碳纳米管/聚乳酸复合材料的制备及结构和性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用混酸处理、表面活性剂修饰和表面接枝三种方法对碳纳米管进行表面修饰,以纯态碳纳米管和经不同表面修饰的碳纳米管为增强体,利用溶剂蒸发法制备碳纳米管/聚乳酸复合材料,采用红外吸收光谱、拉曼光谱、X射线衍射仪、偏光显微镜、扫描电镜、透射电镜、热重分析仪、差示扫描量热分析仪及拉伸试验研究了经不同方法修饰的碳纳米管表面形貌和结构以及复合材料的链结构、聚集态结构、力学性能、热性能和降解行为,揭示了碳纳米管表面修饰对其聚乳酸基复合材料结构和性能的影响规律和机制。
     研究发现,修饰方法对碳纳米管的表面形貌和结构有显著影响。经混酸(硝酸、硝酸/硫酸、硝酸/双氧水和王水)处理后,碳纳米管表面形成羧基官能团并受到一定的损伤,其中经硝酸/双氧水混酸处理的碳纳米管表面损伤较小,可在去离子水中长时间分散而不沉降;采用共混法,通过π-π非共价键的作用,在碳纳米管表面形成均匀的十二烷基苯磺酸钠包覆层,该方法形成的复合物可在三氯甲烷中形成稳定的分散液。利用原位开环聚合法在Fe3O4涂覆的碳纳米管(磁性碳纳米管)表面形成分布均匀、结合牢固和接枝率可控的聚乳酸包覆层,其接枝机理为引发剂在磁性碳纳米管表面形成醇锡化合物,该化合物亲核攻击丙交酯,形成“引发剂-配体”中间产物,该中间产物重复攻击丙交酯实现链增长;具有超顺磁性的聚乳酸接枝磁性碳纳米管不但可均匀分散在三氯甲烷溶剂中,而且在外加磁场作用下实现定向排列。
     碳纳米管/聚乳酸复合材料结构研究表明,纯态碳纳米管和经表面修饰后碳纳米管的加入对聚乳酸链结构的规整性构型和结晶相的晶体结构无明显影响,但对聚乳酸中结晶相的晶体形态和光学性质影响较大,其中纯态碳纳米管、羧基化碳纳米管和聚乳酸接枝磁性碳纳米管导致球晶尺寸变小,光学性质由纯态聚乳酸时的负光性变为混合光性,十二烷基苯磺酸钠修饰碳纳米管抑制了球晶的形成。
     试验结果表明,纯态碳纳米管和经混酸处理的碳纳米管在聚乳酸中分散性差,界面结合较弱,没有起到增强体的作用;十二烷基苯磺酸钠的包覆和聚乳酸的接枝改善了碳纳米管在聚乳酸中的分散性,碳纳米管与聚乳酸基体形成较强的界面结合,提高了强度,其中聚乳酸接枝磁性碳纳米管/聚乳酸复合材料的强度提高尤为明显,当聚乳酸接枝磁性碳纳米管含量为3wt%时,断裂强度增幅可达67%。
     降解试验结果表明,碳纳米管表面修饰对其聚乳酸基复合材料的降解行为有显著影响,在模拟体液中降解56天后,按照质量损失率由大到小的顺序,依次为纯态碳纳米管/聚乳酸复合材料、羧基化碳纳米管/聚乳酸复合材料、十二烷基苯磺酸钠修饰碳纳米管/聚乳酸复合材料、聚乳酸接枝磁性碳纳米管/聚乳酸复合材料。
The surface of MWCNTs are modified by way of mixing acids refluxing, surfactant modification and polymer grafting. The composites combined with poly(L-lacitde)(PLLA) and reinforcing fillers, pristine MWCNTs and modified MWCNTs, are fabricated by the solution casting method. The morphologies and structures of modified MWCNTs are studied by FT-IR, Raman, SEM, TEM and TGA. The chain structure, aggregation structure of the composites are analized by FT-IR, XRD and PM. The mechanical properties, thermal properties and biodegradable behavior of the composites are investigated by tensile testing, DSC, FT-IR and SEM. The effects and mechanism of modified MWCNTs to the structure and properties of PLLA based composites are revealed.
     It is shown that the morphology and structure of MWCNTs are affected remarkably by the different modification methods. Carboxylated groups and some defects are formed on the surface of MWCNTs after refluxing in the mixing acids(HNO3/H2SO4, HNO3/H2O2, HNO3 and HNO3/HCl). Compared to MWCNTs treated by other acids, the surface of MWCNTs treated by HNO3/H2O2 acids have less defects and MWCNTs treated by HNO3/H2O2 acids suspend in deionized water for longer time. Homogeneous sodium lauryl benzenesulfate(SDBS) layers are formed on the surface of MWCNTs by mixing method throughπ-πnoncovalend bond, which make MWCNTs suspend stably in the chloroform. Homogeneous PLLA grafted layers are formed on the surface of Fe3O4 coated MWCNTs(mMWCNTs) by means of in situ ring-opening polymerization of lactide, which are bonded to mMWCNTs firmly. The amount of grafted PLLA are controllable. The mechanism of PLLA grafted to the surface of mMWCNTs is that firstly, a compound is formed on the surface of mMWCNTs after the initiator reacts with mMWCNTs, and then the“initiator-ligand”intermediate products are obtained when the compound reacts with lactide by way of nucleophilic attack, finally, the procedure aboved repeats, leading to polymer chain propagation. PLLA grafted mMWCNTs(mMWCNTs-g-PLLA) exhibit superparamagnetic behavior and suspend stably in the chloroform, which also are aligned under an extra magnetic field.
     Study on the structure of composites comprising of PLLA and MWCNTs shows that the effect of pristine MWCNTs and modified MWCNTs to the chain structure and crystalline structure of PLLA is not obvious. But, compared to pure PLLA, the size of spherulite become smaller and the mixed spherulite are formed for pristine MWCNTs/PLLA, MWCNTs-COOH/PLLA and mMWCNTs-g-PLLA/PLLA composites. The formation of spherulite is prevented by SDBS/MWCNTs for SDBS/MWCNTs/PLLA composites.
