生长抑素对猪小体积肝移植物损伤的保护及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
部分肝移植的广泛开展,一定程度上缓解了供肝短缺矛盾,使更多肝病患者得到及时有效的治疗,但由于供肝体积较小,特别是在小体积肝移植时,常常由于供肝功能不足导致术后出现不同程度的小肝综合征(SFSS)表现,影响受体存活,严重困扰部分肝移植的进一步发展。目前对SFSS的详细发生机制并不清楚,可能与供、受体双方多种因素有关,门静脉高灌注损伤、肝动脉低灌注、肝内微循环障碍以及异常的肝再生与SFSS的发生发展密切相关。理想的动物模型是进行基础和干预研究的前提,非静脉转流下的猪小体积肝移植模型与临床有着相似的手术操作过程和病理生理变化,不但进行了大鼠模型中不常采用而临床必需的肝动脉重建,保留了肝动脉灌注的动态变化对SFSS发生发展的作用,而且避免了传统猪移植模型中体外静脉转流带来的不必要的脾脏切除及其对术后早期门脉高灌注、供肝再生等的干扰,因此特别适合SFSS的系统研究。生长抑素(SST)是一种多效应激素,在降低门脉血流、调节肝窦收缩、抑制肝脏纤维增生、减轻肠道缺血再灌注损伤以及抑制肝细胞再生等多个方面具有重要作用,基于大鼠模型和临床个案的研究结果显示SST具有潜在的减轻小体积供肝损伤的作用,但是目前仍然缺少更多证据的支持。在本课题中,我们先建立非转流下猪30%体积供肝移植模型,并评价其安全性和临床贴合性;然后在稳定有效的小体积肝移植模型上,进行SST的干预研究,并初步探讨相关机制。
     一、非转流下猪小体积肝移植物损伤模型的建立
     目的:建立非转流下猪30%体积供肝移植模型,并评价其安全性和临床贴合性。
     材料和方法:13对巴马小型猪,体重25-30kg,随机分为100%全肝移植组(n=5)和30%小体积肝移植组(n=8),均在非静脉转流条件下完成肝移植术。观察比较两组供肝特征及增重率,存活情况(非转流耐受率、手术存活率、供肝7d累积存活率),术中血流动力学及血气变化,术后2h及第1、2、3、5、7d的肝肾功能变化。
     结果:两组除供肝大小外,在热缺血时间、冷缺血时间、温缺血时间、无肝期、肝下下腔静脉阻断时间、受体手术时间以及术中输血量方面差异均无统计学意义;两组非静脉转流耐受率分别为80%(4/5)和100%(8/8),手术存活率为80%(4/5)和75%(6/8);30%供肝组的供肝7d累积存活率明显低于100%供肝组(33.3%vs.100%),但由于实验例数较少,尚无统计学差异(P=0.0521>0.05);两组受体无肝期均出现相似的血流动力学改变,与无肝前期比较,MAP、CVP、PH以及BE值显著下降(P<0.01),而HR及血K+浓度显著升高(P<0.01),但两组间比较无统计学差异,门脉血流开放后,上述指标逐渐恢复,至关腹前除轻微酸中毒外已基本恢复至无肝前期水平;与100%供肝组比较,30%供肝组ALT、AST在术后5d内显著升高(P<0.05), TBIL在术后1至7d显著升高(P<0.01),PT同样在术后1、2、5和7d明显延长(P<0.05)。两组血清肌酐均于术后第1d达到高峰后快速恢复,组间比较没有显著性差异。30%供肝组的供肝平均增重率明显高于100%供肝组(152.8%vs.15.9%)。
     结论:非转流下猪30%体积供肝移植模型稳定有效,可以用于小体积肝移植物损伤的研究。
     二、生长抑素对猪小体积肝移植物损伤的保护作用及机制
     目的:研究SST对术后早期猪小体积肝移植物损伤的保护,并初步从门脉压力梯度变化(PPG)、肝内微循环调节、肝再生及凋亡等方面探讨相关机制。
     材料和方法:12对巴马小型猪,体重25-30kg,随机分为30%小体积肝移植+生理盐水对照组(小肝NS组,n=7)和30%小体积肝移植+SST干预组(小肝SST组,n=5),均在非静脉转流条件下完成肝移植术,另取前一部分中手术存活的100%供肝组(全肝对照组,n=4)作为模型对照。SST-14干预方案:受体门脉开放前3min团注125μg,然后以5μg/kg/h持续给药24h,B组以等量生理盐水作为对照。观察比较各组供肝特征及增重率,供肝7d累积存活率,术后2h及第1、2、3、5、7d的肝肾功能变化,术后2h、3d和7d的肝脏病理改变(光镜和电镜),盐水柱法监测术中及术后PPG的变化;免疫组化和TUNEL法分别检测术后2h、3d和7d的Ki-67增殖指数和凋亡指数;Real-time PCR和免疫组化法分别检测术后2h各组肝内ET-1转录和第3d的蛋白表达水平;ELISA法连续检测术后2h、1、2、3、5、7d外周血ET-1和NO的浓度,并计算两者比值。
     结果:
     1、供肝存活率:各组除供肝大小外,在热缺血时间、冷缺血时间、温缺血时间、无肝期、肝下下腔静脉阻断时间、受体手术时间以及术中输血量方面差异均无统计学意义;小肝SST组供肝7d累积存活率高于小肝NS组(80%vs.42.9%),但是差异仍缺少统计学意义,可能与实验例数较少有关(P=0.1283>0.05, Log-rank test)。
     2、肝肾功能变化:与小肝NS组比较,小肝SST组ALT、AST在术后1、2、3d显著下降(P<0.05), TBIL在术后1至7d显著下降(P<0.05),PT同样在术后1至5d显著下降(P<0.05)。术后肌酐水平各时间点两组比较均无显著性差异。
     3、光镜下病理检查:小肝NS组与全肝对照组比较,术后2h肝细胞肿胀变性坏死、肝窦扩张淤血、门管区静脉内皮损伤、出血等均较严重,术后第3d大量肝细胞脂肪变,肝索增厚、坏死后纤维增生、汇管区扩大及炎症反应均较明显,术后第7d仍然存在肝小叶结构紊乱和肝细胞空泡样变性,可见肝细胞增殖反应;与小肝NS组比较,小肝SST组各时间点的损伤、增殖及纤维化反应均较轻,肝小叶结构无明显紊乱,炎症反应不明显。
     4、电镜下超微结构检查:小肝NS组与全肝对照组比较,术后2h肝细胞线粒体明显肿胀,胞浆内可见大量脂肪滴,细胞核有固缩反应,肝窦淤血、窦内皮破坏严重,Disse间隙消失并可见间隙内出血;与小肝NS组比较,小肝SST组肝细胞变性轻微,线粒体轻度扩张,肝窦结构基本完整。
     5、PPG的变化:与全肝对照组比较,小肝NS组术后5d内各时间点PPG显著升高(P<0.05),并于术后30min和ld达到峰值,至术后7d基本恢复,而小肝SST组较NS组显著降低(P<0.05),术后5min达到峰值后逐步下降,术后第3d基本恢复,与全肝组比较,术后各时间点及术后2d仍显著升高(P<0.05)。
     6、肝再生情况:与全肝对照组比较,小肝NS组术后2h、3d、7d的Ki-67增殖指数均显著升高(P<0.05),第7d的供肝增重率明显升高(P<0.05);与小肝NS组比较,小肝SST组术后2h和第3d的Ki-67增殖指数显著下降(P<0.05),但术后第7d两者无显著性差异,且两组供肝增重率比较亦无显著性差异。
     7、凋亡指数:与全肝对照组比较,小肝NS组术后2h、3d、7d的凋亡指数均显著升高(P<0.05);与小肝NS组比较,小肝SST组术后各时间点凋亡指数均显著下降(P<0.05)。
     8、肝内ET-1转录及表达水平:与全肝对照组比较,小肝NS组术后2h ET-1转录及第3d的蛋白表达水平均显著升高(P<0.05);与小肝NS组比较,小肝SST组术后2h ET-1转录及第3d的蛋白表达水平均显著降低(P<0.05)。
     9、外周血ET-1/NO比值的变化:与全肝对照组比较,小肝NS组术后l、2、3d的ET/NO比值显著升高(P<0.05);而小肝SST组术后除第1d显著下降外,其余各时间点与全肝对照组无显著性差异;与小肝NS组比较,小肝SST组术后1、2、3d的ET/NO比值显著下降(P<0.05)。
     结论:
     1、小体积肝移植术后早期持续升高的PPG和微循环障碍与小体积供肝损伤密切相关。
     2、小体积肝移植术后早期肝细胞的过度增殖对于小肝功能和体积的恢复并不是必需的,甚至可能存在负面效应。
     3、SST-14可通过降低PPG、改善ET-1与NO介导的肝内微循环功能紊乱及减少肝细胞凋亡来保护小体积供肝功能,改善供肝7d累积存活率。
     4、短期SST-14干预可降低小体积肝移植术后早期肝细胞增殖速度,但是并不影响供肝功能和体积的恢复。
Partial liver transplantation (PLT) is currently gaining wider acceptance, which definitely alleviates donor organ shortage, but also reveals the problem of small-for-size graft syndrome (SFSS). Currently, the precise mechanism behind it remains still unknown. Both clinic and animal studies have shown the portal hyperperfusion, hepatic arterial hypoperfusion, imbalance of hepatic microvesicular regulation, and the abnormal liver regeneration account much for the occurrence and development of SFSS. Rodent models as well as those large animal ones established under the help of veno-venous bypass (VVB) are away from clinical situation. Pigs transplanted with 30% liver grafts without VVB are more suitable for the study of SFSS because of their similarity to clinic procedures in PLT and the physiological status of humans. Somatostatin (SST) has been used for two decades to treat oesophageal variceal haemorrhage for its capacity to decrease portal venous pressure without major side effects. Additionally, SST can induce diverse physiological effects in different tissues and cells, mediated by five different reciptors of SST (SSTR). It was reported recently SST, but other analogues, has intrahepatic effects such as inhibition of ET-1-induced contraction of hepatic stellate cells (HSC), and the transcription and expression of ET-1. It has been indicated low-dose SST-14 can rescue small-for-size (SFS) grafts in rat models and also comfirmed by the individual clinical reports, but further investigations have to be conducted. In this study, we will try to establish a feasible and effective porcine model with 30% liver graft without VVB, and then SST-14 will be applied to the model to assess the effect on the SFS graft injury. Portal pressure gradient (PPG), Changes of microvesicular regulation, apoptosis and the liver regeneration will be addressed to search for the protective mechanism.
