the leaf beetle,Plagiodera versieolora[J].Entomology,1984,9:443-432.
    [6] Tallamy D.W..Squash beetle feeding behavior:an adaptation against induced cueurbit defenses[J]. Ecology,1985,66(5):1574-2579.
    [7]轩静渊,王辅.植物抗虫性概论[M].成都:四川科学技术出版社,1991.
    [8]张文辉,刘光杰.植物抗虫性次生物质的研究概况[J].植物学通报,2003,20(5):522-530
    [9]周明.作物抗虫原理及应用.北京:北京农业大学出版社,1992.
    [10] Corcuera L.J..Effects of indole alkaioids from gramineae on aphids[J].Phyto chemistry,1984, 23(3):539-541.
    [11] Zuniga G.E.,Coreuera L.J..Effect of gramine in the resistance of barley seedlings to the aphid Rhopalosiphum Padi[J].Eniomologia Experimentalis at Applieata.1986,40:256-262.
    [12] Zuniga G.E.,Salgada M.S.,Coreuera L.J..Role of an indole alkaloid in the resistance of barley seedlings to aphids[J].Phytochemistry,1985,24(5):945-947.
    [13] Mullin C.A.. Adaptive divergenee of chewing and sucking arthropods to Plant alleloehemieals. Newyork: Plenum Press,1986.
    [14]赵惠燕.蚜虫体色变化的生态遗传学机理研究[D].陕西杨凌:西北农业大学,1996.
    [15]彭红.棉蚜自然种群体色和遗传分化的研究[D].河南:河南农业大学,2002.
    [16]赵惠燕,张改生,汪世泽.棉蚜体色变化的生态遗传学研究[J].昆虫学报,1993,36(3):282-289.
    [17]赵惠燕,张改生,汪世泽.再探棉蚜体色变化的生态学遗传机理[J].生态学报,1993,13(1):9-16.
    [18]赵惠燕,张改生,汪世泽,等.棉蚜体色变化与染色体观察[J].昆虫知识,1993,30(4):218-220.
    [19]赵惠燕,汪世泽,张改生.蚜虫体色分化的生态遗传学规律之探讨[J].西北农业大学学报,1989,17:79-83.
    [20]赵惠燕,汪世泽.孤雌胎生棉蚜胚胎学观察[J].昆虫知识,1992,29(1):19-21.
    [21] Ueda N.,Takada H..Differential relative abundance of green-yellow and red forms of of Myzus persicae Sulzer(Homoptera)[J].Appl Ent Zool,1997,12:124-133.
    [22] Takada.Characteristics of forms of Myzus persicae Sulzer (Homoptera: Aphididae) distinguished by collurs and esterase difference and their occurrence in populations host plants in Japan[J].Appl Ent Zool,1979,14:370-375.
    [23] Takada.Inheritance of body colours in of Myzu spersicae Sulzer (Homoptera: Aphididae)[J].Appl Ent Zool,1981,16:242-246.
    [24]谢贤元.十字花科植物上桃蚜的两个生物型[J].植物保护学报,1992,18(1):31-32.
    [25]陈文胜.烟蚜寄主专化性的研究[J].华南农业大学学报,1997,18(4):54-58.
    [26] Matsumoto K.,Tsuij H..Occurence of two colour types in the green aphid Myzus persicae and their susceptibiligy to insecticides in Japan[J].Appl Ent Zool,1979,23(2):92-99.
    [27] Blackman R.L..Stability and variation in aphid clonal lineages[J].Biol.J.Linnean.Soc,1997,11: 259-277.
    [28]原国辉,彭红,潘森,等.棉蚜Aphis gossypii Glover在不同寄主上的体色分化研究[J].河南农业大学学报,2002,36(1):7-10.
    [29]秦玉川,李杌周,崔柴哲,等.声波对蚜虫危害及大白菜生长影响的初步研究[J].中国农业大学学报,2001,6(3):85-89.
    [30]田中正.日本应用动物昆虫学会志[C],1957,1(2):9-24.
    [31] Takada H..Inheritance of body colours in of Myzus persicae Sulzer(Homoptera:Aphididae)[J].Appl Ent Zool,1981,16:242-246.
    [32] Dixon A.G..Aphid Ecology[M].Blakie&Son Ltd Publication,1985.
    [33]张广学.烟蚜研究新进展[J].河南农业大学学报,1990,24(4):490-503.
    [34]王茂涛,张孝羲.桃蚜体色生物型的研究[J].植物保护学报,1991,18(4):351-355.
    [35]杜桂林,李克斌,尹娇,等.影响麦长管蚜体色变化的主导因素[J].昆虫知识,2007,44(3):353-357
    [36] Caldwell M.M.,Flint S.D..Implications of inereased solar UV-B for terrestrial Vegetation.Berlin: Springer-Verlag,1993.