     The tensile properties of MWCNTs/PLLA composite are investigated. It is found that pristine MWCNTs and MWCNTs treated by acids(MWCNTs-COOH) cause the tensile strength of composites decreased because aggregation of MWCNTs and MWCNTs-COOH happens and there are weak interfacial adhesion between MWCNTs, MWCNTs-COOH and PLLA matrix. The SDBS layers and grafting PLLA improve the dispersion of MWCNTs in PLLA matrix and strengthen the interfacial adhesion between MWCNTs and PLLA, resulting the tensile strength of SDBS/MWCNTs/PLLA and mMWCNTs-g-PLLA/PLLA composites increased. In contrast to SDBS/MWCNTs/PLLA composites, the enhancement ratio of tensile strength of mMWCNTs-g-PLLA/PLLA composites is much higher, which reaches 67% at 3wt% mMWCNTs-g-PLLA content.
     The biodegradable behavior of MWCNTs/PLLA composites is investigated. The results show that different modified surface of MWCNTs affect the biodegradable behavior of PLLA distinctly after the composites degradate in PBS solution for 56 days. The mass loss ratio of composites is as followed in high to low sequence: pristine MWCNT/PLLA, MWCNTs-COOH/PLLA, SDBS/MWCNTs/PLLA and mMWCNTs-g-PLLA/PLLA composites.
引文
1王晨宏,李弘,王玉琴.聚乳酸类生物降解性高分子材料研究进展.离子交换与吸附. 2001, 17: 369-378
    2 J. Jagur-Grodzinski. Biomedical Application of Functional Polymers. Reactive & Functional Polymer. 1999, 39: 99-138
    3全大萍,卢泽俭,廖凯荣,王海华.取向模压成型技术增强聚乳酸力学性能的研究.功能高分子学报. 2000, 13: 161-164
    4 L. G. Griffith. Polymeric Biomaterials. Acta Materialia. 2000, 48: 263-277
    5 G. Maglio, A. Miglizzi, R. Palumbo. Compatibilized Poly(ε-caprolactone)/ poly(L-lactide) Blends for Biomedical Uses. Macromolecular Rapid Communications. 1999, 20: 236-238
    6马晓妍,石淑先,夏宇正.聚乳酸及其共聚物的制备和降解性能.北京化工大学学报. 2004, 31: 51-56
    7崔红星,张倩.聚乳酸类可吸收手术缝合线的研究进展.合成纤维. 2004, 33: 15-16
    8汪朝阳,赵耀明,郑绿茵.生物降解材料聚(乳酸-乙醇酸)研究进展.江苏化工. 2005, 33: 9-12
    9 K. Hattori, N. Tomita, T. Yoshikawa. Prospects for Bone Fixation Development of New Cerclage Fixation Techniques. Materials Science and Engineering. C. 2001, 17: 27-32
    10 R. Alexander, M. D. Vaccaro, M. D. Kush Singh. The Use of Bioabsorbable Implants in the Spine. The Spine Journal. 2003, 3: 227-237
    11卢泽俭,廖凯荣,罗丙红,赵剑豪.高强度聚乳酸骨折内固定棒的研制.生物医学工程学杂志. 1999, 16: 80-81
    12 J. H. Feng, G. E. Kim, J. D. Lee. Macroporous Poly(L-lactide) Scaffold 1. Preparation of a Macroporous Scaffold by Liquid–Liquid Phase Separation of a PLLA-Dioxane-Water System. Journal of Biomedical Materials Research. 2002, 63A: 161-167
    13 J. M. Karp, M. S. Shoichet, J. E. Davies. Bone Formation on Two-Dimensional Poly(DL-lactide-co-glycolide) (PLGA) Films and Three-Dimensional PLGA Tissue Engineering Scaffolds in Vitro. Journal of Biomedical Materials Research. 2003,64A: 388-396
    14 G. X. Shi, Q. Cai, C. Y. Wang. Fabrication and Biocompatibility of Cell Scaffolds of Poly(L-lactic acid) and Poly(L-lactic-co-glycolic acid). Polymers for Advanced Technologies. 2002, 13: 227-232
    15 H. Chim, J. L. Ong, J. T. Schantz. Efficacy of Glow Discharge Gas Plasma Treatment as a Surface Modification Process for Three-Dimensional Poly(D,L- lactide) Scaffolds. Journal of Biomedical Materials Research. 2003, 65A: 327-335
    16 G. Rosa, F. Quaglia, M. I. Rotaonda. Poly(L-lactide-co-glycolide) Microspheres for the Controlled Release of Oligonucleotide/ Polyethylenimine Complexes. Journal of Pharmaceutical Science. 2002, 91: 790-799
    17 A. Rasiel, T. Sheskin, L. Bergelson. Phospholipid Coated Poly(lactic acid) Microspheres for the Delivery of LHRH Analogues. Polymers for Advanced Technologies. 2002, 13: 127-136
    18 S. Sershen, J. West. Implantable Polymeric Systems for Modulated Drug Delivery. Advanced Drug Delivery Reviews. 1999, 24: 347-356
    19 J. W. Che, T Cagin, W. A. Goddard. Thermal Conductivity of Carbon Nanotubes. Nanotechnology. 2000,11: 65-69
    20 P. G. Collins, M. S. Arnold, P Avouris. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown. Science. 2001, 292: 706-709
    21 P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso, P. M. Ajayan. Improved Charge Transfer at Carbon Nanotube Electrodes. Adv Mater. 1999, 11:154-157
    22 H. J. Dai. Carbon Nanotubes: Opportunities and Challenges. Surface Science. 2002, 500: 218 -241
    23 D. H. Zhang, M. A. Kandadai, J. Cech, S. Roth, S. A. Curran. Poly(L-lactide) (PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility Evaluation. J. Phys. Chem B. 2006, 110: 12910-12915
    24 Zh. M. Li, S. N. Li, M. B. Yang, R. Huang. A Novel Approach to Preparing Carbon Nanotube Reinforced Thermoplastic Polymer Composites. Carbon. 2005, 43: 2397-2429
    25张继红,魏秉庆,梁吉,高志栋,吴德海.激光熔覆巴基管/球墨铸铁的研究.金属学报. 1996, 32: 980-984
    26 T. Kuzumaki, O. Ujiie, Hi. Ichinose, K. Ito. Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite. AdvancedEngineering Materials. 2000, 2: 416-418
