油菜细胞核雄性不育的细胞学研究以及育性相关基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甘蓝型油菜细胞核雄性不育是油菜杂种优势利用的重要途径,它的优点表现在相对于细胞质雄性不育更为稳定彻底的不育性状,不受恢保关系限制而易获得强优势组合。虽然细胞核雄性不育已经得到广泛的应用,但其雄性不育基因作用的机理还没有被揭示。雄性不育性作为一个复杂的性状关系到雄蕊形态建成、花粉囊中孢子体组织和配子体组织分化过程的基因调控。在这个过程中任何一个基因突变都会影响花药正常发育。随着模式植物拟南芥中与育性相关基因功能注释信息的公布,我们能从生理生化、细胞形态和分子调控等方面更好地理解这些基因在控制育性网络中的作用和相互之间的关系。从而能够从细胞学和分子作用水平深入探索甘蓝型油菜细胞核雄性不育的花粉败育机理,为最终实现人工雄性不育垫定基础。
     基于以上需要,本研究开展了以下3个方面的研究工作:
     1.利用光学显微镜(石蜡切片,半薄切片)和电子显微镜(扫描电镜,透射电镜)分别对显性细胞核雄性不育Rs1046A、隐性细胞核雄性不育9012A以及正常可育植株花药的外部形态和切片进行观察,从而确定败育时期和败育特征。
     2.从Rs1046可育和不育的花药构建的差减文库中筛选到差异表达的基因BnQRT3和BnATA20,在甘蓝型油菜中获得它们的全长序列,并且利用生物信息学软件分析基因的序列。通过RT-PCR和原位杂交,在Rs1046A和Rs1046B的各个组织中研究这两个基因的表达时空特征。
     3.通过基因敲除的方法研究BnQRT3和BnATA20在甘蓝型油菜花粉囊发育过程中的作用。同时在甘蓝型油菜的各个组织中检测这两个基因的启动子的表达状况。
     主要结论如下:
     1.细胞学研究确定了这两种细胞核雄性不育的主要败育时期和特征:显性细胞核雄性不育发生败育在花粉母细胞时期,表型为花粉母细胞不能进行正常的减数分裂,不能进一步地发育成四分体,而是继续发育形成“拟小孢子”。另外不育材料的绒毡层细胞是以“逐渐紧缩”的方式瓦解,不同于正常可育的绒毡层细胞的“均匀网状式”降解的模式。隐性细胞核雄性不育败育发生于减数分裂后形成四分体时期,特征为绒毡层细胞过度生长,液泡巨噬化,挤压药室,同时不能分泌出胼胝质酶来降解包裹四分体的胼胝质,最终四分体逐渐瓦解。
     2.从Rs1046A和Rs1046B构建的差减文库中筛选到两个EST:2-C15 (GenBank:EE392320)和1-H16 (GenBank:EE392282)。根据已知序列通过5’和3'RACE和Genome Walking的方法获得BnQRT3(2-C15)的cDNA和基因组序列,BnQRT3基因最大开放阅读框为1431bp编码了476aa。TargetP1.1预测BnQRT3蛋白为分泌蛋白。将BnQRT3基因编码的蛋白与已知的植物PGs做树形图分析进化关系,发现其编码的蛋白属于花蕾中表达的基因编码的PGs。通过电子克隆和Genome Walking相结合的方法获得BnATA20 (1-H16)基因的1559bp cDNA和2907bp的基因组序列。BnATA20基因编码的蛋白质中富含甘氨酸重复序列(GXGX)n,所以被称为甘氨酸富集蛋白
     3.对BnQRT3在Rs1046AB中的表达模式研究表明它在花粉母细胞时期至二核花粉粒时期的绒毡层细胞中表达,另外在可育材料的四分体、小孢子和成熟花粉粒中表达。BnATA20基因只在可育材料的四分体时期到二核花粉粒时期的绒毡层细胞中表达。
     4.对BnQRT3反义抑制载体和RNAi载体转化获得的抗性植株中的不育单株进行DNA、外观形态、细胞学和基因表达水平的检测。反义抑制后所得拟南芥的8个阳性单株中有2个单株表现为雄蕊彻底败育。RNAi转化的9个阳性单株中有3株的大多数花中的雄蕊彻底败育,只有少数花中的雄蕊中存在微粉,但是花粉的外壁结构异常,人工授粉后发现不结实。在抑制和干涉载体转化的甘蓝型油菜的不育株中,BnQRT3在花药中表达水平下降。反义抑制转化后阳性植株中有12个单株的所有雄蕊表现为瘦小干瘪,不能产生花粉。而RNAi转化后阳性单株中有4个单株出现不结实的现象。观察发现其中3个单株的所有花中雄蕊彻底败育,只有一个单株出现少数的花中的雄蕊能够散粉,将其授予可育材料15天后,与正常可育单株相比角果短小。光学显微镜观察得出,BnQRT3RNAi所得的彻底败育的花粉囊与BnQRT3反义抑制后出现的败育表型相同,只是能够产生花粉的花药经过醋酸洋红染色,以及花粉管萌发实验证明极少数的花粉能够着色,并且延迟萌发。BnQRT3抑制和RNAi得到的不育单株的子房发育都是正常的。通过石蜡切片和透射电镜观察彻底败育的花粉囊发现绒毡层细胞发育严重受阻,没有孢粉素和脂类物质沉积在小孢子的外壁上,小孢子内部的胞质收缩,外观形态上严重变形,小孢子聚集紧缩在一起直至瓦解。
     5.在BnATA20反义抑制载体转化甘蓝型油菜得到的阳性不育单株的雄蕊中发现,BnATA20基因在转录水平上受到明显抑制。不育花蕾中的花药皱缩无粉。细胞学观察发现绒毡层细胞在四分体后期就已经开始瓦解,其胞质中没有脂类物质的合成,小孢子被变形的绒毡层包围不能再进一步地发育成花粉粒。
     6.分析基因BnQRT3和BnATA20基因5’端上游非编码序列,发现其中含有大量的调控元件。GUS染色结果表明BnQRT3-Promoter是花器官中特异表达的启动子,转化植株的雄蕊、子房、花萼、花瓣和花丝中GUS表达很强;BnATA20-Promoter为花药中特异表达的启动子。并且这两个基因的启动子都是与维管组织相关的受伤诱导型的,当植株中各个组织受到外界机械损伤时,在受伤的部位如叶片支脉和主脉,茎,花序与主茎分支处都能检测到GUS的表达活性。在BnATA20基因的启动子区域存在着维管组织中特异表达基因的受伤诱导型调控序列如W-box,W1-box和GCbox。但是在BnQRT3基因的启动子区域却不存在已知的维管组织特异表达的调控序列。
Genic male sterility (GMS) systems are regarded as a promising alternative to CMS, due to the stable and complete male sterility and no negative cytoplasmic effect on yield. As an effective and economical pollination control system, GMS are convenient for the production of hybrid seeds. Nevertheless, the mechanism of male sterility has not been completely discovered. Over recent years, significant progress has been made towards understanding the process of pollen development, and much of this has come from the use of male sterile mutants in model system Arabidopsis. The advent of the genome availability and the development of tools for analysis of gene function mean that such methods can now be carried out in Brassica napus.