    [37] Wang S.B.,Su W.H.,Wei D.W..Biologieally effective radiation of solar ultraviolet radiation and the depletion of ozone layer[J],Acta Scientiae Circumstantiae,1993,13(l):114-119.
    [38] Cao F.Z..Reports of’holes’in ozone layer[M].Beijing:Chinese Environmental Science Press,1989.
    [39] Botkin D.B.,Keller E.A..Environmental Science-Earth as a Living Planet.John Wiley&Sons,nic,1995.
    [40] Jolmston H.S..Reduetion of stratospherie ozone by nitrogen oxide catalysts from Supersonic transport exhaust[J].Science,1971,173:517-522.
    [41] CrutZen P. J..SST-a threat to the earth,s ozone shield[J].Ambio,1972,l:41-51.
    [42] Moriina M.J.,Rowland F.S..Stratospheric sink for chlorofiuoromethanes:chlorine atom catalyzed distribution of ozone[J].Nature,1974,249:810-812.
    [43] National Aeronauties and Space Administration,Executive Summary of the ozone Trends Panel.NASA,Washington D C,1988.
    [44] XieY.Q.,Guo S.C.,Wang W.G.,et al..studies on the relation of continual reduetion of ozone layer and action in Kunming[J].Journal of Yun nan University(suppl.),1994,16:l-6.
    [45] Zhou X. J.,Luo C.,Li W.L.,et al..Changes of gross of ozone in China and center of low value of ozone in Qinghai-Tibet Plateau[J].Chinese Seienee Bulletin,1995,40(15):1396-1398.
    [46] Scotto J.,Cotton G.,Urbach F.,et al..Biologieally effective ultraviolet radiation:Surface measurements in the United States,1974 to1985[J].Science,1988,239:762-764.
    [47] Madronieh S.,Mekenzie R.L.,Caldwell M.M.,et al..Changes in ultraviolet radiation reaehing the earth,s surface[J].Alllbio,1995,24:143-152.
    [48] Bjǎm LO.,Callaghaan T.V.,Gehrke C.,et al..The Problem of ozone depletion in Northerm Europe [J].Ambio,1998,27:275-279.
    [49] Seekmeyer G.,Mayer B.,Eth R.,et al..UV-B in Germany higher in 1993 than in1992[J].Geophys.Res. Lett.,1994,21:577-580.
    [50] Mekenzie R.L.,Cotmer B.,Bodeker G.E..Increased summertime UV radiation in NewZealand in response to ozone loss[J].Science,1999,285:1709-1711.
    [51] Kerr J.B.,Meelroy C.T..Evidence for large upward trends of ultraviolet Bradiation Linked to ozone depletion[J].Science,1993,262:1032-1034.
    [52] Gao W.,Zheng Y.F.,Slusser J.R.,et al..Effects of supplementary ultraviolet-B irradiance on maize yield and qualities:A field experiment[J].Photochem.Photobiol.,2004,80:127-131.
    [53] Koti S.,Reddy K.R.,Kakani V.G.,et al..Soybean(Glyeine max) pollen germination characteristies,flower and pollen morphology in response to enhanced ultraviolet-B radiation[J].Anll.Bot.,2004, 94:855-864.
    [54] Heo M.Y.,Kim S.H.,Yang H.E.,et al..Protection against ultraviolet B and C-induced DNA damage and skin carcinogenesis by the flowers of Prunnus persicae extract[J]. Mut Res, 2001,496(2):47-59.
    [55]翟兴礼,史本林.紫外线辐射对生物的影响[J].农业与技术,2000,20(1):44-45.
    [56]钱晶,郑有飞.紫外辐射增加对人类影响的研究[J].生物学通报,1999,34(2):17-19.
    [57] Tanaka K.,Kamiuchi S.,Ren Y.,et al..UV-induced skin carcinogenesis in xeroderma pigmentosum group A(XPA)gene-knockout mice with nucleotide excision repair-deficiency[J].Mut Res,2001,477 (2):31-40.
    [58] Ziegler A.,Leffell D.J.,Kunala S.,et al..Mutation hotspots due to sunlight in the P53 gene of non mela- noma skin cancers[J].Proc Nati Acad Sci USA,1993,90: 4216-4220.
    [59]杨志敏,颜景义,王传海.紫外线辐射增加对生物的影响[J].生物学通报,1995,(30):17-19.