    27 R. Z. Ma, J. Wu, B. Q. Wei, J. Liang, D. H. Wu. Processing and Properties of Carbon Nanotubes-Nano-SiC Ceramic. J. Mater Sci. 1998, 33:5243 -5246
    28 A. Peigney, Ch. Laurent, A. Rousset. Synthesis and Chracterisation of Alumina Matrux Nanocomposites Containing Carbon Nanotubes. Key Engineering Materials. 1997, 132-136: 743-746
    29 K. M. Scholsky, R. M. Fitch. Controlled Release of Pendant Bioactive Materials from Acrylic Polymer Colloids. J Controlled Release. 1986, 3: 87-108
    30 R. K. Kulkarni. Polylacticacid for Surgical Implants. Arch. Surg. l966, 93: 839-843
    31 A. P. Gupta, V. Kumar. New Emerging Trends in Synthetic Biodegradable Polymers -Polylactide: A Critique. European Polymer Journal. 2007, 43: 4053-4074
    32 Y. Tokiwa, B. P. Calabia. Biodegradability and Biodegradation of Poly(lactide). Appl Microbiol Biotechnol. 2006, 72: 244-251
    33 H. Tsuji. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation and Applications. Macromol. Biosci. 2005, 5: 569-597
    34 L. M. Mathieu, Th. L. Mueller, P. E. Bourban, D. P. Pioletti, R. Müller, J. E. M?nson. Architecture and Properties of Anisotropic Polymer Composite Scaffolds for Bone Tissue Engineering. Biomaterials. 2006, 27: 905–916
    35卓仁禧,尹超,吴颖楠.聚乳酸眼科植入材料的制备及其降解性能.应用化学. 1997, 2: 1021-1025
    36 D. Blechschmidt, H. Fuchs, R. Lindner.聚乳酸可生物降解防粘非织造布-工艺与产品参数.国际纺织导报. 2004, 2: 72-76
    37刘芙燕,陈玉璞.用低聚乳酸作尿素缓释膜的研究.沈阳师范学院学报(自然科学版). 2003, 1: 431-436
    38 R. W. David. Introduction to Properties, Engineering, and Prospects of Polylactide Polymers. PhD dissertation, Michigan state university. 1997: 31-32
    39 H. Kari, V. Jukka. Effect of Catalyst and Polymerization Conditions on the Preparation of Low Molecular Weight Lactic Acid Polymers. Macromolecules. 1997, 30: 373-379
    40钟伟,戈进杰,马敬红.聚乳酸的直接缩聚制备及其异氰酸酯扩链探索.复旦学报(自然科学版). 1999, 38: 705-708
    41 F. Akutsu, M. Inoki, H. Uei. Synthesis acid using l’l-earbonyldiidazole,N,N,N’,N’-tetramethyl chloroform anidinium chloride, and N,N’-dicyclohexylarbodiimide ascondensing agents. Polym J. 1998, 30: 421-423
    42 S. I. Moon, C. W. Lee, I. Taniguchi. Melt/solid polycondensation of L-lactic acid: an alternative route to poly(L-lactic acid) with high molecular weight. Polymer. 2001, 42: 5059-5062
    43 K. Chujo, H. Kobayashi, J. Suzuki, S. Tokuhara, M. Tanabe. Ring-Opening Polymerization of Glycolide. Makromol Chem. 1967, 100: 262-266
    44 D. Braun, P. R. Kohl, Angew. Anionische L?sungspolymerisation Von Glycolid. Makromol. Chem. 1986, 139: 191-200
    45 H. R. Kricheldorf, T. Mang, J. M. Jonte. Polylactones. 1. Coploymerization of Glycolide and Epsilon-Carorikactone. Macromolecular. 1984, 17: 2173-2181
    46 H. R. Kricheldorf, S. I. Kreiser. l. Anionic Polymerization of L-lactide in Solution. Makromol Chem. 1990, 191:1057-1066
    47 F. E. Kohn, J. G. Van Ommen, J. Feijen. The Mechanism of the Ring-Opening Polymerization of Lactide and Glycolide. Eur. Polym. J. 1983, 19: 1081-1083
    48 J. M. Jonte, R. Dunsing, H. R. Kricheldorf. Polylactones 4. Cationic polylmerization of lactones by means of alkylsulfonates. Macro.Sci-Chem.1986. A23(4): 495-505
    49 M. Bero, J. Kasperczyk, Z. J. Jedlinski. Coordination Polymerization of Lactides: 1. Structure Determination of Obtained Polymers. Makromol. Chem. 1990, 191: 2287-2296
    50 H. R. Kricheldorf, I. K. Saunders, C. Boettcher. Sn(Ⅱ)octoate-Initiated Polymerization of L-Lactide: A Mechanistic Study. Polymer. 1995, 36: 1253-1259
    51 W. Hoogsteen, A. R. Postema, A. J. Pennings. Crystal Structure Conformation and Morphology of Solution-Spun PLLA Fibers. Macromolecules. 1990, 23: 634-642
    52 B. Eling, S. Gogolewski, A. J. Pennings. Biodegradable Materials of Poly(L-Lactic Acid): Melt-Spun and Solution-Spun Fibers. Polymer. 1982, 10: 1587-1593
    53 T. Miyata, T. Masuko. Morphology of Poly(L-lactide) Solution-Grown Crystals. Polymer. 1997, 38: 4003-4009
    54 M. L. Di Lorenzo. Crystallization Behavior of Poly(L-lactic acid). European Polymer Journal. 2005, 41: 569-575
    55鲁玺丽.可生物降解形状记忆聚L-乳酸及其共聚物的结构与性能.哈尔滨工业大学博士学位论文. 2005: 23-28
    56 G. Perego, G. D. Cella, C. Basitoli. Effect of Molecular Weight and Crystallinity of Poly(Lactic acid) Mechanical Properties. J Appl Polym Sci. 1996, 59: 37-43
    57 W. Weiler, S. Gogolewski. Enhancement of the Mechanical Properties of Polylactides by Solid-State Extrusion. Biomaterials. 1996, 17: 529-535
    58 D. W. Grijpma, H. Altpeter, M. J. Bevis, J. Feijen. Improvement of the Mechanical Properties of Poly(D,L-lactide) by Orientation. Polymer International. 2002, 51: 845-851
    59 J. C. Middleton, A. J. Tipton. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials. 2000, 21: 2335-2346
    60 A. van Sliedregt, C. A. von Blitterswijk, S. C. Hesseling, J. J. Grote, K. de Groot. Clinical implant materials. Advances in Biomaterials. 1991, 9: 7-10.