     Part1. Establishing the model of small-for-size graft injury in pigs without veno-venous bypass
     Objective:To establish a feasible and effective SFS graft injury models in miniature pigs. Materials and Methods:13 pairs of Ba-Ma miniature pigs were randomly assigned into two groups:100% liver graft group (n=5) and 30% liver graft group (n=8), both transplanted with no VVB. The profiles of intra-operative hemodynamics and metabolism were investigated. Animals were followed for 7 days with daily serum for biochemistry exam. The survival rate (non-VVB tolerance rate, operative survival rate, and 7-day accumulative graft survival rate) were respectively calculated as well as the graft weight increase rate at post operative day (POD) 7.
     Results:All the recipients survived the anhepatic period except one in 30% graft group died of irretrievable acidosis. non-VVB tolerance rate and operative survival rate were all above 75% in both groups.7-day accumulative survival rate in 30% graft group was lower than that in 100% graft group (33.3% vs.100%) but with no significant difference (P=0.0521>0.05). Pigs in 30% graft group showed significantly prolonged prothrombin time, elevated bilirubin and aminotransferase levels during almost the entire follow-up. Serum creatinine concentrations were similar in both groups, with a sharp increase in the first one day, and then settled at values of no significant difference to that before reperfusion. MAP, CVP and BE in both groups, particularly in 30% graft group, decreased significantly at anhepatic phase for the rapid impairment to the effective blood volume (P<0.01), which inversely evoked a significant elevation of heart rate and K+. After reperfusion, MAP, CVP and K+ restored gradually and got almost complete recovery at the end of operation despite a mild acidosis.
     Conclusions:Porcine model of 30% liver graft transplantation without VVB can be safely established and used for the study of SFS graft injury as its good clinical simulation on operative procedures and clinicopathological performance.
     Part2. Protective effect of somatostatin on small-for-size liver grafts in pigs and the underlying mechanism
     Objective:Investigate the protective effect of SST on the SFS graft injury and explore the preliminary underlying mechanisms.
     Materials and Methods:12 pairs of Ba-Ma miniature pigs were assigned into two groups: SFS+NS group (n=7), transplanted with 30% liver graft with normal saline as control; SFS+SST group (n=5), transplanted with 30% liver graft with SST administered as following method:Bolus infusion via peripherial veins 3 minutes just before portal reperfusion followed by continous infusion at 5μg/kg/h for 24 hours. The whole liver group (n=4) transplanted with 100% liver graft established in our first part study was used as model control in this research; All animals were followed for 7 days with daily serum for biochemistry exam. The 7-day accumulate graft survival rate and the graft weight increase at POD 7 were respectively calculated.The kinesis of PPG during 7 days follow-up and pathological findings at 2 hours after reperfusion, POD3 and 7 were evaluated. Additional parts of liver tissues were harvested to detect the expression of Ki-67、ET-1 by imnunohistochemistry and the apoptosis by TUNEL. The transcription levels of ET-1 mRNA were examed by Real-Time PCR. ELISA kits were also used to detect the levels of ET-1 and NO in peripheral plasm at 2 hours post reperfusion and on POD1、2、3、5 and 7, and the ratio of ET-1 to NO was further calculated.
     Results:
     1. Survival rate:No significant differences were found among the groups in warm ischemia time, cold ischemia time, portal to arterial reperfusion time, infra-hepatic inferior vena cava occlusion time, operating time for recipient, and blood transfusion.7-day accumulative graft survival rate in SFS+SST group was visibly higher than that in SFS+NS group but with no significant difference. (80% vs.42.9%,P=1283>0.05).
     2. Liver and renal function:Compared to SFS+NS group, the ALT and AST in SFS+SST group on POD1,2 and 3 were significantly decreased as well as the TBIL on POD 1 to 7 and PT on POD 1 to 5 (P<0.05). There were no significant differences of serum creatinine concentrations among three groups.