     In the present research, light microscopy and transmission electron microscopy techniques were performed to investigate the defects in genic male sterile plant Rs1046A and 9012A from microsporogenesis stage to male gametogenesis stage.Two differentially expressed ESTs from suppression substractive hybridization (SSH) and cDNA microarray between Rs1046A and B were used to obtain full length cDNA and genomic DNA by 5'/3'RACE technology and Genome Walking. RT-PCR and in situ hybridization were conducted to analyze the spatially and temporally expression pattern of these genes. In addition, antisense suppression vector of BnQRT3 and BnATA20 gene were transformed into Brassica napus. The functions of both genes in anther development were studied in detail. In the meanwhile, we analyzed the cis-elements from the promoters of both genes, and detected the activities of them according to stable expression systems. Main conclusions are listed as follows:
     1. The main sterile stages and characteristics of two male sterile plants were clarified by cytological observations. Rs1046A (DGMS) occurred from premeiosis stage to meiosis stage. Sporogenous cells did not undergo meiosis and become "cotton-clump" structure denoted by abnormal microspore. Additionally, the degeneration pattern of tapetal cell in sterility appeared very differently from fertility. As for 9012A (RGMS), the abortion initiated at the early tetrad stage. The sterile tapetal cells swelled with expanded vacuoles and finally filled the center of the locules where a majority of tetrads collapsed and degraded.
     2. On the basis of differential expressed EST:2-C15 (GenBank:EE392320) and 1-H16 (GenBank:EE392282), the cDNA sequence and genomic DNA of BnQRT3 (2-C15) were obtained by 5'RACE and 3'RACE and Genome Walking. The major open reading frame of BnQRT3 transcript was 1428 bp, encoding a 476 amino acid protein. Target P 1.1 predicted BnQRT3 was in a secretory pathway. Based on the comparision with plant PGs that functional assays have been reported, BnQRT3 belongs to which is thought to encode polygalacturonase activity and derived from genes expressed mainlv in flower buds. The 1559bp cDNA and 2907 bp genomic DNA of BnATA20 (1-H16)were isolated by in silico cloning and genome walking. Because the 445 amino acid encoded by BnATA20 contained (GXGX)n glycine-rich repeat, we regarded it as GRP (glycine-rich protein).
     3. RT-PCR analysis indicated that the BnQRT3 mRNA was found in stamens, ovaries, sepals and petals in both fertile and sterile plants, but not found in leaves or in tender stems. In situ hybridization analysis demonstrated the transcription of BnQRT3 in the anther occurred in the tapetum from the microsporocyte stage to binucleated pollen stage, and also can be detected in microspore mother cells, tetrads masses and mature pollen grains. BnATA20 transcripts could be exclusively detected in the tapetal cells from the tetrad stage to binucleated pollen stage by in situ hybridization. RT-PCR analysis showed that no mRNA was found in the other tissues except the stamens.
     4. The antisense vector and RNAi vector of BnQRT3 gene were transferred into Arabidopsis Columbia and Brassica napus Huashang 5 individually. Male sterility were observed in T1 progeny of BnQRT3 inhibited plants in both species. BnQRT3 expression was inhibited in these male sterile transgenic plants. Under light microscopy and scanning electron microscopy, there are two different phenotypes of sterility between antisense suppression and RNAi:1. A minority stamens of BnQRT3 RNAi transgenic Brassica napus and Arabidopsis contained numerous shriveled pollen grains with deep invaginations, resulting in the poor pollen vitality. In vivo germination test suggested pollen tubes extension were delayed in the style.2. The stamens from 12 antisense suppression plants and 3 BnQRT3 RNAi plants were completely aborted. According to the observation of transverse-section from sterile anthers, we found BnQRT3 gene, when disrupted, caused premature tapetal degeneration and complete microspore abortion, as well as a reduction in filament elongation.
     5. The BnATA20 antisense suppression vector was transformed to Brassica napus according to the Agrobacterium-mediated method. In T1 progeny, the sterile plants which do not produce pollen could be detected. In contrast with the fertile stamens, no BnATA20 transcript expressed in the transgenic sterile stamens. In the light of cytological analysis, we could find aberrations in the tapetum when BnATA20 was knocked-out, further leading to microspore cell death. BnATA20 was predicted to specifically involve in the tapetum proliferation.
     6.992 bp region upstream of the BnQRT3 transcript start sites was further analyzed by searching for putative regulatory motifs using PlantCARE and PLACE. A number of motifs involved in pollen-specific expression. The activity of the BnQRT3 promoter was detected by histochemical staining of GUS activity in BnQRT3Promoter-GUS transgenic Arabidopsis and Brassica napus plants. Strong GUS expression was observed in floral organs including the a series of developing florets from the pollen mother cell stage to anther dehiscence stage, stigma, vascular tissue of filaments, veins in sepals and petals, branch connective and flower abscission zone.1149bp BnATA20 promoter-GUS transgenic plants showed GUS expression exclusively in stamens. The two promoters BnQRT3P and BnATA20P conferred an identical GUS expression pattern on different regions associated with excision and wounding, suggesting that both of them are responsive to wounding. Additionally, we noted the localization of both promoter-GUS expression correlated tightly with the aerial vascular systems including petioles, midribs and stem either by compression with forceps or excision. In the region of BnATA20 promoter, we could find several putative wound-responsive elements specifically expressed in vascular systems including the W-box, W1-box and GC box. However, these elements did not exist in the BnQRT3 promoter.