    61 K. Eid, E. Chen, L. Griffith. Effect of RGD Coating on Osteocompatibility of PLGA-Polymer Disks in a Rat Tibial Wound. J Biomed Mater Res. 2001, 57: 224- 231
    62 H. Tsuji, S. Miyauchi. Poly(L-lactide) 6. Effects of Crystallinity on Enzymatic Hydrolysis of Poly(L-Lactide) without Free Amorphous Region. Polym Degrad Stab. 2001, 71:415-424
    63 J. W. Leenslag, A. J. Pennings. R. R. M. Bos, F. R. Rozema, J. Boering. Resorbable Materials of Poly(L-lactide). VI. Plates and Screws for Internal Fracture Fixation. Biomaterials. 1987, 8:70-73
    64 M. Dauner, H. Planck, L. Caramaro. J Mater Sci Mater Med. Resorbable Continuous-Fibre Reinforced Polymers for Osteosynthesis. 1998, 9: 173-179
    65 H. Craig. A Biologic Comparison of Polyglactin910 and Polyglycolicacid Synthetic Absorbable Sutures. Surg. Gynecol. & Obstet. 1975, 141:1-6
    66 M. Takasaki, H. Ito. Structure Development of Polylactides with Various D-Lactide Contents in the High-Speed Melt Spinning Process. Journal of Macromolecular Science-Physics. 2003, 42: 57-73
    67 P. Makela, T. Pohjonen. Strength Retention Properties of Self-Reinforced Poly L-Lactide (SR-PLLA) Sutures Compared with Polyglyconate(Maxonr) and Polydioxanone(PDS) Sutures. An in vitro Study. Biomaterials. 2002, 23:2587-2592
    68 S. Yolles, J. E. Eldridge, J. H. R. Woodland. Sustained Release of Drug from Polymer/Drug Mixture. Polymer News. 1970, 1:9
    69 L. R. Beck, D. R. Cowsar, D. H. Lewis. A New Long-Acting Injectable Microcapsule System for the Administration of Progesterone. Fertil Steril. 1977, 5:545
    70 J. Ren, H. Y. Hong, T. B. Ren, X. R. Teng. Preparation and Characterization of Magnetic PLA–PEG Composite Nanoparticles for Drug Targeting. Reactive & Functional Polymers. 2006, 66: 944-951
    71 E. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpson, E. H. Sanders. Release of Tetracycline Hydrochloride from Electrospun Poly(Ethylene-Co-Vinylacetate), Poly(Lactic Acid) and a Blend. J Contr Rel. 2002, 81: 57-64.
    72 E. Khor, L. F. Tay, K. S. Goh. Prevention of Prosthetic Valve Endocarditis by Impregnation of Gentamicin into Surgical Pledgets. Biomaterial. 1996, 17: 1631-1637
    73 L. Getter, D. E. Cutright, S. N. Bhaskar. A Biodegradable Intraosseous Appliance in the Treatment of Mandibular Fractures. J Oral Surg. 1972, 30:344-348
    74 R. K. Kulkarni, E. G. Moore. A. F. Hegyelli. Biodegradable Poly(lactic acid) Polymers. J Biomed Materials Research. 1971, 5:156
    75 T. Yamamuro, Y. Matsusue, A. Uchida. Bioabsorbable Osteosynthetic Implants of Ultra High Strength Poly-L-Lactide. Int.Orthop. 1994, 18: 332-340
    76 S. Hanafusa, Y. Matsusue, T. Yasunaga. Biodegradable Plate Fixation of Rabbit Femoral Shaft Osteotomies. Clin Orthop Related Res. 1995, 315: 262-271
    77 O. Laitinen, P. T? rm?l?, R. Taurio, K. Skutnabb, K. Saarelainen, T. Iivonen. Mechanical Properties of Biodegradable Ligament Augmentation Device of Poly(L-lactide) in vitro and in vivo. Biomaterials. 1992, 13:1012-1016
    78 O. M. B?stmon. Current Concepts Review: Absorbable Implants for the Fixation of Fracture. J Bone Joint Surg. 1991, 73-A:148-153
    79 Y. Shikinami, Y. Matsusue, T. Nakamura. The Complete Process of Bioresorption and Bone Replacement Using Devices Made of Forged Composites of Raw Hydroxyapatite Particles/Poly L-Lactide (F-U-HA/PLLA). Biomaterials. 2005, 26: 5542-5551
    80 A. G. Mikos, A.J. Thorsen, L. A. Czerwonka. Preparation and Characterization of Poly(L-lactic acid) Foams. Polymer. 1994, 35:1068-1077
    81 R. A. Zoppi, S. Contant, E. A. R. Duek. Porous Poly(L-Lactide) Films Obtained by Immersion Precipitation Process: Morphology, Phase Separation and Culture of VERO Cells. Polymer. 1999, 40:3275-3289
    82 F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, S. Wang. Fabrication of Nano-Structured Porous PLLA Scaffold Intended for Nerve Tissue Engineering.Biomaterials. 2004, 25: 1800-1891
    83 E. Osawa. Superaromaticity. Kagaku. 1970, 25:854-863
    84 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354: 56-58
    85 M. Endo, K. Takeuchi, K. Kobori. Pyrolytic Carbon Nanotubes from Vapor-Grown Carbon Fibers. Carbon. 1995, 33: 873-881
    86 M. Moniruzzaman and K. I. Winey. Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules. 2006, 39:5194-5205
    87 J. C. Charlier, J. P. Michenaud. Energetics of Multilayered Carbon Tubules. Phys Rew Let. 1993, 70: 1858-1861
    88 G. Overney, W. Zhong, D. Z. Tomanek. Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules. Phys D. 1993, 27: 93-96
    89 B. I. Yakabson, C. J. Brabec, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response. Phys Rev Lett. 1996, 76: 2511-2514
    90 M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson. Exceptionally High Young's Modulus Observed for Individual Carbon Nanotubes. Nature. 1997, 381: 678-680
    91 M. F. Yu, B. S. Files, S. Arepalli, R. S Ruoff. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties. Physical Review Letters. 2000, 84: 5552-5555