     3. Light microscopy examination:Severe sinusoidal congestion and disruption of architecture in the centrilobular region as well as focal endothelial denudation and hemorrhage into the connective tissue at interface zone were observed in SFS+NS group as early as 2 hours after reperfusion, whereas in the whole liver group, these changes were minimal. By POD3, there were more extensive hepatocyte microvesicular steatosis and fibrosis in SFS+NS group and By POD 7, the pathological changes became less severe with evidence of repair of disrupted hepatic architecture. Compared to SFS+NS group, SFS+SST group presented mild injury with almost normal lobules of liver.
     4. Electronic microscopy examination:In SFS+NS group, the hepatocyte microvesicular steatosis, tremendous mitochondrial swelling, and sinusoidal disruption were observed, whereas in the whole liver group, almost normal hepatocytes with only mild swelling of mitochondria and intact sinusoidal endothelial were observed. The pathological injury in group SFS+SST was less severe with almost integrity of sinusoidal endothelial lining.
     5. Kinesis of PPG after reperfusion:Over the postoperative period, the values of PPG in SFS+NS group were significantly higher than those in the whole liver group (P<0.01) with two crest values at 2 hours after reperfusion and on POD 1 whereas in SFS+SST group the values were significantly decreased (P<0.01) but still higher than the whole liver group with peak at 5 minutes post-reperfusion and thereafter downward to baseline on POD 3.
     6. Liver regeneration:The Ki-67 proliferation index in SFS+NS group was significantly increased at 2 hours post reperfusion and on POD 3 and 7 (P<0.05). Compared to SFS+NS group, the Ki-67 proliferation index in SFS+SST group was significantly decreased at 2 hours after reperfusion and on POD 3 (P<0.05), but with no significant difference on POD 7. There was also no significant difference of graft weight increase rate on POD 7.
     7. Apoptosis index:Compared to the whole liver group, the apoptosis index in SFS+NS group was significantly increased at 2 hours post reperfusion and on POD 3 and 7 (P<0.05). Compared to SFS+NS group, the apoptosis index in SFS+SST group was significantly decreased at each time checked (P<0.05).
     8. Transcription and expression of intrahepatic ET-1:Compared to the whole liver group, the transcription of ET-1 at 2 hours post reperfusion as well as the expression on POD 3 in SFS+NS group was significantly increased (P<0.05), whereas in SFS+SST group they both were significantly decreased when compared to SFS+NS group (P<0.05).
     9. The ratio of ET-1/NO:Compared to the whole liver group, the ratio of ET-1/NO on POD1,2,3 in SFS+NS group was significantly increased (P<0.05), whereas in SFS+SST group, it significantly decreased when compared to SFS+NS group (P<0.05).
     Conclusions:
     1. Persistent higher PPG and hepatic microcirculation disturbance at the early period of SFS liver transplantation accounts much for the SFS graft injury.
     2. The over-proliferation of the hepatocytes at the early period of SFS liver transplantation is not necessitous for the size-reduced liver grafts'recovery in volume and function, and instead may even do harm to this process.
     3. SST-14 can improve the the function and survival of SFS graft in pigs by decreasing the PPG, attenuation of hepatic microcirculation disturbance and reduction of apoptosis.
     4. Short-term intervention of SST-14 with routine dose decreases the proliferation rate of hepatocytes at the early period of SFS liver transplantation, but has no impairment to the graft recovery in volume and function.
引文
1. Makuchi M, Miller CM, Olthoff K, et al. Adult-adult living donor liver transplantation. J Gsatrointest Surg 2004; 8:303-312.
    2. Trotter JF, Wachs M, Everson GT, et al. Adult-adult living donor liver transplantation of the right hepatic lobe from a living donor. N Engl J Med 2002; 346:1074-1082.
    3. Ikegami T, Shimada M, Imura S, et al. Current concept of small-for-size grafts in living donor liver transplantation. Surg Today 2008; 38:971-982.
    4. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant,2005; 5(11): 2605-2610.
    5. Ito T, Kiuchi T, Yamamoto H, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation:pathogenesis and clinical implications. Transplantation 2003; 75 (8): 1313-1317.
    6. Lo CM, Liu CL, Fan ST. Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size liver graft-successful treatment with splenic artery ligation. Liver Transpl 2003; 9: 626-628.
    7. Troisi R, Cammu G, Milliterno G, et al. Modulation of portal graft inflow:A necessity in adult living donor liver transplantation? Ann Surg 2003; 237:429-436.
    8. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow:hepatic arterial buffer response. Am J Physiol 1985; 249(5 Part 1):G549-G556.
    9. Marcos A, Olzinski AT, Ham JM, et al. The interrelationship between portal and arterial blood flow after adult to adult living donor liver transplantation. Transplantation 2000; 70 (12):1697-1703.
    10. Kelly DM, Zhu X, Shiba H, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl 2009; 15(11): 1448-1457.
    11. Demetris AJ, Kelly DM, Eghtesad B, et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 2006; 30: 986-993.
    12. Man KM, Fan ST, Chung M, et al. Graft injury in relation to graft size in right lobe live donor liver transplantation:a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression. Ann Surg 2003,237(2):256-264.
    13. Man K, Lee TK, Liang TB, et al. FK409 ameliorates small-for-size liver graft injury by attenuation of portal hypertension and down-regulation of Egr-1 pathway. Ann Surg 2004; 240:159-168.
    14. Morioka D, Kubota T, Sekido H. Prostaglandin El improved the function of transplanted fatty liver in a rat reduced-size-liver transplantation model under conditions of permissible cold preservation. Liver Transpl 2003; 9:79-86.
    15. Xu X, Man K, Zheng SS, et al Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl 2006; 12:621-627.
    16. Tian Y, Graf R, Jochum W, et al. Arterialized partial orthotopic liver transplantation in the mouse:a new model and evaluation of the critical liver mass. Liver Transpl 2003; 9:789.
    17. Zhong Z, Schwabe RF, Kai Y et al. Liver regeneration is suppressed in small-for-size liver graft after ansplantation:involvement of c-jun N-terminal kinase, cyclin Dl and defective energy supply. Transplantation 2006; 82:241-250.
    18. Eguchi S, Yanaga K, Sugiyama N, et al. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl 2003; 9: 547-551.
    19. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 1997; 276:60-66.
    20. Kelly DM, Demetris AJ, Fung JJ, et al. Porcine partial liver transplantation:a novel model of the "small-for-size" liver graft. Liver Transpl 2004; 10:253.
    21. Lesurtel M, Graf R, Aleil B, et al. Platelet-derived serotonin mediates liver regeneration. Science 2006;312:104.
    22. Ueda S, Yamanoi A, Hishikawa Y, et al. Transforming growth factor-betal released from the spleen exerts a growth inhibitory effect on liver regeneration in rats. Lab Invest 2003; 83:1595.
    23. Lo, CM. Splenic artery occlusion for small-for-size syndrome:better late than never but early is the best. Liver Transpl 2009; 15(2):124-125.
    24. Humar A, Beissel J, Crotteau S, et al. Delayed splenic artery occlusion for treatment of established small-for-size syndrome after partial liver transplantation. Liver Transpl 2009; 15(2):163-168.