引文
1. 陈凤祥,胡宝成,李成,李强生,陈维生,张曼琳.甘蓝型油菜细胞核雄性不育性的遗传研究Ⅰ.隐性核不育系9012A的遗传.作物学报,1998,24(4):431-438
    2. 傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编, 作物育种学论丛.北京:中国农业大学出版社,2002
    3.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位. [博士学位论文].武汉:华中农业大学图书馆,2008
    4. 洪登峰.甘蓝型油菜显性细胞核雄性不育基因Ms/Mf的定位.[博士学位论文].武汉:华中农业大学图书馆,2006
    5. 侯国佐,王华,张瑞茂.甘蓝型油菜细胞质雄性不育系材料117A的遗传研究。中国油料,1990, (2):7-11
    6. 胡红红.水稻逆境相关转录因子的分离和功能鉴定.[博士学位论文].武汉:华中农业大学图书馆,2006
    7. 胡胜武.甘蓝型油菜新型核不育材料Shaan-GMS的遗传及核不育的分子机制研究.[博士学位论文].西北农林科技大学,2003
    8.胡胜武,于澄宇,赵惠贤,路明,张春红,俞延军.甘蓝型油菜核不育材料Shaan-GMS恢复基因的筛选及其遗传分析.西北农林科技大学学报(自然科学版),2004,32:9-12
    9. 胡胜武,于澄宇,赵惠贤.甘蓝型油菜新型不育源的发现及其初步研究.西北农业学报,2000,9:90-94
    10.康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析.[博士学位论文].中国农科院蔬菜花卉研究所,2006
    11.李正理.植物组织制片学.北京:北京大学出版社,1996,1-26
    12.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12
    13.龙欢,姚家玲,涂金星.3种甘蓝型油菜雄性不育系花药发育的细胞学研究.华中农业大学学报,2005,6:570-575
    14.潘涛,赵云.甘蓝型双低油菜雄性核不育两用系的选育研究.作物研究,1990,4 (3):47-49
    15.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875
    16.唐桂香.油菜高效再生体系的创建及农杆菌介导法基因转化研究.浙江大学博士学位论文,2004
    17.王敬乔李根泽陈薇和江明董云松曾黎琼寸守铣.油菜高效转基因平台及无选择基因转化植物细胞工程与分子育种技术研究395-403
    18.王通强,田筑萍,黄泽素,魏忠芬,邵明波.甘蓝型双低油菜细胞核显性核不育系黔油2AB的选育.贵州农业科学,1999,27:14-18
    19.吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    20.杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999a,18(5):405-408
    21.杨光圣,瞿波,傅廷栋.三个甘蓝型油菜隐性细胞核雄性不育系小孢子发生的细胞学研究.华中农业大学学报,1999b,18(6):520-523
    22.易斌.甘蓝型油菜隐性核不育基因Bnms1的精细定位和克隆.[博士学位论文].武汉:华中农业大学图书馆,2007
    23.余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察。武汉植物研究,1990,8:209-216
    24. Aarts MG, Hodge R, Kalantidis K, Florack D, Wilson ZA, Mulligan BJ, Stiekema WJ, Scott R, Pereira A. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. Plant J,1997,12: 615-623
    25. Albrecht C, Russinova E, Hecht V, Baaijens E, de Vries S. The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell,2005,17:3337-3349
    26. Anthony LS, Gregg AH. Systemic signaling in the wound response. Current Opinion in Plant Biology,2005,8:369-377
    27. Ariizumi T, Hatakeyama K, Hinata K, Inatsugi R, Nishida I, Sato S, Kato T, Tabata S, Toriyama K. Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in Arabidopsis thaliana. Plant J,2004,39:170-181
    28. Ariizumi T, Hatakeyama K, Hinata K, Sato S, Kato T, Tabata S, Toriyama K. A novel male-sterile mutant of Arabidopsis thaliana, facelesspollen-1, produces pollen with a smooth surface and an acetolysissensitive exine. Plant Mol Biol,2003,53: 107-116
    29. Azumi Y, Liu D, Zhao D, Li W, Wang G, Hu Y, Ma H. Homolog interaction during meiotic prophase I in Arabidopsis requires the SOLO DANCERS gene encoding a novel cyclin-like protein. EMBO Journal,2002,21:3081-3095
    30. Bai XF, Peirson BN, Dong FG, Xue C, Makaroff CA. Isolation and characterization of SYN1, a RAD21-like gene essential for meiosis in Arabidopsis. Plant Cell,1999, 11:417-430
    31. Balk J, Leaver CJ. The PET1-CMS mitochondrial mutation in sunflower is associated with premature programmed cell death and cytochrome c release. Plant Cell,2001, 13:1803-1818
    32. Beals TP, Goldberg RB. A novel cell ablation strategy blocks tobacco anther dehiscence. Plant Cell,1997,9:1527-1545
    33. Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, Dickinson HG, Dean C. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant Journal,1999,19:463-472
    34. Bleuyard JY, White CI. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO Journal,2004,23:439-449
    35. Bonghi C, Rascio N, Ramina A, Casadoro G. Cellulase and polygalacturonase involvement in the abscission of leaf and fruit explants of peach. Plant Mol Biol, 1992,20:839-848
    36. Bonner LJ, Dickinson HG. Anther dehiscence in Lycopersicon-esculentum.2. Water relations. New Phytol.1990,115:367-375
    37. Borg M, Brownfield L, Twell D. Male gametophyte development:a molecular perspective. Journal of Experimental Botany,2009,12:1-14
    38. Brown RC, Lemmon BE. Microtubules associated with simultaneous cytokinesis of coenocytic microsporocytes. Am. J. Bot,1988,75:1848-1856
    39. Brown RC, Lemmon BE. The cytoskeleton and spatial control of cytokinesis in the plant life cycle. Protoplasma,2001,215:35-49
    40. Budar F, Pelletier G. Male sterility in plants:occurrence, determinism, significance and use. Life Sciences,2001,324:543-550
    41. Cai G, Cresti M. The microtubular cytoskeleton in pollen tubes:structure and role in organelle trafficking. Plant Cell Monographs,2006,3:157-165
    42. Campbell P, Braam J. Xyloglucan endotransglycosylases:Diversity of genes, enzymes and potential wall-modifying functions. Trends Plant Sci,1999,4:361-366
    43. Canales C, Bhatt AM, Scott R, Dickinson H. EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr Biol,2002,12:1718-1727