    92 T. W. Ebbesen. Carbon Nanotubes, Prepration and Properties. CRC press. 1997: 25-28.
    93 F. T. Fisher. Nanomechanica and the Viscoelastic Behavior of Carbon Nanotubes-Reinforced Polymers. PhD Thesis. Northwestern University. USA. 2002: 85-87
    94 G. Viswanathan. Polymer Grafted Single-Walled Carbon Nanotube Composites. PhD Thesis. Rensselaer Polytechnic Institute Troy. New York. 2004: 14-15
    95 G. Dresslhaus, P. C. Eklund. Science of Fullerenes & Carbon nanotubes. San Diego: Academic Press, 1996: 30-33
    96 B. I. Yakobson, R. E. Smalley. Fullerene Nanotubes: C-1000000 and Beyond. Am Sci. 1997, 85: 324-326
    97 D. H. Robertson, D. W. Brenner, J. W. Mintmire. Energetics of Nanoscale Graphitic Tubules. Phys Rev B. 1992, 45:12592-12595
    98 J. P Lu. Elastic Properties of Carbon Nanotubes and Nanoropes. Phys Rev Lett. 1997. 79: 1297-1300
    99 E. Hernande, C. Goze, P. Bernier, A. Rubio. Elastic Properties of C and BxCyNzComposite Nanotubes. Phys Rev Lett. 1998, 80: 4502-4505
    100 S. Iijima, C. Brabec, A. Maiti, J. Bernholc. Structure Flexibility of Carbon Nanotubes. Journal of Chemical Physics. 1996, 104: 2089-2092
    101 B. I. Yakobson, C. J. Brabec, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities Beyond Linear Response. Physical Review Letters. 1996, 76: 2511-2514.
    102 A. J. Stone, D. J. Wales. Theoretical Studies of Icosahedra C60 and Some Related Species. Chemical Physical Letters. 1986, 128: 501-503
    103 P. M. Ajayan. Nanotubes from Carbon. Chem. Rev. 1999, 99: 1787-1799
    104孙晓刚.碳纳米管的特性及应用.中国粉体技术. 2001, 7: 29-33
    105 N. Pierard, A. Fonseca, Z. Kkonya, I. Willems, G. V. Tendeloo. Production of Short Carbon Nanotubes with Open Tips by Ball Milling. Chemical Physics Letters. 2001, 335: 1-8
    106 Z. Kónya, I. Vesselenyi, K. Niesz K, A. Kukovecz. Large Scale Production of Short Functionalized Carbon Nanotubes. Chem Phys Lett. 2002, 360: 429-435
    107 H. Pan, Z. X. Guo. Carbon Nanotubols from Mechanochemical Reaction. Nano Letter. 2003, 3: 29-32
    108 A. Koshio, M. Yudasaka, S. Iijima. Thermal Degradation of Ragged Single-Wall Carbon Nanotubes Produced by Polymer-Assisted Ultra Sonication. Chemical Physics Letters. 2001, 341: 461-466
    109 Q. Wang, H. S. Xia, C. H. Zhang. Preparation of Polymer/Inorganic Nanoparticles Composites Through Ultrasonic Irradiation. J Appl Poly Sci. 2001, 80: 1478-1488
    110 J. Liu, A. G. Rizler, H. Dai, J. H. Hanfe, R. K. Brdaley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huflhlna, F. R. Macias, Y. S. Shon, T. Lee, D. T. Colbert, R. E. Smalle. Fullerene Pipes. Science. 1998, 280: 1253-1255
    111 S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund. Purification of Single Wall Carbon Nanotubes by Microfiltration. J. Phys. Chem. B. 1997, 101: 8839-8842
    112 V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, S. Roth. Langmuir?Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes. Chem. Mater. 1998, 10: 2338-2340
    113 G. S. Duesberg, M. Burghard, J. Muster, G. Philipp, S. Roth. Separation of Carbon Nanotubes by Size Exclusion Chromatography. Chem. Commun. 1998. 435-436
    114 R. J. Chen, Y. G. Zhan, D. W. Wang, H. J. Dai. Noncovalent SidewallFunctionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. J. Am. Chem. Soc. 2001, 123: 3838-3839
    115 X. Gong, J. Liu J, S. Baskaran, R. D. Voise, J. S. Young. Surfactant Assisted Processing of Carbon Nanotube/Polymer Composites. Chemistry of Materials. 2000, 12:1049-1052
    116 Y. Sun, S. R. Wilson, D. I. Schuster. High Dissolution and Strong Light Emission of Carbon Nanotubes in Aromatic Amine Solvents. J. Am. Chem. Soc. 2001, 123: 5348-5349
    117 J. Kong, H. J. Dai. Full and Modulated Chemical Gating of Individual Carbon Nanotubes by Organic Amine Compounds. J. Phys. Chem. B. 2001, 105: 2890-2893
    118 M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi. DNA-assisted Dispersion and Separation of Carbon Nanotubes. Nat. Mater. 2003, 2: 338-342
    119 M. J. O’Connell, P. Boul, L. M. Ericson, C. Huffman, Y. H. Wang, E. Haroz, C. Kuper, J. Tour, K. D. Ausman, R. E. Smalley. Reversible Water-Solubilization of Single-Walled Carbon Nanotubes by Polymer Wrapping. Chem. Phys. Lett. 2001, 342: 265-271
    120 M. A. Hamon, H. Hu, P. Bhowmik, S. Niyogi, B. Zhao, M. E. Itkis, R. C. Haddon. End-group and Defect Analysis of Soluble Single-Walled Carbon Nanotubes. Chem. Phys. Lett. 2001, 347: 8-12
    121 A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. H. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, R. E. Smalley. Crystalline Ropes of Metallic Carbon Nanotubes. Science.1996, 273: 483-487
    122 J. Chen, M. A. Hamon, R. C. Haddon, Y A. Chen, M. Rao, P. C. Eklund, R. C. Haddon. Solution properties of single-walled carbon nanotubes. Science. 1998, 282: 95-98