    25. Yamada T, Tanaka K, Uryuhara K, et al. Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant 2008; 8(4):847-853.
    26. Troisi R, Hesse UJ, Decruyenaere J, et al. Functional, life threatening disorders and splenectomy following liver transplantation. Clin Transplant 1999; 13:380-388.
    27. Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive and control rats. Gastroenterology 2001; 120:975-983.
    28. Villanueva C, Balanzo J. Variceal bleeding pharmacological treatment and prophylactic strategies. Drugs 2008; 68(16):2303-2324.
    29. Reynaert H, Vaeyens F, Qin H, et al. Somatostatin suppresses endothelin-1-induced rat hepatic stellate cell contraction via somatostatin receptor subtype 1. Gastroenterology 2001; 121:915-930.
    30. Matrella E, Valatas V, Notas G, et al. Bolus somatostatin but not octreotide reduces hepatic sinusoidal pressure by a NO-independent mechanism in chronic liver disease. Aliment Pharmacol Ther 2001; 15:857-864.
    31. Ozden I, Kara M., Pinarbasi B, et al. Somatostatin and propranolol to treat small-for-size syndrome that occurred despite splenic artery ligation. Exp Clin Transplant 2007; 5(2):686-689.
    32. Calne RY, Yoffa DE, White HJO, Maginn RR. A technique of orthotopic liver transplantation in the pig. Brit J Surg 1968; 55:203.
    33. Taira K, Shiraishi M, Hiroyasu S, et al. A new, stable model fo left lobectomy for living-related liver transplantation in the pig. Transplant Proc 1998; 30:3207-3208.
    34. Yanaga K, Kishikawa K, Suehiro T, et al. Partial hepatic grafting:porcine study on critical volume reduction. Surgery 1995; 118:486.
    35. Xia Q, Lu Tian-Fei, Zhou Zhi-Hua, et al. Extended hepatectomy with segments I and VII as resection remnant:a simple model for small-for-size injuries in pigs. Hepatobiliary Pancreat Dis Int 2008;7:601.
    36. Hoffmann K, Weigand MA, Hillebrand N, Buchler MW, Schmidt J, Schemmer P. Is veno-venous bypass still needed during liver transplantation? a review of the literature. Clin Transplant 2009; 23:1.
    37. Chalstrey LJ, Parbhoo, SP, Tappin A, et al. Technique of orthotopic liver transplantation in the pig. Brit J Surg 1971;58:585.
    38.郑树国,冯晓彬,董家鸿,等.非转流小型猪原位肝移植模型的建立及评价.中国普外基础与临床杂志 2005;12(5):451-454.
    39.谢金敏,潘明新,张会迎,等.非转流小型猪原位肝移植模型的建立及评价.中国组织工程研究与临床康复 2007;2(4):613-616.
    40.施晓敏,傅志仁,朱友华,等.体内和体外两种方法猪小体积肝移植模型建立的比较.中国组织工程研究与临床康复 2009;13(5):837-840.
    41. Fondevila C, Hessheimer AJ, Taura P, et al. Portal hyperperfusion:mechanism of injury and stimulus for regeneration in porcine small-for-size transplantation. Liver Transpl 2010; 16:364-374.
    42. Court FG, Wemyss-Holden SA, Morrison CP, et al. Segmental nature of the porcine liver and its potential as a model for experimental partial hepatectomy. Brit J Surg 2003; 90:440
    43. Paluszkiewicz R, Hevelke P, Zieniewicz K, et al. Evaluation of donor's liver regeneration after left lobe harvesting for living-related liver transplantation. Transplantat ion Proc 2006; 38:199-203.
    44. Wang HS, Ohkohchi N, Enomoto Y, et al. Excessive portal flow causes graft failure in extremely small-for-size liver transplantation in pigs. World JGastroenterol 2005; 11(44):6954-6959.
    45. Kostopanagiotou G, Pandazi A, Arkadopoulos N, et al. Norepinephrine in small-for-size liver grafts: an experimental study in pigs. JSurgRes 2007; 141(2):257.
    46. Chari RS, Gan TJ, Robertson KM, et al. Venovenous bypass in adult orthotopic liver transplantation: routine or selective use? JAm Coll Surg 1998; 186(6):683-690.
    47.彭承宏,肖卫东,吴伟顶,等.小体积肝移植和辅助性原位小体积肝移植治疗猪急性肝功能衰竭的近期疗效观察.中华肝胆外科杂志 2006;12(10):699-703.
    48. Oike F, Uryuhara K, Otsuka M, et al. Simplified technique of orthotopic liver transplantation in pigs. Transplantation,2001; 71(2):328-331.
    49.吴丰春,魏泓,甘世祥,等.巴马小型猪和贵州小型猪遗传多样性的RAPD分析.实验生物学报2001;34(2):116.
    50.谢金敏,潘明新,张会迎,等.非转流小型猪原位肝移植模型的建立及评价.中国组织工程研究与临床康复2007;2(4):613-616.
    51. Motsch J, Zimmermann FA. Effects of a passive venous bypass on cardiovascular and acid-base balance variables during liver transplantations in pigs. J Cardiothorac Anesth 1987; 1(6):535.
    52. Rossi G, Langer M, Maggi U, et al. Veno-veous bypass versus no bypass in orthotopic liver transplantation:hemodynamic, metabolic, and renal data. Transplantation Proc 1998; 30:1871.
    53. Nakata Y, Sato M, Watanabe Y, et al. Intraoperative fluid requirements during porcine liver transplantation. Transplantation Proc 2000; 32:2338-2339.
    54.卿德科,韩立本.小型猪非转流式原位肝移植无肝期控制性补液.贵阳医学院学报2005;30(3):217-222.
    55. Murphy ND, Kodakat SK, Wendon JA, et al. Liver and intestinal lactate metabolism in patients with acute hepatic failure undergoing liver transplantation. Crit Care Med 2001; 29(11):2111-2118.
    56. Pascher A, Neuhaus P. Bile duct complications after liver transplantation. Transpl Int 2005; 18(6): 627-642.
    57. Khuroo MS, Ashgar H, Khuroo NS, et al. Biliary disease after liver transplantation:the experience of the King Faisal Specialists Hospital and Research Center, Riyadh. J Gastroenterol Hepatol 2005; 20(2):217-228.
    58. Takada Y. Some aspects of adult living donor liver transplantation:small-for-size graft and ABO mismatch. Hepatobiliary Pancreat Dis Int 2009; 8(2):121-123.
    59. Yagi S, lida T, Taniguchi K, et al. Impact of portal venous pressure on regeneration and graft damage after living donor liver transplantation. Liver Transpl 2005; 11:68-75.
    60. Rebecca T. Liver regeneration:from myth to mechanism. Nature 2004; 5:836-847.
    61. Ferrer JV, Ariceta J, Guerrero D, et al. Prevention by somatostatine and N-acetylcisteine of multiorgan failure mediated by oxidative stress after intestinal ischemia. Transplant Proc 1999; 31: 2570-2571.
    62. Morris JB, Guerrero NH, Furth EE, et al. Somatostatin attenuates ischemic intestinal injury. Am J Surg 1993; 165:676-680.