    [60]侯扶江.紫外线B辐射对三种植物幼苗光合作用和呼吸作用的影响研究初报[J].草业学报, 1998,7(3):77-79
    [61]颜景义.大豆对紫外辐射的生物学效应研究[J].农业环境学报,1995,14(4),154-157
    [62] Takeuehi Y.,Kubo H.,Kasahara H.,et al..Adaptive alterations in the actives of Seavengers of active oxygenin cucumber cotyledons irradiated with UV-B[J].Physiol.,1996,147:589-592.
    [63] Strid A.,Chow W.S.,Anderson G.M..Effects of supplementary ultraviolet-B radiation on Photosynthe sis in Pisum sativum[J].Bioehem.BioPhs.Aeta,1990,102:260-268.
    [64] Allada R.,Meissner R.A..Casein kinase 2,circadian clocks,and the flight from mutagenic light[J].Mol Cell Biochem,2005,274:141-149.
    [65] Radford S.J.,Goley E.,Baxter K,et al..Drosophila ERCC1 is required for a subset of MEI-9-dependent meiotic crossovers[J].Genetics,2005,170:1737-1745.
    [66]张建民.紫外线对黑尾果蝇的生物学效应[J].昆虫知识, 1994,31(4) : 242-244.
    [67]姚建秀,赵惠燕.紫外条件诱导下麦长管蚜DNA的变异研究[J].西北农业学报,2001,10(1):33-36.
    [68]都二霞,郭剑文,赵惠燕.紫外辐射诱导桃蚜DNA变异[J].应用生态学报,2006,17(7): 1245-1249
    [69]都二霞,赵惠燕,郭剑文.紫外线诱导对桃蚜生态学及线粒体基因CoI-II突变的影响[J].西北农林科技大学学报, 2007,35(9) : 123-127.
    [70]曹恩华.UVA的辐射效应及其分子机理[J].激光生物学,1994,3(4):529-534.
    [71] Peak J.G.,Pilas B.,Dudek E.J.,et al..DNA breaks caused by mono chromatic 365nm ultraviolet-A radiation and their repair in human epithelioid and xeroderma pigmentosum cell[J].Photochem Photobiol, 1991,54(2):197-203.
    [72] Tanaka K.,Kamiuchi S.,Ren Y.,et al..UV-induced skin carcinogenesis in xeroderma pigmentosum group A(XPA)gene-knockout mice with nucleotide excision repair-deficiency[J].Mut Res,2001,477(2):31-40.
    [73] Kramer G.F.,Norman H.A.,Kreae K.D.et al..Influence of UV-B radiation on plogamines Lipid peroxide tion and membrane lipids of cucumber.Phytochemistry[J], 1991,30(7):2101-2108.
    [74] Chuang C H,Hu M L.Synergistic DNA damage and lipid peroxidation in cultured human white blood cells exposed to 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone and ultraviolet A[J]. Environ Mol Muta gen,2006,47:73-81.
    [75] Vink A.A..DNA damage in UV-exposed hairless mice[J]. Journal of Experimental Medicine,1996 ,19.
    [76] Kripke M.L. Pyrimidine dimers in DNA initilate systemic immunosuppression in UV irradiated mice[J].Proc Natl Acad Sci,1992 ,89 :7516
    [77] Hattori Y.. 8-OHdG is increased in epidermal cells of hair less mice after chronic UV-B exposure[J]. Invest Derm,1997,107 :733.
    [78]尹伶明,黄敏仁.AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997,17:11~16.
    [79]陈洪等.致病性念珠菌DNA的AFLP指纹图谱[J].科学通报,1996,41(10):935.
    [80] Zabea M.,Vos P..Selective Restriction Fragment Amplification:A General Method for DNA Fingerprinting. Europeau Patent Application 92402629.7:Publieation No.EP0534858AL,1993.
    [81] Vos P., Hogers R., Bleeker M., et al..AFLP:a new technique for DNA fingerprinting[J] . Nucleic Acids Res,1995,23 (21) : 4407-4414 .
    [82]王彩虹,王倩,戴洪义,等.苹果基因组AFLP分析的DNA模板的制备及技术体系的建立[J].山东农业大学学报(自然科学版),2001,32(2):197-200.
    [83] Cho Y.G.,Blair M.,Panaud O.,et al..Cloning and mapping of variety specific rice genomic DNA sequences:Amplified fragment Length Polymorphisms (AFLP) from silver stained Polyacrylamide gels[J].Genome,1996,39(2):373-378
    [84]刘炜,刘宝.干旱胁迫诱导的水稻基因组胞嘧啶甲基化变化[D].东北师范大学硕士论文,2006.
    [85]林秀云,刘宝.激光辐射诱导水稻转座子mPing,Ping及Pong的转座激活和可遗传DNA甲基化变异[D].东北师范大学博士论文,2006.