    44. Cardoza V, Stewart CN. Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) Plant Cell Rep,2003,21:599-604
    45. Cassab GI. Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol,1998, 49:281-309.
    46. Cecchetti V, Altamura MM, Falasca G, Costantino P, Cardarelli M. Auxin regulates Arabidopsis anther dehiscence, pollen maturation, and filament elongation. Plant Cell, 2008,20:1760-1774
    47. Cecchetti V, Pomponi M, Altamura MM, Pezzotti M, Marsilio S, D'Angeli S, Tornielli GB, Costantino P, Cardarelli M. Expression of rolB in tobacco flowers affects the coordinated processes of anther dehiscence and style elongation. Plant J, 2004,38:512-525
    48. Chaudhury AM. Nuclear genes controlling male fertility. Plant Cell,1993,5: 1277-1283
    49. Chen T, Wu X, Chen Y, Bohm N, Lin J, Samaj J. Pollen and pollen tube proteomics. In:Samaj J, Thelen JJ, eds. Plant proteomics. New York, USA:Springer,2007, 270-282
    50. Chen YN, Lei SL, Zhou ZF, Zeng FQ, Yi B, Wen J, Shen JX, Ma CZ, T JX, F TD. Analysis of gene expression profile in pollen development of recessive genic male sterile Brassica napus L. line S45A. Plant Cell Rep,2009,28(9):1363-72
    51. Chen Z, Tan JLH, Ingouff M, Sundaresan V, Berger F. Chromatin assembly Factor 1 regulates the cell cycle but not cell fate during male gametogenesis in Arabidopsis thaliana. Development,2008,135:65-73
    52. Chen Y, McCormick S. Sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development,1996, 122:3243-3253
    53. Coen ES, Meyerowitz EM. The war of the whorls:Genetic interactions controlling flower development. Nature,1991,353:31-37
    54. Colcombet J, Boisson-Dernier A, Ros-Palau R, Vera CE, Schroeder JI. Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASES1 and 2 are essential for tapetum development and microspore maturation. Plant Cell,2005,17:3350-3361
    55. Couteau F, Belzile F, Horlow C, Grandjean O, Vezon D, Doutriaux MP. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmcl mutant of Arabidopsis. Plant Cell,1999,11:1623-1634
    56. De DN. Plant Cell Vacuoles. (Collingwood, Australia:CSIRO Publishing) 2000
    57. De Oliveira DE, Seurinck J, Inze D, Van Montagu M, Botterman J. Differential Expression of Five Arabidopsis Genes Encoding Glycine-Rich Proteins. Plant Journal,1993,2:427-436
    58. De Silva J, Jarman CD, Arrowsmith DA, Stronach MS, Chengappa S, Sidebottom C, Reid JSG. Molecular characterisation of a xyloglucan-specific endo-(1→4)-β-Dglucanase (xyloglucan endo-transglycosylase) from nasturtium seeds. Plant Journal,1993,3:701-711
    59. Dearnaley JDW, Daggard GA. Expression of a polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod,2001, (13) 5:265-271
    60. Delessert C, Wilson IW, Van Der Straeten D, Dennis ES, Dolferus R. Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol,2004,55:165-181
    61. Dickinson HG. The fine structure of a peritapetal membrane investing the microsporangium of Pinus banksiana. New Phytol,1970,69:1065-1068
    62. Dickinson HG. The physiology and biochemistry of meiosis in the anther. Int Rev Cytol,1987,107:79-109
    63. Donson J, Fang Y, Espiritu-Santo G, Xing W,Salazar A, Miyamoto S, Armendarez V, Volkmuth W. Comprehensive gene exxpression analysis by transcript profiling. Plant Molecular Biology,2002,48:75-97
    64. Dong X, Hong Z, Sivaramakrishnan M, Mahfouz M, Verma DP. Callose synthase (CalS5) is required for exine formation during microgametogenesis and for pollen viability in Arabidopsis. Plant Journal,2005,42:315-328
    65. Dubald M, Barakate A, Mandaron P, Mache R. The ubiquitous presence of exopolygalacturonase in maize suggests a fundamental cellular function for this enzyme. Plant Journal,1993,4:781-791
    66. Durbarry A, Vizir I, Twell D. Male germ line development in Arabidopsis:duo pollen mutants reveal gametophytic regulators of generative cell cycle progression. Plant Physiology,2005,137:297-307
    67. Eady C, Lindsey K, Twell D. The significance of microspore division and division symmetry for vegetative cell-specific transcription and generative cell differentiation. Plant Cell,1995,7:65-74
    68. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci,2000,5:199-206
    69. Ferreira MA, de Alineida Engler J, Miguens FC, Van Montagu M, Engler G., de Oliveira DE. Oleosin gene expression in Arabidopsis thaliana tapetum coincides with accumulation of lipids in plastids and cytoplasmic bodies. Plant Physiology and Biochemistry,1997,35:729-739
    70. Feys B, Benedetti CE, Penfold CN, Turner JG. Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell,1994,6:751-759
    71. Frankel R, Izhar S, Nitsan J. Timing of callase activity and cytoplasmic male sterility in Petunia. Biochem. Genet,1969,3:451-455
    72. Fusaro A, Mangeon A, Magrani Junqueira R, Benicio Rocha CA, Cardoso Coutinho T, Margis R and Sachetto-Martins G. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs) en-coding glycine-rich proteins (GRPs). Genet Mol Biol,2001,24:263-273
    73. Gallego ME, Jeanneau M, Granier F, Bouchez D, Bechtold N, White CI. Disruption of the Arabidopsis RAD50 gene leads to plant sterility and MMS sensitivity. Plant Journal,2001,25:31-41
    74. Gavricli F, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. The Journal of Cell Biology, 1992,119:493-501
    75. Goddemeier ML, Wulff D, Feix G. Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein, ZmGRP3. Plant Mol. Biol,1998,36:799-802
    76. Goldberg RB, Beals TP, Sanders PM. Anther development:Basic principles and practical applications. Plant Cell,1993,5:1217-1229
    77. Gonzalez-Carranza ZH, Whitelaw CA, Swarup R, Roberts JA. Temporal and spatial expression of a polygalacturonase during leaf and flower abscission in oilseed rape and Arabidopsis. Plant Physiology,2002,128:534-543
