考虑深开挖影响的超长桩荷载传递机理及沉降计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高层、超高层建筑的建设使超长桩得到了广泛的应用,同时也促进了超深基坑的发展。超长桩的荷载传递机理与普通短桩存在较大差别,基坑开挖导致位于坑底的超长桩的工作性状更为复杂,研究超长桩以及开挖影响下的超长桩基础的承载性状和沉降计算理论非常必要。
     首先,基于超长桩静载试验进行实测分析,考察了超长桩的各方面性状。结果表明,超长桩侧阻发挥过程为由桩顶向下逐步发挥,工作状态下桩身侧阻呈现出单驼峰式的分布,且驼峰位于桩身的中部附近,长细比越大驼峰位置相对越靠近桩顶。超长桩在工作荷载下端阻比均较小,大多数不超过2%。
     进而,采用有限元法研究了不同长度的单桩荷载传递机理,根据其工作特性对传统桩基础沉降计算方法进行改进。结果表明,工作荷载下,短桩过渡到超长桩,轴力主要承担部分由桩身下部逐渐转为桩身中上部,侧阻由三角形分布转为单驼峰式分布。因此采用单驼峰式分布模式计算超长桩基础地基中附加应力及沉降,其计算沉降值较基于Geddes解的传统方法更接近于实测值。
     采用有限元法研究了基坑开挖条件下坑内单桩荷载传递机理,并对开挖影响下的超长桩基础地基竖向附加应力及沉降计算方法进行分析。结果表明,基坑开挖导致单桩刚度降低,并可导致桩身出现较大的拉力。且开挖条件下超长桩侧阻和端阻不同步发挥的现象更明显,不利于荷载向桩身下部传递及实际承载能力的发挥。短桩过渡到超长桩,工作荷载下桩身侧阻分布由三角形转变为“R”形,且超长桩侧阻主要发挥在桩身中上部,当桩长超过一定值时桩身下部较大范围甚至保持着负的摩阻力。考虑开挖条件下侧阻分布特点和土体回弹再压缩性质的沉降计算要较Geddes假设以及单驼峰式更合理且沉降值更接近于实测结果。
     通过有限元法进行了基坑开挖对坑内桩影响的参数分析。计算了不同基坑开挖尺寸及桩长的情况下,桩身由于受到基坑开挖影响产生的刚度降低、最大拉力及位置和侧阻分布随各因素的变化。
     分析结果表明,开挖导致基坑中不同位置处单桩刚度不同程度的降低,中心桩刚度降低程度最大,边桩次之,角桩最小;由于基坑开挖导致的不同位置处单桩刚度的不同可能加剧群桩基础的“碟形”沉降,导致筏板和上部结构开裂。开挖导致坑底的单桩几乎全长受拉,位于基坑中心处的桩拉力最大,边桩次之,角桩最小;当基坑开挖深度很大、桩长也较大时,基坑内工程桩的桩身配筋长度、配筋量、裂缝控制均要考虑桩身可能产生的最大拉应力及其位置。
     最后,给出了不同基坑开挖尺寸及桩长条件下基坑中不同位置处的单桩工作荷载下侧阻分布曲线。在以上研究基础上,以MATLAB为平台开发了考虑各种侧阻分布形式的沉降计算软件。
The high-rise and super high-rise buildings promote the development of super-long piles and super-deep excavations. The load transfer mechanism of super-long piles is different from that of short piles. The working performance of the super-long piles beneath the excavation bottom is more complicated. It is quite necessary to research the bearing behavior and settlement calculation theory of super-long piles.
     Firstly, the characteristics of super-long piles are analyzed based on the measured static load test data. It is shown that the shaft resistance of super-long piles mobilizes from pile top to tip. The shaft resistance distributes in a single hump pattern under working load. The hump is usually located at the middle of the pile length, and its location moves upward as the slenderness ratio increases. Under working load, the super-long piles have small tip resistance ratios, most of which are not more than 2%.
     Furthermore, load transfer mechanism of different length of piles is analyzed by finite element method. According to the working performance of super-long piles, some improvements are made to the traditional settlement calculation method of pile foundation. It is shown that, under working load, the load of the short piles is mainly undertaken by the lower piles shaft, while that of the long piles is carried by the middle and upper piles shaft. The shaft resistance distributes in a triangle pattern and a single-hump pattern for the short and long piles respectively. Therefore, the settlement of super-long piles calculated by single hump distribution is closer to measured data than that of Geddes’solution.
     The load transfer mechanism of super-long piles beneath the excavation bottom is studied by finite element analysis. The additional stress in foundation soil and settlement calculation method of super-long piles under excavation are analyzed. It is shown that excavation could lead to tension in piles and a decrease of piles stiffness. The shaft resistance and tip resistance of piles beneath the excavation bottom are mobilized asynchronously due to excavation. This is adverse for transferring load to lower pile shaft and mobilizing bearing capacity. The shaft resistance distributes in a triangle pattern and an‘R’pattern for the short and long piles respectively. The shaft resistance is mainly mobilized along the upper part of the piles for super-long piles. The friction on the lower part is even negative for piles longer than certain value. The settlement considering the distribution and swelling-recompression of the soil under excavation is closer to measured data than that of Geddes’solution and single-hump solution.