    63. Fort J, Oberti F, Pilette C, et al. Antifibrotic and hemodynamic effects of the early and chronic administration of octreotide in two models of liver fibrosis in rats. Hepatology 1998; 28:1525-31
    64. Lang A, Sakhnini E, Fidder HU, et al. Somatostatin inhibits proinflammatory cytokine secretion from rat hepatic stellate cells. Liver Int 2005; 25(4):808-816.
    65. Pan Q, Li DG, Lu HM, et al. Antiproliferative and proapoptotic effects of somatostatin on activated hepatic stellate cells. World J Gastroenterol 2004; 10(7):1015-1018.
    66. Pyronnet S, Bousquet C, Najib S, Azar R, Laklai H, Susini C. Antitumor effects of somatostatin. Mol Cell Endocrinol 2008; 286:230-237.
    67. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-size graft in living donor liver transplantation:how far should we go? Liver Transpl 2003; 9:S29-35.
    68. Tanaka K, Yamada T. Living donor liver transplantation in Japan and Kyoto University:what can we learn? JHepatol 2005; 42:25-8.
    69. Umeda Y, Yagi T, Sadamori H, et al. Effects of prophylactic splenic artery modulation on portal overperfusion and liver regeneration in small-for-size graft. Transplantation 2008; 86:673-680.
    70. Yoshizumi T, Taketomi A, Soejima Y, et al. The beneficial role of simultaneous splenectomy in living donor liver transplantation in patients with small-for-size graft. Transpl Int 2008; 21(9): 833-842.
    71. Takada Y, Ueda M, Ishikawa Y, et al. End-to-side portocaval shunting for a small-for-size graft in living donor liver transplantation. Liver Transpl 2004; 10:807-810.
    72. Shimada M, Ijichi H, Yonemura Y, et al. The impact of splenectomy or splenic artery ligation on the outcome of a living donor adult liver transplantation using a left lobe graft. Hepato-Gastroenterology 2004; 51:625-629.
    73. Troisi R, Ricciardi S, Smeets P, et al. Effects of hemi-portocaval shunts for infl ow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am J Transplant 2005; 5: 1397-1404.
    74. Oura T, Taniguchi M, Shimamura T, et al. Does the permanent portacaval shunt for a small-for-size graft in a living donor liver transplantation do more harm than good? Am J Transplant 2008; 8(1): 250-252.
    75. Sato Y, Yamamoto S, Takeishi T, et al. Management of major portosystemic shunting in small-for-size adult living-related donor liver transplantation with a left-sided graft liver. Surg Today 2006; 36:354-360.
    76. Shirouzu Y, Ohya Y, Tsukamoto Y, et al. How to handle a huge portosystemic shunt in adult living donor liver transplantation with a small-for-size graft:report of a case. Surg Today 2009; 39: 637-640.
    77. Busani S, Marconi G, Schiavon L, et al. Living donor liver transplantation and management of portal venous pressure. Transplanationt Proc 2006; 38:1074-1075.
    78. Suehiro T, Shimada M, Kishikawa K, et al. Effect of intraportal infusion to improve small for size graft injury in living donor adult liver transplantation. Transplant Int 2005; 18:923-928.
    79. Zhao Y, Man K, Lo CM, et al. Attenuation of small-for-size liver graft injury by FTY720: significance of cell-survival Akt signaling pathway. Am J Transplant 2004; 4:1399-1407
    80. Man K, Zhao Y, Xu A, et al. Fat-derived hormone adiponectin combined with FTY720 significantly improves small-for-size fatty lever graft survival. Am J Transplant 2006; 6(3):467-476.
    81. Yu Y, Yao AH, Chen N, et al. Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol Ther 2007; 15(7):1382-1389.
    82. Peter C G(?)tzsche, Asbjorn Hrobjartsson. Somatostatin analogues for acute bleeding oesophageal varices. Cochrane Database of Systematic Reviews 2008; 3:1-41 (Art. No.:CD000193. DOI: 10.1002/14651858.CD000193.pub3).
    83. Wadhawan M, Dubey S, Sharma BC, et al. Hepatic venous pressure gradient in cirrhosis correlation with the size of varices, bleeding, ascites, and child's status Dig Dis Sci 2006; 51:2264-2269.
    84. Parikh S. Hepatic venous pressure gradient:worth another look? Dig Dis Sci 2009; 54:1178-1183.
    85. Gupta TK, Chen L, Groszmann RJ. Pathophysiology of portal hypertension. Baillieres Clin Gastroenterol 1997; 11:203.
    86. Shah V. Molecular mechanisms of increased intrahepatic resistance in portal hypertension. J Clin Gastroenterol 2007; 41:S259.
    87. Wang XD, Soltesz V, Anderson R, et al. Bacterial translocation in acute liver failure induced by 90 percent hepatectomy in the rat. Br J Surg 1993; 80:66.
    88. Reynaert H, Geerts A. Pharmacological rationale for the use of somatostatin and analogues in portal hypertension. Alimnent Pharmacol Ther 2003; 18:375-386.
    89. Rohrer SP, Birzin ET, Mosley RT, et al. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 1998; 282:737-40.
    90. Albillos A, Rossi I, Iborra J, et al. Octreotide prevents postprandial splanchnic hyperemia in patients with portal hypertension. JHepatol 1994; 21:88-94.
    91. Ludwig D, Schadel S, Bruning A, et al.48-hour hemodynamic effects of octreotide on postprandial splanchnic hyperemia in patients with liver cirrhosis and portal hypertension:double-blind, placebo-controlled study. Dig Dis Sci 2000; 45:1019-27.
    92. McCormick PA, Biagini MR, Dick R, et al. Octreotide inhibits the meal-induced increases in the portal venous pressure of cirrhotic patients with portal hypertension:a double-blind, placebo-controlled study. Hepatology 1992; 16:1180-6.
    93. Sieber CC, Mosca PG, Groszmann RJ. Effect of somatostatin on mesenteric vascular resistance in normal and portal hypertensive rats. Am JPhysiol 1992; 262:G274-277.
    94. Wiest R, Tsai MH, Groszmann RJ. Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive and control rats. Gastroenterology 2001; 120:975-83.
    95. Huang HC, Lee FY, Chan CC, et al. Effects of somatostatin and octreotide on portal-systemic collaterals in portal hypertensive rats. JHepatol 2002; 36:163-8.
    96. Torrecillas G, Medina J, Diez-Marques ML, et al. Mechanisms involved in the somatostatin-induced contraction of vascular smooth muscle cells. Peptides 1999; 20:929-35.
    97. Izumi Y, Honda M, Hatano M. Effect of somatostatin on plasma renin activity. Endocrinol Jpn 1979; 26:389-94.
    98. Mountokalakis T, Levy M. Effect of a selective octapeptide analogue of somatostatin on renal water excretion in the dog. Metabolism 1985; 34:408-409.
    99. Bosch J, Kravetz D, Rodes J. Effects of somatostatin on hepatic and systemic hemodynamics in patients with cirrhosis of the liver:comparison with vasopressin. Gastroenterology 1981; 80: 518-25.
    100. Cirera I, Feu F, Luca A, et al. Effects of bolus injections and continuous infusions of somatostatin and placebo in patients with cirrhosis:a double-blind hemodynamic investigation. Hepatology 1995; 22:106-11.