    78. Gonzalez-Carranza ZH, Elliott KA, Roberts JA. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. Journal of Experimental Botany,2007,58 (13):3719-3730
    79. Gorguet B, Schipper D, Lammeren A, Visser RGF, Heusden AW. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet,2009, Online
    80. Hanson MR, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16 (suppl.),2004, S154-S169
    81. Heslop-Harrison J. Cell walls, cell membranes, and protoplasmic connections during meiosis and pollen development. In Pollen Physiology and Fertilisation, H.F. Linskens, ed (Amsterdam:North Holland),1964, pp.39-47
    82. Heslop-Harrison J, Mackenzie A. Autoradiography of soluble [2-14C] thymidine derivatives during meiosis and microsporogenesis in Lilium anthers. J. Cell Sci.1967, 2:387-400
    83. Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature,2001,409:525-529
    84. Honys D, Twell D. Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biology,2004,5:R85
    85. Hord CL, Chen C, Deyoung BJ, Clark SE, Ma H. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. Plant Cell, 2006,18:1667-1680
    86. Hulskamp M, Parekh NS, Grini P, Schneitz K, Zimmermann I, Lolle SJ, Pruitt RE. The STUD gene is required for male-specific cytokinesis after telophase II of meiosis in Arabidopsis thaliana. Developmental Biology,1997,187:114-124
    87. Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K. The DEFECTIVE IN ANTHER DEHISCIENCE gene encodes a novel phospholipase Al catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell,2001,13: 2191-2209
    88. Ito T, Shinozaki K.The MALE STERILITY1 gene of Arabidopsis, encoding a nuclear protein with a PHD-finger motif, is expressed in tapetal cells and is required for pollen maturation. Plant Cell Physiol,2002,43:1285-1292
    89. Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell,2007,19:3549-3562
    90. Iwakawa H, Shinmyo A, Sekine M. Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. The Plant Journal, 2006,45:819-831.
    91. Izhar S, Frankel R. Mechanism of male sterility in Petunia:The relationship between pH, callase activity in the anthers, and the breakdown of the microsporogenesis. Theor. Appl. Genet.1971,41,104-108
    92. Jackie Han JD. Understanding biological functions through molecular networks. Cell Research.2008,18:224-237
    93. Jia G, Liu X, Owen HA, Zhao D. Signaling of cell fate determination by the TPDI small protein and EMS1 receptor kinase. Proc Natl Acad Sci, USA,2008, 105:2220-2225
    94. Johns CW, Delannay X,Palmer RG. Structural sterility controlled by nuclear mutations in angiosperms.The Nucleus(Calcutta),1981,24:97-105
    95. Kapoor S, Kobayashi A, Takatsuji H. Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell,2002,14:2353-2367
    96. Kaul MLH. Male sterility in higher plants. Monographs on Theoretical and Applied Genetics. Springer-Verlag, New York,1988
    97. Kawaoka A, Kawamoto T, Sekine M, Yoshida K, Takano M, Sinmyo A. A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene. Plant Journal,1994,6:87-97
    98. Keijzer CJ. The processes of anther dehiscence and pollen dispersal. Part I. The opening mechanism of longitudinally dehiscing anthers. New Phytol,1987,105: 487-498
    99. Keller B, Sauer N, Lamb CJ. Glycine-rich cell wall proteins in bean:gene structure and association of the protein with the vascular system. EMBO Journal,1988, 7:3625-3633
    100.Kim HJ, Oh SA, Brownfield L, Hong SH, Ryu H, Hwang I, Twell D, Nam HG. Control of plant germline proliferation by SCFFBL17 degradation of cell cycle inhibitors. Nature,2008,455:1134-1137
    101.Ku SJ, Yoon HJ, Suh HS, Chung YY. Male-sterility of thermosensitive genic male-sterile rice is associated with premature programmed cell death of the tapetum. Planta,2003,217:559-565
    102.Kurata T, Kawabata-Awai C, Sakuradani E, Shimizu S, Okada K, Wada T. The YORE-YORE gene regulates multiple aspects of epidermal cell differentiation in Arabidopsis. Plant Journal,2003,36:55-66
    103.Lalanne E, Twell D. Genetic Control of Male Germ Unit Organization in Arabidopsis. Plant Physiol,2002,129:865-875
    104.Lee YRJ, Li Y, Liu B.Two Arabidopsis phragmoplastassociated kinesins play a critical role in cytokinesis during male gametogenesis. Plant Cell,2007,19: 2595-2605
    105.Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell,2006,18:2999-3014
    106.Luca Federici, Adele Di Matteo, Juan Fernandez-Recio,Demetrius Tsernoglou, Felice Cervone. Polygalacturonase inhibiting proteins:players in plant innate immunity? Trends in Plant Science,2006,11:65-70
    107.Ma H. Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu.Rev.Plant.Biol.2005,56:393-434
    108.Mariani C, Beckeleer MD, Truettner J, Leemans J, Goldberg RB. Induction of male sterility in plant by a chimaeric ribonuclease gene. Nature,1990,347:737-741
    109.Mariani C, Gossele V, Beuckeleer M, Block MD,Goldberg RB, Greef W, Leemans J. A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    110.Meakin PJ, Roberts JA. Anatomical and biochemical changes associated with the induction of oilseed rape (Brassica napus) pod dehiscence by Dasineura brassicae (Winn.). Ann Bot,1991,67:193-197
    111.Medford JI, Elmer JS, Klee HJ. Molecular cloning and characterization of genes expressed in shoot apical meristems. Plant Cell,1991,3:359-370
    112.Mercier R, Armstrong SJ, Horlow C, Jackson NP, Makaroff CA, Vezon D, Pelletier G, Jones GH, Franklin FC. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis. Development,2003,130: 3309-3318
    113.Mitsuda N, Seki M, Shinozaki K, Ohme-Takagi M.The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell,2005,17:2993-3006