     The parametric study on piles under the condition of excavation is conducted using finite element analysis. Models of different excavation geometries and different piles lengths are calculated. The reduction of stiffness, maximum tension and its position, and the distribution of shaft resistance are analyzed.
     It is shown that the reuduction of piles stiffness due to excavation varies with different positions. The maximum, medium and minimum reduction occurs at center, side, corner piles respectively. The different pile stiffness may intensify the disk-shape settlement, which even could cause the fracture of raft and superstructure. Excavation can cause tension in the full length of piles. The maximum, medium and minimum tension occurs at center, side, corner piles respectively. The maximum tension of piles should be taken into consideration in design for deep excavations and long piles.
     Finally, the distributions of shaft resistance under working load of different pile lengths and excavation geometries are presented. A software is designed based on MATLAB platform, which takes the different distributions of shaft resistance into account in calculating the settlement of pile foundation.
引文
[1] Seed H B and Reese L C.The action of soft clay along frictional piles,Trans.ASCE,1957,22:731~746.
    [2] Kezdi A.The bearing capacity of pile and pile groups[A].Proceeding 4th International Conference on Soil Mechnics and Foundation Engeering[C].London,1957:46~51.
    [3]佐藤悟.基桩承载力机理[J].土工技术,1965,20:1~5.
    [4] Gardner W S. Consideration in the design of drilled piers[M]. Design,Construction and Performance of Deep foundation, 1975.
    [5] Kraft L M ,Ray R P ,Kagawa T .Theoretical development of t-z curves[J]. Journal of Geotechnical Engineering,1981, 107(11): 1543~1561.
    [6] Vijayvergiya , V.N Load-movement characteristics of piles , Proc. 4th symposium of Waterway,Port,Coastal and Ocean Division,ASCE,Long Beach,Calif.,1977,2.
    [7]曹汉志.桩的轴向荷载传递及荷载—沉降曲线的数值计算方法[J].岩土工程学报,1986,8(6):37~49.
    [8]赵铁立.粘性土中轴向受力桩的解[J].西南交通大学学报,1991,(3):89~94.
    [9]陈龙珠,梁国钱,朱金颖,等.桩轴向荷载—沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6):30~38.
    [10]潘时声.桩基础分层位移迭代法计算理论及其应用[博士学位论文D].上海:同济大学,1996.
    [11]朱金颖,陈龙珠,葛炜.层状地基中桩静载试验数据的拟合分析,岩土工程学报,1998,20(3):34~39.
    [12]王哲,龚晓南,张玉国.大直径灌注筒桩轴向荷载—沉降曲线的一种解析算法[J].建筑结构学报,2005,26(4):123~129.
    [13]李作勤.摩擦桩的荷载传递及承载力的一些问题[J].岩土力学,1990,11(4):1~12.
    [14] Coyle H M and Reese L C.Load transfer for axially loaded piles in clay[J].J.SMFD,ASCE,1960,92(2):1~26.
    [15]费勤发.任意层状土中可压缩单桩的弹性分析[J].上海城建学院院报,1987,(1).
    [16] MINDLIN R D. Force at a point in the interior of a semi-infinite solid[J]. Physics, 1936, 7(5): 195~202.
    [17] D’Appolonia , Thurman A G . Computed movement of friction and end-bearing piles embedded in uniform and stratified soils[A].Proceeding 6th International Conference on Soil Mechnics and Foundation Engeering [C].Montereal,1963.
    [18] Poulos H G and Davis E H.The settlement behavior of axially-loaded incompressible piles and piers[J].Geotechnique,1968,18(3):365~415.
    [19] Poulos H G and Randolph M F.Pile group analysis:a study of two methods[J].Journal of the Geotechnical Engineering Division,ASCE,1983,109(3):355~372.
    [20] Poulos,H G.,Modified calculation of pile-group settlement interaction,[J].Geotech Engng. ASCE,1988,114(6):697~706.
    [21] Poulos H G.Pile behavior—theory and application[J].Geotechnique,1989,39(3):365~415.
    [22] Butterfied R,Banerjee P K. The elastic analysis of compressible pile and pile groups[J]. Geotechnique,1971a,21(1):43~60.
    [23] Butterfied R,Banerjee P K. The problem of pile group and pile cap interaction[J]. Geotechnique,1971b,21(2):135~142.
    [24] Cook R W.The settlement of friction pile foundations[M].Foundation And Soil Technology.BRE building research series 3,1974.
    [25] Randolph M F,Worth C P. Analysis of deformation of vertically loaded piles[J]. Journal of the Geotechnical Engineering Division , 1978 ,104:1465~1488.
    [26] Chow Y K,Tham L G,Guo D J.Axial loaded piles and pile groups embedded in a cross-anisotropic soil[J].Geotechnique,1989,39(2):203~212.