    101.Bhathal PS, Grossmann HJ. Reduction of the increased portal vascular resistance of the isolated perfused rat liver by vasodilators. JHepatol 1985; 1:325-37.
    102. Housset C, Rockey DC, Bissell DM. Endothelin receptors in rat liver:lipocytes as a contractile target for endothelin 1. Proc Natl Acad Sci 1993; 90:9266-9270.
    103. Wiest R, Groszmann RJ. Nitric oxide and portal hypertension:its role in the regulation of intrahepatic and splanchnic vascular resistance. Semin Liver Dis 1999; 19:411-426.
    104. Kawada N, Tran-Thi TA, Klein H, Decker K. The contraction of hepatic stellate (Ito) cells stimulated with vasoactive substances. Possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 1993; 213:815-823.
    105. Laleman W, Van Landeghem L, Van der Elst I, Zeegers M, Fevery J, Nevens F. Nitroflurbiprofen, a nitric oxide-releasing cyclooxygenase inhibitor, improves cirrhotic portal hypertension in rats. Gastroenterology 2007b; 132:709-719.
    106. Moller S, Brinch K, Henriksen JH, Becker U. Effect of octreotide on systemic, central, and splanchnic haemodynamics in cirrhosis. JHepatol 1997; 26:1026-33.
    107. Vanheule E, Geerts AM, Reynaert H, Vlierberghe HV, Geerts A, De Vos M. Colle I. Influence of somatostatin and octreotide on liver microcirculation in an experimental mouse model of cirrhosis studied by intravital fluorescence mivroscopy. Liver Int 2008; 11:1478-3223.
    108. Nakabayashi H, Niijima A, Kurata Y, Usukura N, Takeda R. Somatostatin-sensitive neural system in the liver. Neurosci Lett 1986; 67:78-81.
    109. Martinez-Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J. 1995; 9:1401-1410.
    110. Bezerra JA. Plasminogen activators direct reorganization of the liver lobule after acute injury. Am J Pathol 2001; 158:921-929.
    111. Lopez F, Esteve JP, Buscail L, Delesque N, Saint-Laurent N, Vaysse N, Susini C. Molecular mechanisms of antiproliferative effect of somatostatin:involvement of a tyrosine phosphatase. Metabolism 1996; 48:14-16
    112. Kothary PC, Kokudo N, Eckhauser FE, et al. Preferential suppression of insulin-stimulated proliferation of cultured hepatocytes by somatostatin:evidence for receptor-mediated growth regulation. J Cell Biochem 1995; 59 (2):258-265.
    113. Kokudo N, Kothary PC, Eckhauser FE. Nakamura T, Raper SE. Inhibition of DNA synthesis by somatostatin in rat hepatocytes stimulated by hepatocyte growth factor or epidermal growth factor. Am J Surg 1992; 163:169-173
    114. Sharma K, Srikant CB. Induction of wild-type p53, Bax, and acidic endonuclease during somatostatin-signaled apoptosis in MCF-7 human breast cancer cells. Int J Cancer 1998; 76: 259-266.
    115. Teijeiro R, Rios R, Costoya JA, Castro R, Bello JL, Devesa J, Arce VM. Activation of human somatostatin receptor 2 promotes apoptosis through a mechanism that is independent from induction of p53. Cell Physiol Biochem 2002; 12:31-38.
    1. Sugawara Y, Makuuchi M. Small-for-size graft problems in adult-to-adult living-donor liver transplantation. Transplantation 2003; 75:20-22.
    2. Emond JC, Renz JF, Ferrell LD, Rosenthal P, Lim RC, Roberts JP, et al. Functional analysis of grafts from living donors. Implications for the treatment of older recipients. Ann Surg 1996; 224: 544-52.
    3. Kiuchi T, Tanaka K, Ito T, Oike F, Ogura Y, Fujimoto Y, et al. Small-for-size graft in living donor liver transplantation:how far should we go? Liver Transpl 2003; 9:S29-35.
    4. Morioka D, Egawa H, Kasahara M, Ito T, Haga H, Takada Y, et al. Outcomes of adult-to-adult living donor liver transplantation:a single institution's experience with 335 consecutive cases. Ann Surg 2001; 245:315-25.
    5. Miller C, Florman S, Kim-Schluger L, Lento P, De La Garza J, Wu J, et al. Fulminant and fatal gas gangrene of the stomach in ahealthy live liver donor. Liver Transpl 2004; 10:1315-1319.
    6. Tanaka K, Yamada T. Living donor liver transplantation in Japan and Kyoto University:what can we learn? JHepatol 2005; 42:25-28.
    7. Dahm F, Georgiev P, Clavien PA. Small-for-size syndrome after partial liver transplantation: definition, mechanisms of disease and clinical implications. Am J Transplant,2005,5(11): 2605-2610.
    8. Lo CM, Fan ST, Chan JK, Wei W, Lo RJ, Lai CL. Minimum graft volume for successful adult-to-adult living donor liver transplantation for fulminant hepatic failure. Transplantation 1996; 62:696-698.
    9. Masetti M, Siniscalchi A, De Pietri L, Braglia V, Benedetto F, Di Cautero N, et al. Living donor liver transplantation with left liver graft. Am J Transplant 2004; 4:1713-1716.
    10. Lauro A, DiagoUso T, Quintini C, Di Benedetto F, Dazzi A, De Ruvo N, et al. Adult-to-adult living donor liver transplantation using left lobes:the importance of surgical modulations on portal graft inflow. Transplant Proc 2007; 39:1874-1876.
    11. Yersiz H, Shaked A, Olthoff K, Imagawa D, Shackleton C, Martin P, et al. Correlation between donor age and the pattern of liver graft recovery after transplantation. Transplantation 1995; 60: 790-794.
    12. Ikegami T, Nishizaki T, Yanaga K, Shimada M, Kishikawa K, Nomoto K, et al. The impact of donor age on living donor liver transplantation. Transplantation 2000; 70:1703-1707.
    13. Kuramitsu K, Egawa H, Keeffe EB, Kasahara M, Ito T, Sakamoto S, et al. Impact of age older than 60 years in living donor liver transplantation. Transplantation 2007; 84:166-172.
    14. Nocito A, El-Badry AM, Clavien PA. When is steatosis too much for transplantation? J Hepatol 2006; 45:494-499.
    15. Gondolesi GE, Florman S, Matsumoto C, Huang R, Fishbein TM, Sheiner PA, Schwartz ME, Emre S, Thung S, Shapiro R, Miller CM. Venous hemodynamics in living donor right lobe liver transplantation. Liver Transpl 2002; 8:809-813.
    16. Ito T, Kiuchi T, Yamamoto H, et al. Changes in portal venous pressure in the early phase after living donor liver transplantation:pathogenesis and clinical implications. Transplantation 2003; 75 (8): 1313-1317.
    17. Man KM, Fan ST, Chung M, et al. Graft injury in relation to graft size in right lobe live donor liver transplantation:a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression. Ann Surg 2003,237(2):256-264.
    18. Eguchi S, Yanaga K, Sugiyama N, et al. Relationship between portal venous flow and liver regeneration in patients after living donor right-lobe liver transplantation. Liver Transpl 2003; 9: 547-551.