    123 A. Koshio, M. Yudasaka, M. Zhang, S. Iijima. A Simple Way to Chemically React Single-Wall Carbon Nanotubes with Organic Materials Using Ultrasonication. Nano Lett. 2001, 1: 361-363
    124 M. Yudasaka, M. Zhang, C. Jabs, S. Iijima. Effect of an Organic Polymer in Purification and Cutting of Single-Wall Carbon Nanotubes. Appl. Phys. A. 2000, 71, 449-451
    125 Ch. J. Zhou, Sh. F. Wang, Y. Zhang, Q. X. Zhuang, Zh. W. Han. In situ Preparation and Continuous Fiber Spinning of Poly(p-phenylene benzobisoxazole) Composites with Oligo-Hydroxyamide-Functionalized Multi-Walled Carbon Nanotubes. Polymer. 2008, 49: 2520-2530
    126 H. Bubert, S. Haiber, W. Brandl, G. Marginean, M. Heintze, V. Brüser. Characterization of the Uppermost Layer of Plasma-Treated Carbon Nanotubes. Diamond Relat Mater. 2003, 12: 811-815
    127 X. Ma, E. G. Wang. CNx/Carbon Nanotube Junctions Synthesized by Microwave Chemical Vapor Deposition. Appl Phys Lett. 2001, 78: 978-980
    128 P. M. Ajayan, O. Stephan, C. Collie. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-nanotube Composite. Science. 1994, 265: 1212-1214
    129 S. Kumar, H. Doshi, M. Srinivasarao. Fiber from Polypropylene/Nanocarbon Fiber Composites. Polymer. 2002, 43: 1701-1703
    130李旭华,袁荞龙,王得宁,应圣康.杂化材料的制备、性能及应用.功能高分子学报. 2000, 13: 213-218
    131胡平,范守善.碳纳米管/UHMWPE复合材料的研究.工程塑料应用. 1998, 26:1-3
    132 I. Musa, M. Baxendale, G. A. J. Amaratunga, W. Eccleston. Properties of Regioregular Poly(3-octylthiophene)/Multi-Wall Carbon Nanotube Composites. Synthetic Metals. 1999, 102: 1250-1250
    133 J. Sandier, M. S. E. Shaffer, T. Prasse, W. Bauhofer, K.Schulte, A. Windle. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer. 1999, 40: 5967-5971
    134 M. S. P. Shafer, A. H. Windle. Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites. Advanced Materials. 1999, 11: 937-941
    135 A. B. Dalton, H. J. Byrne, J. N. Coleman, S. Curran, A. P. Davey, B. McCarthy, W. Blau. Optical Absorption and Fluorescence of a Multi-Walled Nanotube-Polymer Composite. Synthetic Metals. 1999, 102: 1176-1177
    136 S. Singh, Y. Pei, R. Miller, P.R. Sundararajan. Long-ranged Entangled Carbon Nanotube Networks in Polycarbonate, Adv Funct. Mater. 2003, 13: 868-872
    137 R. Andrews, D. Jacques, M. Minot, T. Rantell. Fabrication of carbon multiwall nanotubes/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287: 395-403
    138 M. Moniruzzaman, F. Du, N. Romero, K. I. Winey. Increased Flexural Modulus and Strength in SWNT/Epoxy Composites by a New Fabrication Method. Polymer 2006, 47: 293-298
    139 J. Zhu, J. Kim, H. Peng, J. L. Margrave; V. N. Khabashesku, E. V. Barrera. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Lett. 2003, 3: 1107-1113
    140 M. B. Bryning, D. E. Milkie, M. F. Islam, J. M. Kikkawa, A. G. Yodh. Thermal Conductivity and Interfacial Resistance in Single-Wall Carbon Nanotube Epoxy Composites. Appl. Phys. Lett. 2005, 87: 161909/1-161909/3
    141 M. S. Kang, S. J. Myung, H. J. Jin. Nylon 610 and Carbon Nanotube Composite by In situ Interfacial Polymerization. Polymer. 2006, 47: 3961-3966
    142 L. S. Schadlar, S. C. Ginnaris, P. M. Ajayan. Load Transfer in Carbon Nanotube Epoxy Composites. Appl Phy Lett. 1998, 37: 3842-3844
    143 H. C. Kuan , C. C. M. Ma , W. P. Chang, S. M. Yuen, H. H. Wu, T. M. Lee. Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite. Composites Science and Technology. 2005, 65: 1703–1710
    144 S. L. Runa, P. Gao, X. G. Yang. Toughening High Performance Ultrahigh Molecular Weight Polyethylene Using Multiwalled Carbon Nanotubes. Polymer. 2003, 44: 5643-5654
    145 R. Haggenmueller, H. Gommans, A. Rinzler, J. Fischer, K. Winey. Aligned Single-Wall Carbon Nanotubes in Composites by Melt Processing Methods. Chemical Physics Letters. 2000, 330: 219-225
    146 T. E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, A. P. Sokolov. Conductivity and Mechanical Properties of Well-Dispersed Single-Wall Carbon Nanotube/Polystyrene Composite. Polymer. 2006, 47: 7740-7746
    147 M. Cadek, J. N. Coleman, V. Barron, K. Hedicke, W. J. Blau. Morphological and Mechanical Properties of Carbon-Nanotube-Reinforced Semicrystalline and Amorphous Polymer Composites. Appl. Phys. Lett. 2002, 81: 5123-5125.
    148 M. Cadek, J. N. Coleman, K. P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J. B. Nagy, K. Szostak, F. Beguin, W. J. Blau. Reinforcement of Polymers with Carbon Nanotubes: The Role of Nanotube Surface Area. Nano Lett. 2004, 4: 353-356.
    149 O. Meincke, D. Kaempfer, H. Weickmann, C. Friedrich, M. Vathauer, H. Warth.Mechanical Properties and Electrical Conductivity of Carbon-Nanotube Filled Polyamide-6 and Its Blends with Acrylonitrile/Butadiene/Styrene. Polymer. 2004, 45: 739-748
    150 M. A. L. Manchado, L. Valentini, J. Biagiotti, J. M. Kenny. Thermaland Mechanical Properties of Single-Walled Carbon Nanotubes-Polypropylene Composites Prepared by Meltprocessing. Carbon. 2005, 43: 1499-1505.