    114.Mizuno S, Osakabe Y, Maruyama K, Ito T, Osakabe K, Sato T, Shinozaki K, Yamaguchi-Shinozaki K. Receptor-like protein kinase 2 (RPK2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant Journal,2007, 50:751-766
    115.Murphy DJ, Ross JH. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant Journal,1998,13: 1-16
    116.Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS,Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE,Ecker JR, Reed JW. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005,132:4107-4118
    117.Nasmyth K.Disseminating the genome:joining, resolving and separating sister chromatids during mitosis and meiosis. Annual Review of Genetics,2001,35: 673-745
    118.Nishikawa S, Zinkl GM, Swanson RJ, Maruyama D, Preuss D. Callose (beta-1,3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biol,2005,5:22-29
    119.Nishitani K. Construction and restructuring of cellulosexyloglucan framework in the apoplast as mediated by the xyloglucan-related protein family:A hypothetical scheme. J. Plant Res,1998,111:159-166
    120.Nishiuchi T, Hamada T, Kodama H, Iba K. Wounding changes the spatial expression pattern of the Arabidopsis plastid omega-3 fatty acid desaturase gene (FAD7) through different signal transduction pathways. Plant Cell,1997,9:1701-1712
    121.Nonomura K, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N. The MSP1 gene is necessary to restrict the number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell,2003,15: 1728-1739
    122.Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C, Schnittger A. A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nature Genetics,2006,38:63-67
    123.Ogawa M, Kay P, Wilson S, Swain SM. ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPGI), ADPG2, and QUARTET2 are
    polygalacturonases required for cell separation during reproductive development in Arabidopsis. Plant Cell,2009,21:216-233
    124.Oh SA, Johnson A, Smertenko A, Rahman D, Park SK, Hussey PJ, Twell D. A divergent cellular role for the FUSED kinase family in the plant-specific cytokinetic phragmoplast. Current Biology,2005,15:2107-2111
    125.Okamuro JK, den Boer BGW, Jofuku KD. Regulation of Arabidopsis flower development. Plant Cell,1993,5:1183-1193
    126.Owen HA, Makaroff CA. Ultrastructure of microsporogenesis and microgametogenesis in Arabidopsis thaliana(L.)Heynh.ecotype Wassilewskija (Brassicaceae). Protoplasma,1995,185:7-21
    127.Palevitz BA, Cresti M. Cytoskeletal changes during generative cell division and sperm formation in Tradescantia virginiana. Protoplasma,1989,150:54-71
    128.Palmer RG, Albertsen MC, Horner HT, Skorupska H. Male sterility in soybean and maize:developmental comparisons. The Nucleus,1992,35:1-18
    129.Papini A, Mosti S, Brighigna L. Programmed-cell death events during tapetum development of angiosperms. Protoplasma,1999,207:213-221
    130.Park AR, Cho SK, Yun UJ, Jin MY, Lee SH, Sachetto-Martins G, Park OK. Interaction of the Arabidopsis Receptor Protein Kinase Wakl with a Glycine-rich Protein, AtGRP-3. J Biol Chem,2001,276:2668-2669
    131.Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollenl disrupts microspore polarity, division asymmetry and pollen cell fate. Development,1998,125:3789-3799
    132.Park JH, Halitschke R, Kim HB, Baldwin IT, Feldmann KA, Feyereisen R. A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal,2002,31:1-12
    133.Park SK, Howden R, Twell D. The Arabidopsis thaliana gametophytic mutation gemini pollenl disrupts microspore polarity, division asymmetry and pollen cell fate. Development,1998,125:3789-3799
    134.Parsons BL, Mattoo AK. A wound-repressible glycine-rich protein transcript is enriched in vascular bundles of tomato fruit and stem. Plant Cell Physiol,1994,35: 27-35
    135.Paxson-Sowders DM, Dodrill CH, Owen HA, Makaroff CA. DEX1, a novel plant protein, is required for exine pattern formation during pollen development in Arabidopsis. Plant Physiol,2001,127:1739-1749
    136.Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature,2000,405: 200-203
    137.Peretto R, Favaron F,Bettini V, de Lorenzo G,Marini S,Alghisi P, Cervone F, Bonfante P. Expression and localization of polygalacturonase during the outgrowth of lateral roots in Allium-porruml. Planta,1992,188:164-172
    138.Piffanelli P and Murphy DJ. Novel organelles and targeting mechanisms in the anther tapetum. Trends in Plant Science,1998,3:250-253
    139.Pina C, Pinto F, Feijo JA, Becker JD. Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiology,2005,138:744-756
    140.Pressey R. Polygalacturonase in tree pollen. Phytochemistry,1991,30:1753-1755
    141.Pressey R, Reger BJ. Polygalacturonase in pollen from corn and other grasses. Plant Sci,1989,59:57-62
    142.Puizina J, Siroky J, Mokros P, Schweizer D, Riha K. Mrell deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis. The Plant Cell,2004,16: 1968-1978
    143.Rhee SY, Somerville CR. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J,1998,15:79-88
    144.Rhee SY, Osborne E, Poindexter PD, Somerville CR. Microspore Separation in the quartet3 Mutants of Arabidopsis Is Impaired by a Defect in a Developmentally Regulated Polygalacturonase Required for Pollen Mother Cell Wall Degradation. Plant Physiology,2003,133:1170-180
    145.Rieu I, Wolters-Arts M, Derksen J, Mariani C, Weterings K. Ethylene regulates the timing of anther dehiscence in tobacco. Planta,2003,217:131-137
    146.Robert LS, Gerster J, Allard S, Cass L, Simmonds J. Molecular characterization of two Brassica napus genes related to oleosins which are highly expressed in the tapetum. Plant Journal,1994,6:927-933