    19. Yagi S, lida T, Taniguchi K, et al. Impact of portal venous pressure on regeneration and graft damage after living donor liver transplantation. Liver Transpl 2005; 11:68-75.
    20. Ikegami T, Shimada M, Imura S, et al. Current concept of small-for-size grafts in living donor liver transplantation. Surg Today 2008; 38:971-982.
    21. Demetris AJ, Kelly DM, Eghtesad B, et al. Pathophysiologic observations and histopathologic recognition of the portal hyperperfusion or small-for-size syndrome. Am J Surg Pathol 2006; 30: 986-993.
    22. Man K, Lo CM, Ng IO, et al. Liver transplantation in rats using small-for-size grafts:a study of hemodynamic and morphological changes. Arch Surg 2001; 136:280-285.
    23. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow:hepatic arterial buffer response. Am JPhysiol 1985; 249(5 Part 1):G549-556.
    24. Kelly DM, Zhu X, Shiba H, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl 2009; 15(11): 1448-1457.
    25. Kostopanagiotou G, Pandazi A, Arkadopoulos N, et al. Norepinephrine in small-for-size liver grafts: an experimental study in pigs. J Surg Res 2007; 141(2):257-261.
    26. Suehiro T, Shimada M, Kishikawa K, Shimura T, Soejima Y, Yoshizumi T, et al. Impact of graft hepatic vein inferior vena cava reconstruction with graft venoplasty and inferior vena cava cavoplasty in living donor adult liver transplantation using a left lobe graft. Transplantation 2005; 80:964-968.
    27. Sugawara Y, Makuuchi M, Kaneko J, Ohkubo T, Matsui Y, Imamura H. New venoplasty technique for the left liver plus caudate lobe in living donor liver transplantation. Liver Transpl 2002; 8: 76-77.
    28. Yamada T, Tanaka K, Uryuhara K, et al. Selective hemi-portocaval shunt based on portal vein pressure for small-for-size graft in adult living donor liver transplantation. Am J Transplant 2008; 8(4):847-853.
    29. Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ, Lai CL, et al. Adult-to-adult living donor liver transplantation using extended right lobe grafts. Ann Surg 1997; 226:261-270.
    30. Umeshita K, Fujiwara K, Kiyosawa K et al. Operative morbidity of living liver donors in Japan. Lancet 2003; 362:687-690.
    31. Trotter JF, Adam R, Lo CM, Kenison J. Documented deaths of hepatic lobe donors for living donor liver transplantation. Liver Transpl 2006; 12:1485-1488.
    32. Fan ST, Lo CM, Liu CL, Wang WX, Wong J. Safety and necessity of including the middle hepatic vein in the right lobe graft in adult-to-adult live donor liver transplantation. Ann Surg 2003; 238: 137-148.
    33. Kornberg A, Heyne J, Schotte U, Hommann M, Scheele J. Hepatic venous outflow reconstruction in right lobe living-donor liver graft using recipient's superficial femoral vein. Am J Transplant 2003; 3:1444-1447.
    34. Lee S, Hwang S, Park K, Lee Y, Choi D, Ahn C, et al. An adult-to-adult living donor liver transplant using dual left lobe grafts. Surgery 2001; 129:647-650.
    35. Broering DC, Walter J, Rogiers X. The first two cases of living donor liver transplantation using dual grafts in Europe. Liver Transpl 2007; 13:149-153.
    36. Moon D, Lee S, Hwang S, Kim K, Ahn C, Park K, et al. Resolution of severe graft steatosis following dual-graft living donor liver transplantation. Liver Transpl 2006; 12:1156-1160.
    37. Kasahara M, Takada Y, Egawa H, Fujimoto Y, Ogura Y, Ogawa K, et al. Auxiliary partial orthotopic living donor liver transplantation:Kyoto University experience. Am J Transplant 2005; 5: 558-565.
    38. Ikegami T, Nishizaki T, Yanaga K, Kakizoe S, Nomoto K, Ohta R, et al. Living-related auxiliary partial orthotopic liver transplantation for primary sclerosing chonangitis - subsequent removal of the native liver. Hepato-Gastroenterology 1999; 46:2951-2954.
    39. Ringers J, Baranski AG, Dubbeld J, Sarton E, Veenendaal RA, Schaapherder AF, et al. A novel technique for auxiliary partial liver transplantation with reno-portal anastomosis and avoidance of the hepatoduodenal ligament. Am J Transplant 2006; 6:2802-2808.
    40. Busuttil RW, Tanaka K. The utility of marginal donors in liver transplantation. Liver Transpl 2003; 9:651-663.
    41. Hayashi M, Fujii K, Kiuchi T, Uryuhara K, Kasahara M, Takatsuki M, et al. Effects of fatty infi ltration of the graft on the outcome of living-related liver transplantation. Transplant Proc 1999; 31: 403.
    42. Soejima Y, Shimada M, Suehiro T, Kishikawa K, Yoshizumi T, Hashimoto K, et al. Use of steatotic graft in living-donor liver transplantation. Transplantation 2003; 76:344-348.
    43. Yamamoto K, Takada Y, Fujimoto Y, Haga H, Oike F, Kobayashi N, et al. Nonalcoholic steatohepatitis in donors for living donor liver transplantation. Transplantation 2007; 83:257-262.
    44. Nakamuta M, Morizono S, Soejima Y, Yoshizumi T, Aishima S, Takasugi S, et al. Short-term intensive treatment for donors with hepatic steatosis in living-donor liver transplantation. Transplantation 2005; 80:608-612.
    45. Del Guercio LR, Cohn JD, Kazarian KK, et al. A shunt equation for estimating the splenic component of hypertension. Am JSurg 1978; 135:70-75.
    46. Cheng YF, Huang TL, Chen TY, et al. Liver graft-to-recipient spleen size ratio as a novel predictor of portal hyperperfusion syndrome in living donor liver transplantation. Am J Transplant 2006; 6: 2994-2999.
    47. Troisi R, Cammu G, Milliterno G, et al. Modulation of portal graft inflow:A necessity in adult living donor liver transplantation? Ann Surg 2003; 237:429-436.
    48. Konishi N, Ishizaki Y, Sugo H, et al. Impact of a left-lobe graft without modulation of portal flow in adult-to-adult living donor liver transplantation. Am J Transplant 2008; 8:170-174.
    49. Umeda Y, Yagi T, Sadamori H, et al. Effects of prophylactic splenic artery modulation on portal overperfusion and liver regeneration in small-for-size graft. Transplantation 2008; 86:673-680.
    50. Lo CM, Liu CL, Fan ST. Portal hyperperfusion injury as the cause of primary nonfunction in a small-for-size liver graft-successful treatment with splenic artery ligation. Liver Transpl 2003; 9: 626-628.
    51. Gruttadauria S, Mandala L, Miraglia R, et al. Successful treatment of small-for-size syndrome in adult-to-adult living-related liver transplantation:single center series. Clin Transplant 2007; 21: 761-766.
    52. Humar A, Beissel J, Crotteau S, et al. Delayed splenic artery occlusion for treatment of established small-for-size syndrome after partial liver transplant. Liver Transpl 2009; 15:163-168.
    53. Lo CM. Splenic artery occlusion for small-for-size syndrome:better late than never but early is the best. Liver Transpl 2009; 15(2):124-125.