    151 R. Andrews, D. Jacques, A. M. Rao. Nanotube Composite Carbon Fibers. Applied Physics Letters. 1999, 75: 1329-1331
    152 D. Qian, E. C. Dickey, R. Andrews, T. Rantell. Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites. Applied Physics Letters 2000, 76: 2868-2870
    153 C. A. Cooper, R. J. Young, M. Halsall. Investigation into the Deformation of Carbon Nanotubes and Their Composites Through the Use of Raman Spectroscopy. Composites Part A: Applied Science and Manufacturing. 2001, 32:401-411
    154 V. Lordi, N. Yao. Molecular Mechanics of Binding in Carbon nanotube-Polymer Composites. Journal of Materials Research. 2000, 15:2770-2779
    155 R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, J. P. Stegemann. Collagen–Carbon Nanotube Composite Materials as Scaffolds in Tissue Engineering. Journal of Biomedical Materials Research Part A. 2005, 74A: 489-496
    156 M. J. Biercuk, M. C. Liaguno, M. Radosavijevic. Carbon Nanotubes Composites for Thermal Management. Applied Physics Letters. 2002, 80: 2767-2769
    157 T. E. Chang, A. Kisliuk, S. M. Rhodes, W. J. Brittain, A. P. Sokolov. Conductivity and Mechanical Properties of Well-Dispersed Single-Wall Carbon Nanotube/Polystyrene Composite. Polymer. 2006, 47: 7740-7746
    158 S. J. Park, S. T. Lim, M. S. Cho. Electrical Properties of Multi-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Nanocomposite. Current Applied Physics. 2005: 5302-5304
    159 B. Z. Tang, H. Y. Xu. Preparation, Alignment and Optical Properties of Soluble Poly(Phenylacetylene)-Wrapped Carbon Nanotubes. Macromolecules. 1999, 32: 2569-2576
    160 H. L. Zeng, C. Gao, D. Y. Yan. Poly(ε-caprolactone)-Functionalized Carbon Nanotubes and Their Biodegradation Properties. Adv. Funct. Mater. 2006, 16: 812–818
    161 L. Calandrelli, B. Lmmirzi, M. Malincico, M. G. Volpe, A. Oliva,R. F. Della. Preparation and Characterization of Composites Based on Biodegradable Polymer for“in vivo”Application. Polymer. 2000, 41: 8027-8033
    162 C. Verheyen, W. J. A Dhert, P. L. C Petit, P. M. Rozing, K. Degroot. In vitro Study on the Integrity of a Hydroxylapatite Coating When Chalienged with Staphylococci. Jounal of Biomedical Materials Research. l993, 27:775-781
    163 T. Kasuga, Y. Ota, M. Nogami, Y. Abe. Preparation and Mechanical Properties of Polylactic Acid Composites Containing Hydroxyapatite Fibers. Biomaterials. 2001, 22: 19-23
    164 Y. Shikinami, M. Okuno. Bioresorbable Devices Made of Forged Composites of Hydroxyapatite(HA) Particles and Poly-L-Lactide (PLLA): Part I. Basic Characteristics. Biomaterials. 1999, 20: 859-877
    165 Y. Shikinami, M. Okuno. Bioresorbable Devices Made of Forged Composites of Hydroxyapatite (HA) Particles and Poly L-Lactide (PLLA): Part II. Practical Properties of Miniscrews and Miniplates. Biomaterials. 2001, 22: 3197-3211
    166 Y. Shikinami, M. Okuno. Mechanical Evaluation of Novel Spinal Interbody Fusion Cages Made of Bioactive, Resorbable Composites. Biomaterials. 2003, 24: 3161-3170
    167 X. M. Deng, J. Y. Hao, C. S. Wang. Preparation and Mechanical Properties of Nanocomposites of Poly(D,L-Iactide) with Ca-Deficient Hydroxyapatite Nanocrystals. Biomaterials. 2001, 22: 2867-2873
    168 C. Verheyen, J. R. Dewijn, C. A. Vanbliterswijk, K. Degroot, P. M. Rozing. Hydroxylapatite Poly(L-Laclide) Composites-an Animal Study on Push-out Strengths and Interface Histology. Jounal of Biomedical Materials Research. 1993, 27: 433-444.