    147.Ross JHE, Murphy DJ.Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae. Plant Journal,1996,9:625-637
    148.Ross KJ, Fransz P, Armstrong SJ, Vizir I, Mulligan B, Franklin FCH, Jones GH. Cytological characterization of four meiotic mutants of Arabidopsis isolated from T-DNA-transformed lines. Chromosome Research,1997,5:551-559
    149.Rotman N, Durbarry A, Wardle A, Yang WC, Chaboud A, Faure JE, Berger F, Twell D. A novel class of MYB factors controls sperm-cell formation in plants. Current Biology,2005,15:244-248
    150.Rowland O, Lee R, Franke R, Schreiber L, Kunst L. The CER3 wax biosynthetic gene from Arabidopsis thaliana is allelic to WAX2/YRE/FLP1. FEBS Lett,2007,581: 3538-3544
    151.Rubinelli P, Hu Y, Ma H. Identification, sequence analysis and expression studies of novel anther-specific genes of Arabidopsis thaliana. Plant Mol Biol,1998,37: 607-619
    152.Ruiter RK, Van Eldik GJ, Van Herpen RMA, Schrauwen JAM, Wullems GJ. Characterization of oleosins in the pollen coat of Brassica Oleracea. Plant Cell,1997, 9:1621-1631
    153.Rushton PJ, Reinstadler A, Lipka V, Lippok B, Somssich IE. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling. Plant Cell,2002,14:749-762
    154.Ray A, Langer M. Homologous recombination:ends as the means. Trends in Plant Science,2002,7:435-440
    155.Ru P, Xu L, Ma H, Huang H. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res,2006,16:457-465
    156.Sachetto-Martins G, Fernandes LD, Felix DB, Oliveira DD. Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm-derived cells. Int. J. Plant Sci,1995,156:460-470
    157.Sachetto-Martins G, Franco LO, de Oliveira DE. Plant glycine-rich proteins:a family or just proteins with a common motif? Biochimica et Biophysica,2000,1492:1-14
    158.Sanders PM, Anhthu QB, Weterings K, McIntire KN, Hsu Y, Lee PY, Troung MT, Beals TP, Goldberg RB. Anther development defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod,1999,11:297-322
    159.Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell,2000,12:1041-1061
    160.Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B. Analysis of a dehiscence zone endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana:evidence for roles in cell separation in dehiscence and abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol,2001,46:469-479
    161.Santino CG, Stanford GL, Conner TW. Developmental and transgenic analysis of two tomato fruit enhanced genes, Plant Mol Biol,1997,33:405-416
    162.Sasaki K, Hiraga S, Ito H, Seo S, Matsui H, Ohashi Y. A wound-inducible tobacco peroxidase gene expresses preferentially in the vascular system. Plant Cell Physiol, 2002,43(1):108-117
    163.Sasaki K, Ito Hiroyuki, Mitsuhara I, Hiraga S, Seo S, Matsui H, Ohashi Y. A novel wound-responsive cis-element, VWRE, of the vascular system-specific expression of a tobacco peroxidase gene, tpoxNl. Plant Mol Biol,2006,62:753-768
    164.Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E, Schneitz. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:11664-11669
    165.Schnable PS, Wise RP. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science,1998,3:175-180
    166.Schreiber DN, Bantin J, Dresselhaus T. The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol,2004,134:1069-1079
    167.Schroder G, Fruhling M, Puhler A, Perlick AM. The temporal and spatial transcription pattern in root nodules of Vicia faba nodulin genes encoding glycine-rich proteins. Plant Mol. Biol,1997,33:113-123
    168.Schwacke R, Grallath S, Breitkreuz KE, Stransky E, Stransky H,Frommer WB, Rentsch D. LeProTl, a transporter for proline, glycine betaine, and{Gamma}-amino butyric acid in tomato pollen. Plant Cell,1999,11:377-387
    169.Scott RJ, Spielman M, Dickinson HG. Stamen Structure and Function. Plant Cell, 2004,16:S46-S60
    170.Showalter AM. Structure and function of plant cell wall proteins. Plant Cell,1993,5: 9-23
    171.Siaud N, Dray E, Gy I, Gerard E, Takvorian N, Doutriaux MP. Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmcl. EMBO Journal,2004,23:1392-1401
    172.Sorensen A, Guerineau F, Canales-Holzeis C, Dickinson HG, Scott RJ. A novel extinction screen in Arabidopsis thaliana identifies mutant plants defective in early microsporangial development. Plant Journal,2002,29:581-594
    173.Spielman M, Preuss D, Li FL, Browne WE, Scott RJ, Dickinson HG. TETRASPORE is required for male meiotic cytokinesis in Arabidopsis thaliana. Development, 1997,124:2645-2657
    174.Stadler R, Truernit E, Gahrtz M, Sauer N. The AtSUCl sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J,1999,19:269-278
    175.Stieglitz H, Stern H. Regulation of b-1,3-glucanase activity in developing anthers of Lilium. Dev. Biol,1973,34:169-173
    176.Steiner-Lange S, Unte US, Eckstein L, Yang C, Wilson ZA, Schemlzer E, Dekker K, Saedler H. Disruption of Arabidopsis thaliana MYB26 results in male sterility due to nondehiscent anthers. Plant J,2003,34:519-528
    177.Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Null Acad. Sci. USA,2000,97:10625-10630
    178.Sheridan WF, Avalkina NA, Shamrov Ⅱ, Batygina TB, Golubovskaya IN. The macl gene:controlling the commitment to the meiotic pathway in maize. Genetics,1996, 142:1009-1020
    179.Sunilkumar G, Vijayachandra K, Veluthambi K. Pre-incubation of cut tobacco leaf promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Science,1999,141:51-58
    180.Sugimoto K, Takeda S, Hirochika H. Transcriptional activation mediated by binding of a plant GATA-type zinc finger protein AGPl to the AG-motif (AGATCCAA) of the wound-inducible Myb gene NtMyb2. Plant Journal,2003,36:550-564
    181.Suzuki K, Suzuki N, Ohme-Takagi M, Shinshi H. Immediate early induction of mRNAs for ethylene-responsive transcription factors in tobacco leaf strips after cutting. Plant Journal,1998,15:657-665