    [86]陈照立,金敏,郭向飞,等.用AFLP结合免疫纳米磁珠技术富集分离BPDE-DNA片段[J].解放军预防医学杂志,2007,25(5),324-327.
    [87]张根发,聂艳丽,石小明,等.低能离子注入拟南芥DNA变异的AFLP检测及差异片段的序列分析[J].遗传学报,2004,31(9):1021.
    [88]安瑞生,谭声江,陈晓峰.小型昆虫DNA提取时匀浆方法的改进[J].昆虫知识,2002,39(4) : 311- 312.
    [89]杨子祥,陈晓鸣,冯颖,等.蚜虫基因组DNA提取方法的改进[J].昆虫知识, 2006,43(6):880-884.
    [90] Bassam G.C.,Gresshoff P.M.. Fast and sensitive silver staining of DNA in polyacrylamide gels[J]. Anal Bicchem, 1991,196: 80-83.
    [91] Sambrook J., Russell D.W. .Molecular Cloning 3rd [M].Beijing: Science Press, 2002.
    [92]赵宏,王省芬,张桂寅,等.棉花AFLP技术体系的摸索与建立[J].河北农业大学学报,2002 ,25(1):1-4.
    [93]罗安定,陈守才,吴坤鑫,等. AFLP在橡胶树优异种质研究中的应用(英文) [J].植物学报,2001, 9:941-945.
    [94]李升康,熊远著,邓昌彦.家猪AFLP分析体系的建立[J].华中农业大学学报,2003, 22(2):110-113.
    [95]祝军,王涛,李光晨,等.苹果AFLP分析体系的建立[J].中国农业大学学报, 2000,5 (3):63-65.
    [96]赵宏,王省芬,张桂寅,张峙英.棉花AFLP技术体系的摸索与建立[J].河北农业大学学报,2002 ,25(1):1-4.
    [97]雷永,廖伯寿,王圣玉.花生AFLP银染体系的建立与优化[J].花生学报, 2003,32 : 301-305.
    [98] Saxena D.,Ben D.E.,Manasherob R.et al.. A UV tolerant mutant of Bacillus thuringiensis subsp kurstaki producing melanin[J]. Curr Microbiol,2002,44: 25-30 .
    [99] Yildiz O.,Kearney H.,Kramer B.C.,et al..Mutational analysis of the Drosophila DNA repair and recombination gene mei-9[J].Genetics,2004,167:263-273.
    [100] Furk C, Powell D F, Heyd S. Pirimicarb resistance in the melon and cotton aphid, Aphis gossypii Glover[J]. Plant Pathology, 1980, 29 (4) : 191-196.
    [101] Lin CY,Chen Y M,Key J.L.,et a1..Solute Leakage in Soybean Seedlings under Various Heat Shock Regimes[J]. Plant and Cell Physiology, 1985, 26(8) : 1493 -1498.
    [102] Soto A.,Allona I.,Collada C.,et al..Heterologous expression of a plant small heat-shock protein enhances Escherichiacoli viability under heat and cold stress[J]. Plant Physiology,1999,120 (2) : 521-528.
    [103]邵玲,陈向荣.热激蛋白与植物的抗逆性[J].北方园艺, 2005 (3) : 73-74.
    [104] Tachikawa H.. Isolation and characterization of a yeast gene ,MPD1,the overexpression of which suppresses inviability by protein disulfide isomerase depletion.FEBS Lellers ,1995,369:212-216
    [105] Schneider E.,Hunke S.. ATP-binding-cassette(ABC)transport systems:functional and structural aspects of the ATP-hydrolyzing subunits/domains[J]. FEMS Microbiol Rev.,1998,22(1):1-20.
    [106]吴丽娜,林向民等. Halomonas aquamarina盐敏感质膜蛋白组的研究[J].厦门大学学报,2005, 44:132-134
    [107]王玉瑶,张志云,梁爱华.核糖体蛋白L11及其功能[J].生命的化学,2008,28(1):104-106.
    [108] Joerg M.,Harms,D.N. Wilson F.S.,et al.Translational Regulation via L11: Molecular Switches on the Ribosome Turned On and Off by Thiostrepton and Micrococcin[J] .Molecular Cell,2008,30(1):26-38.
    [109]蓝儒竹,叶章群,王齐襄等.硫酸糖基化蛋白-2在去势大鼠前列腺中的表达[J].中华实验外科杂志,2001,18(5) : 415- 417.
    [110] Chang C M, Elliott T.B.,Dobson M.E.,et al.Ionizing radiation and bacterial challenge alter splenic cytokine gene expression[J]. Journal of Radiation Research,2000,41: 259-277.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.