    169全大萍,李世普,袁润章,廖凯荣,卢泽俭,王海华.聚DL-丙交酯/羟基磷灰石(PDLLA/HA)复合材料II:硅烷偶联剂处理羟基磷灰石表面的作用研究.复合材料学报. 2001, 17: 114-118
    170张胜民,李世普,曹献英,王欣宇.聚乳酸自修饰羟基磷灰石/聚乳酸复合内固定材料:II.抗弯性能与溶胀度.《2002年材料科学与工程新进展》.北京:冶金工业出版社. 2003, 4:230-233
    171 Y. Jung, S. S. Kim, Y. H. Kim, S. H. Kim. B. S. Kim, S. Kim, Ch.Y. Choi, S. H. Kim. A Poly(Lactic Acid)/Calcium Metaphosphate Composite for Bone TissueEngineering. Biomaterials. 2005, 26: 6314-6322
    172 N. C. Bleach, S. N. Nazhat, K. E. Tanner, M. Kellom?ki, P. T?rm?l?. Effect of Filler Contents on Mechanical and Dynamic Mechanical Properties of Particulate Biphasic Calcium Phosphate——Polylactide Composites. Biomaterials. 2002, 23: 1579-1585
    173 S. Corcoran, J. Koroluk, J. R. Parsons, H. Alexander, A. B. Weiss. The Development of a Variable Stiffness, Absorbable Composite Bone Plate. In Current Concepts of Internal Fixation of Fracture, (Ed. Uhthoff H K). Springer Verlag, New York.1981, p136-145
    174 M. Zimmerman, J. R. Parson, H. Alexander. The Design and analysis of a laminated partially degradable composite bone plate for fracture fixation. J Biomed Mater Res. 1987, 21:345-361
    175沈烈,乔飞,张宇强,张稚燕,彭懋,朱飞燕.炭纤维增强羟基磷灰石/聚乳酸复合生物材料的力学性能和体外降解性能. 2007, 24: 61-65
    176 Y. Z. Wan, Y. L. Wang, L. Y. Zheng. Influence of External Stress on the In Vitro Degradation Behavior of C3D/PLA Composites. J Mat Sci Lett. 2001, 20:1957-1959
    177 S. H. Lee, S. Wang. Biodegradable Polymers/Bamboo Fiber Biocomposite with Bio Based Coupling Agent. Composite Part A: applied science and manufacturing. 2006, 37: 80-91
    178 K. Oksmana, M. Skrifvars, J. F. Selin. Natural Fibres as Reinforcement in Polylactic acid (PLA) Composites. Composites Science and Technology. 2003, 63: 1317-1324
    179 M. Funabashi, M. Kunioka. Biodegradable Composites of Poly(lactic acid) with Cellulose Fibers Polymerized by Aluminum Triflate. Macromol. Symp. 2005, 224: 309-321
    180 P. J. Pan, B. Zhu, W. H. Kai, S. Serizawa, M. Iji, Y. Inoue. Crystallization Behavior and Mechanical Properties of Bio-Based Green Composites Based on Poly(L-lactide) and Kenaf Fiber. Journal of Applied Polymer Science. 2007, 105: 1511-1520
    181 S. I. Moon, F. Z Jin, Ch. J. Lee, S. Tsutsumi, S. H. Hyon. Novel Carbon nanotbue/Poly(L-lactic acid) Nanocomposites: Their Modulus, Thermal Stability and Electrical Conductivity. Macromol. Symp. 2005, 224: 287-295
    182 G. X. Chen, H. S. Kim, B. H. Park, J. S. Yoon. Controlled Functionalization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(L-lactic acid). J. Phys. Chem. B. 2005, 109: 22237-22243
    183 Ch. F. Kuana, H. Ch. Kuana, Ch. Ch. M. Mab, Ch. H. Chen. Mechanical andElectrical Properties of Multi-Wall Carbon Nanotube/Poly(Lactic Acid) Composites. Journal of Physics and Chemistry of Solids. 2008, 69: 1395-1398
    184 D. H. Zhang, M. A. Kandadai, J. Cech, S. Roth, S. A. Curran. Poly(L-lactide)(PLLA)/Multiwalled Carbon Nanotube (MWCNT) Composite: Characterization and Biocompatibility Evaluation. J. Phys. Chem. B. 2006, 110: 12910-12915
    185 W. H. Song, Zh. Zheng, W. L. Tang, X. L. Wang. A Facile Approach to Covalently Functionalized Carbon Nanotubes with Biocompatible Polymer. Polymer. 2007, 48: 3658-3663
    186 K. Zhang, Y. B. Wang, M. A. Hillmyer, L. F. Francis. Processing and Properties of Porous Poly(L-lactide)/Bioactive Glass Composites. Biomaterials. 2004, 25: 2489-2500
    187 H. H. Lu, S. F. El-Amin, C. T. Larurencin. Three-dimensional, Bioactive, Biodegradable, Polymer-Bioacitve Glass Composite Scaffolds with Improved Mechanical Properties Support Collagen Synthesis and Mineralization of Human Osteoblast-Like Cells In Vitro. J Biomed Mater Res. 2003,64A:465-474
    188 N. Fukuda, H. Tsuji. Physical Properties and Enzymatic Hydrolysis of Poly(L-lactide)–TiO2 Composites. Journal of Applied Polymer Science. 2005, 96: 190-199
    189 W. H. Kai, L. Zhao, B. Zhu, Y. Inoue. Enforcing Effect of Double-Fullerene End-Capped Poly(ethylene oxide) on Mechanical Properties of Poly(L-lactic acid). Macromol Rapid Commun. 2006, 27: 109-113
    190 D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato. Chemistry of Carbon Nanotubes. Chem Rev. 2006, 106: 1105-1136
    191 Y. P. Sun, K. Fu, Y. Lin, W. J. Huang. Functionalized Carbon Nanotubes: Properties and Applications. Acc Chem.Res. 2002, 35: 1096-1104
    192 S. Tzavalas, V. Drakonakis, D. E. Mouzakis, D. Fischer, V. G. Gregoriou. Effect of Carboxy-Functionalized Multiwall Nanotubes (MWNT-COOH) on the Crystallization and Chain Conformations of Poly (Ethylene Terephthalate) PET in PET-MWNT Nanocomposites. Macromolecules. 2006, 26: 9150-9156
    193 H. Hiura, T. W. Ebbesen, K. Tanigaki, H. Takahashi. Raman Studies of Carbon Nanotubes. Chem Phys Lett. 1993, 202: 509-512
    194 A. C. Ferrari, J. Robertson. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Phys Rev B. 2000, 61: 14095-14105
    195 J. F. Liu, W. A. Ducker. Self-Assembled Supramolecular Structures of Charged Polymers at the Graphite/ Liquid Interface. Langmuir. 2000, 16: 3467-3473
    196 M. S. Dresselhaus, G. Dresselhaus, A. Jorio. Raman Spectroscopy on Isolated Single Wall Carbon Nanotubes. Carbon. 2002, 40: 2043-2061
    197 O. N. Shebanova, P. J. Lazor. Raman Spectroscopic Study of Magnetite (FeFe2O4): a New Assignment for the Vibrational Spectrum. Solid State Chem. 2003, 174: 424-430
    198 S. H. Qin, D. Q. Qin, W. T. Ford, D. E. Resasco, J. E. Herrera. Polymer Brushes on Single-Walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate. J Am Chem Soc. 2004, 126: 170-176
    199 H. R. Kricheldorf. Syntheses and Application of Polylactides. Chemosphere. 2001, 43: 49-54.
    200 A. Kowalski, A. Duda, S. Penczek. Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin (II) Octoate. 3 Polymerization of L,L-Dilactide Macromolecules. 2000, 33: 7359-7370
    201 G. Liu, X. Ding, Y. Cao. Novel Shape-Memory Polymer with Two Transition Temperatures. Macromolecular Rapid Communications. 2005, 26: 649-652
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.