    182.Takeda S, Sugimoto K, Otsuki H, Hirochika H. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposon Ttol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors. Plant Journal,1999, 18:383-393
    183.Takeda T, Amano K, Masa-aki O, Nakamura K, Sato S, Kato T, Tabata S, Ueguchi C. RNA interference of the Arabidopsis putative transcription factor TCP 16 gene results in abortion of early pollen development. Plant Molecular Biology,2006,61:165-177
    184.Taylor JE, Webb STJ, Coupe SA, Tucker GA, Roberts JA. Changes in polygalacturonase activity and solubility of polyuronides during ethylene-stimulated leaf abscission in Sambucus nigra. J Exp Bot,1993,44:93-98
    185.Theissen G, Saedler H. Plant biology. Floral quartets. Nature,2001,409:469-71
    186.Twell D, Park SK, Lalanne E. Asymmetric division and cell-fate determination in developing pollen. Trends in Plant Science,1998,3:305-310
    187.Twell D, Oh S, Honys D. Pollen development, a genetic and transcriptomic view. Plant Cell Monographs,2006,3:15-20
    188.Twell D, Park SK, Hawkins TJ, Schubert D, Schmidt R, Smertenko A, Hussey PJ. MOR1/GEM1 plays an essential role in the plant-specific cytokinetic phragmoplast. Nature Cell Biology,2002,4:711-722
    189.Varnier AL, Mazeyrat-Gourbeyre F, Sangwan RS, Clement C. Programmed cell death progressively models the development of anther sporophytic tissues from the tapetum and is triggered in pollen grains during maturation. Journal of Structural Biology,2005,152:118-128
    190.Verelst W, Twell D, de Folter S, Immink R, Saedler H, Munster T. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biology,2007a,8:R249
    191.Verelst W, Saedler H, Munster T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen specific Arabidopsis promoters. Plant Physiology,2007b,143:447-457
    192.Vizcay-Barrena G, Wilson ZA. Altered tapetal PCD and pollen wall development in the Arabidopsis ms1 mutant. J Exp Bot,2006,57:2709-2717
    193.von Malek B, van der Graaff E, Schneitz K, Keller B. The Arabidopsis male-sterile mutant dde2-2 is defective in the ALLENE OXIDE SYNTHASE gene encoding one of the key enzymes of the jasmonic acid biosynthesis pathway. Planta,2002,216: 187-192
    194.Wang TW, Balsamo RA, Ratnayake C, Platt KA, Ting JTL, Huang AHC. Identification, subcellular localization, and developmental studies of oleosins in the anther of Brassica napus. Plant Journal,1997,11:475-487
    195.Weiss H, Maluszynska J. Molecular cytogenetic analysis of polyploidization in the anther tapetum of diploid and autotetraploid Arabidopsis thaliana plants. Annals of Botany,2001,87:729-735
    196.Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ. The Arabidopsis MALE STERILITY1 (MSI) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant Journal,2001,28: 27-39
    197.Worrall D, Hird DL, Hodge R, Paul W, Draper J, Scott R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell, 1992,4:759-771
    198.Wu HM, Cheung AY. Programmed cell death in plant reproduction. Plant Mol. Biol, 2000,44:267-281
    199.Wu MF, Tian Q, Reed JW. Arabidopsis micro-RNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development, 2006,133:4211-4218
    200.Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG. COI1:An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science,1998,280: 1091-1094
    201.Xu FX, Chye ML. Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J,1999,17:321-327
    202.Yamamoto Y, Nishimura M, Hara-Nishimura I, Noguchi T. Behavior of vacuoles during microspore and pollen development in Arabidopsis thaliana. Plant and Cell Physiology,2003,44:1192-1198
    203.Yang CY, Xu ZY, Song J, Conner K, Barrena GV, Wilson ZA. Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell,2007,19:534-548
    204.Yang CY, Spielman M, Coles JP, Li Y, Ghelani S, Bourdon V,Brown RC, Lemmon BE, Scott RJ, Dickinson HG. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant Journal,2003a,34:229-240
    205.Yang M, Hu Y, Lodhi M, McCombie WR, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. PNAS, 1999a,96:11416-11421
    206.Yang SL, Jiang L, Puah CS, Xie LF, Zhang XQ, Chen LQ, Yang WC, Ye D. Overexpression of TAPETUM DETERMINANT1 alters the cell fates in the Arabidopsis carpel and tapetum via genetic interaction with EXCESS MICROSPOROCYTES1/EXTRA SPOROGENOUS CELLS. Plant Physiol,2005, 139:186-191
    207.Yang SL, Xie LF, Mao HZ, Puah CS, Yang WC, Jiang L, Sundaresan V, Ye D. Tapetum determinantl is required for cell specialization in the Arabidopsis anther. Plant Cell,2003,15:2792-2804
    208.Yang WC, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Genes Dev,1999,13:2108-2117
    209.Yassuor H, Abu-Abied M, Belausov E, Madmony A, Sadot E, Riov J, Rubin B. Glyphosate-induced anther indehiscence in cotton is partially temperature dependent and involves cytoskeleton and secondary wall modifications and auxin accumulation.Plant Physiol,2006,141:1306-1315
    210.Zhao DZ. Control of anther cell differentiation:a teamwork of receptor-like kinases. Sex Plant Reprod,2009,22:221-228
    211.Zhao DZ, Wang GF, Speal B, Ma H. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev,2002,16: 2021-2031
    212.Zhu Y, Dun XL, Zhou ZF, Xia SQ, Yi B, Wen J, Shen JX, Ma CZ, Tu JX, Fu TD. A separation defect of tapetum cells and microspore mother cells results in male sterility in Brassica napus:the role of abscisic acid in early anther development. Plant Mol Biol.2010,72,111-123
    213.Zik M, Irish VF. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action.The Plant Cell,2003,15:207-222
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.