    54. Yan L, Wang W, Chen Z, et al. Small-for-size syndrome secondary to outflow block of the segments V and VIII anastomoses--successful treatment with trans-splenic artery embolization:a case report. Transplant Proc 2007; 39(5):1699-1703.
    55. Jeng LB, Lee CC, Chiang HC, et al. Indication for splenectomy in the era of living-donor liver transplantation. Transplant Proc 2008; 40(8):2531-2533.
    56. Yoshizumi T, Taketomi A, Soejima Y, et al. The beneficial role of simultaneous splenectomy in living donor liver transplantation in patients with small-for-size graft. Transpl Int 2008; 21(9): 833-842.
    57. Lesurtel M, Graf R, Aleil B, et al. Platelet-derived serotonin mediates liver regeneration. Science 2006; 312:104-107.
    58. Samimi F, Irish W, Eghtesad B, et al. Role of splenectomy in human liver transplantation under modern-day immunosuppression. Dig Dis Sci 1998; 43:1931-1937.
    59. Shimada M, Ijichi H, Yonemura Y, et al. The impact of splenectomy or splenic artery ligation on the outcome of a living donor adult liver transplantation using a left lobe graft. Hepato-Gastroenterology 2004; 51:625-629.
    60. Gelmini R, Romano F, Quaranta N, et al. Sutureless and stapleless laparoscopic splenectomy using radiofrequency:LigaSure device. Surg Endosc 2006; 20:991-994.
    61. Boillot O, Delafosse B, Mechet I, et al. Small-for-size partial liver graft in an adult recipient; a new transplant technique. Lancet 2002; 359:406-407.
    62. Takada Y, Ueda M, Ishikawa Y, et al. End-to-side portocaval shunting for a small-for-size graft in living donor liver transplantation. Liver Transpl 2004; 10:807-810.
    63. Troisi R, Ricciardi S, Smeets P, et al. Effects of hemi-portocaval shunts for inflow modulation on the outcome of small-for-size grafts in living donor liver transplantation. Am J Transplant 2005; 5: 1397-1404.
    64. Oura T, Taniguchi M, Shimamura T, et al. Does the permanent portocaval shunt for a small-for-size graft in a living donor liver transplantation do more harm than good? Am J Transplant 2008; 8(1): 250-252.
    65. Sato Y, Yamamoto S, Takeishi T, et al. Management of major portosystemic shunting in small-for-size adult living-related donor liver transplantation with a left-sided graft liver. Surg Today 2006; 36:354-360.
    66. Shirouzu Y, Ohya Y, Tsukamoto Y, et al. How to handle a huge portosystemic shunt in adult living donor liver transplantation with a small-for-size graft:report of a case. Surg Today 2009; 39: 637-640.
    67. Yokoyama S, Kasahara M, Fukuda A, et al. Balloon-occluded retrograde transvenous obliteration in a patient with hyperammonemic encephalopathy after living donor liver transplantation. Liver Transpl 2007; 13:1201-1202.
    68. Sadamori H, Yagi T, Matsukawa H, et al. The outcome of living donor liver transplantation with prior spontaneous large portosystemic shunts. Transpl Int 2008; 21:156-162.
    69. Taniguchi M, Shimamura T, Suzuki T, et al. Transient portacaval shunt for a small-forsize graft in living donor liver transplantation. Liver Transpl 2007; 13:932-934.
    70. Sampietro R., Ciccarelli O, Wittebolle X, et al. Temporary transjugular intrahepatic portosystemic shunt to overcome small-for-size syndrome after right lobe adult split liver transplantation. Transpl Int 2006; 19(12):1032-1034.
    71. Saner F, Sotiropoulos GC, Radtke A, et al. Small-for-size syndrome after living-donor liver transplantation treated by "portal vein wrapping" and single plasmapheresis. Transplantation 2005; 79(5):625.
    72. Sato Y, Yamamoto S, Takeishi T, et al. Inferior mesenteric venous left renal shunting for
    decompression of excessive portal hypertension in adult living related liver transplantation. Transplantation Proc 2004; 36:2234-2236.
    73. Ikegami T, Soejima Y, Taketomi A, et al. Explanted portal vein grafts for middle hepatic vein tributaries in living-donor liver transplantation. Transplantation 2007; 84:836-841.
    74. Man K, Lee TK, Liang TB, et al. FK409 ameliorates small-for-size liver graft injury by attenuation of portal hypertension and down-regulation of Egr-1 pathway. Ann Surg 2004; 240:159-168.
    75. Zhao Y, Man K, Lo CM, et al. Attenuation of small-for-size liver graft injury by FTY720: significance of cell-survival Akt signaling pathway. Am J Transplant 2004; 4:1399-1407
    76. Man K, Zhao Y, Xu A, et al. Fat-derived hormone adiponectin combined with FTY720 significantly improves small-for-size fatty lever graft survival. Am J Transplant 2006; 6(3):467-476.
    77. Yang ZF, Tsui TY, Ho DW, Tang TC, Fan ST. Heme oxygenase-1 potentiates the survival of small-for-size liver graft. LiverTranspl 2004; 10:784-793.
    78. Inderbitzin D, Beldi G, Sidler D, Studer P, Keogh A, Bisch-Knaden S, Weimann R, Kappeler A, Gloor B, Candinas D. Granulocyte colony-stimulating factor supports liver regeneration in a small-for-size liver remnant mouse model. J Gastrointest Surg 2007; 11(3):280-285.
    79. Yang ZF, Ho DW, Ngai P, et al. Antiinflammatory properties of IL-10 rescue small-for-size liver grafts. Liver Transpl 2007; 13(4):558-565.
    80. Xu X, Man K, Zheng SS, et al Attenuation of acute phase shear stress by somatostatin improves small-for-size liver graft survival. Liver Transpl 2006,12:621-627.
    81. Ozden I, Kara M., Pinarbasi B, et al. Somatostatin and propranolol to treat small-for-size syndrome that occurred despite splenic artery ligation. Exp Clin Transplant 2007; 5(2):686-689.
    82. Busani S, Marconi G, Schiavon L, et al. Living donor liver transplantation and management of portal venous pressure. Transplantation Proc 2006; 38:1074-1075.
    83. Suehiro T, Shimada M, Kishikawa K, et al. Effect of intraportal infusion to improve small for size graft injury in living donor adult liver transplantation. Transplant Int 2005; 18:923-928.
    84. Yu Y, Yao AH, Chen N, et al. Mesenchymal stem cells over-expressing hepatocyte growth factor improve small-for-size liver grafts regeneration. Mol Ther 2007; 15(7):1382-1389.
    85. Mori H, Shinohara H, Arakawa Y, Kanemura H, IKemoto T, Imura S, et al. Beneficial effects of hyperbaric oxygen pretreatment on massive hepatectomy model in rats. Transplantation 2007; 84: 1656-1661.
    86. Sotiropoulos GC, Lang H, Herget-Rosenthal S, Molmenti EP, Baba HA, Karaliotas C, Broelsch CE, Saner FH. Salvage plasmapheresis for small-for-size syndrome following hepatic resection for colorectal liver metastases. Int J Colorectal Dis 2008; 23:553.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.