    [27]宰金珉,杨嵘昌.桩周土非线性位移的广义剪切位移法[J].南京建筑工程学院学报,1993,(1):1~16.
    [28]宰金珉.群桩与土和承台非线性共同作用分析的半解析半数值方法[J].建筑结构学报,1996,17(1):63~74.
    [29] Desai C S .Numerical design analysis for piles in sands[J].Journal of the Geotechnical Engineering Division,1974,100(6):6 13~635.
    [30] Trochanis A M,Bielak J and Christiano P.Simplified model for analysis of one or two piles[J].ASCE,1991,GT3:448~466.
    [31]池跃君,敖立新,顾晓鲁.超长桩荷载传递机理的计算分析[J].特种结构,2000,17(4):12~15.
    [32]郑刚,王丽.竖向荷载作用下倾斜桩的荷载传递性状及承载力研究[J].岩土工程学报. 2008,30(12):1796~1804.
    [33]蒲诃夫,郑俊杰,章荣军.桩土界面荷载传递模型的改进及其数值实现.华中科技大学学报. 2010,27(1):84~88.
    [34] Briaud, J.L. and Tucker, L.M, (1988), Measured and predicted axial response of 98 piles, J.Geoteh. Engng, ASCE, Vol.114, No. GT9.
    [35] Das, B.M.(1984), Principles of foundation engineering, Brooks/Cole Engineering Division.1983.
    [36]桩基工程手册编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995.1~222.
    [37]中华人民共和国住房和城乡建设部. JGJ 94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社, 2008.
    [38]阳吉宝,钟正雄.超长桩的荷载传递机理[J].岩土工程学报,1998,20(6),108~112.
    [39]张忠苗,辛公锋,吴庆勇,等.考虑泥皮效应的大直径超长桩离心模型试验研究[J].岩土工程学报,2006,28(12),2066~2071.
    [40]陈志坚,刘艳军.超长灌注桩对桩周土挤密作用的模型试验研究[J].岩土力学,2008,29(12),3277~3281.
    [41]周淑芬,匡虹桥.黏土中超长群桩竖向承载力模型试验研究[J].岩土工程学报,2009,31(9),1472~1475.
    [42]王成.公路桥超长群桩的有效桩长研究[J].岩土力学,2010,31(5),1569~1573.
    [43]费鸿庆,王燕.黄土地基中超长钻孔灌注桩工程性状研究[J].岩土工程学报,2000,22(5),576~580.
    [44]张忠苗.软土地基超长嵌岩桩的受力性状[J].岩土工程学报,2001,23(5),552~556.
    [45]朱向荣,方鹏飞,黄洪勉.深厚软基超长桩工程性状试验研究[J].岩土工程学报,2003,25(1),77~79.
    [46]谢润华,孙红.大直径超长灌注桩设计方法分析[J].岩土力学,2004,25(增刊),550~552.
    [47]赵明华,邹新军,刘齐建.洞庭湖软土地区大直径超长灌注桩竖向承载力试验研究[J].土木工程学报,2004,37(10),63~67.
    [48]冯世进,柯瀚,陈云敏.黄土地基中超长钻孔灌注桩承载性状试验研究[J].岩土工程学报,2004,26(1),110~114.
    [49]周代表.软土地基超长桩工程性状分析[J].岩土力学,2004,25(增刊),87~80.
    [50]朱合华,谢永健,王怀忠.上海软土地基超长打入PHC桩工程性状研究[J].岩土工程学报,2004,26(6),745~749.
    [51]张忠苗,辛公锋,夏唐代.深厚软土非嵌岩超长桩受力性状试验研究[J].土木工程学报,2004,37(4),64~69.
    [52]王陶,马晔.超长钻孔桩竖向承载性状的试验研究[J].岩土力学,2005,26(7),1053~1057.
    [53]钟闻华,石名磊,刘松玉.超长桩荷载传递性状研究[J].岩土力学,2005,26(2),307~318.
    [54]黄良机,林奕禧,蔡健,等.超长PHC管桩桩顶沉降特性的动静对比分析[J].岩土力学,2008,29(2),507~516.
    [55]蒋建平.超长灌注桩桩身压缩综合系数反分析[J].岩土力学,2008,29(9),2469~2475.
    [56]秦体达,郑俊杰.大直径超长灌注桩在润扬大桥中的应用[J].岩土力学,2002,23(增刊),110~112.
    [57]刘润,闫澍旺.大直径超长桩打桩过程中桩周土体的疲劳与强度恢复[J].岩土力学,2009,30(2),452~456.
    [58]张忠苗,张乾青.桩端土强度对桩侧阻力影响的研究[J].岩土工程学报,2010,32(增刊2),59~63.
    [59]任鹏,邓荣贵,于志强.高速铁路超长桥桩承载特性试验研究[J].岩土力学,2010,31(1),174~178.
    [60]马晔,王陶.超长钻孔桩自平衡法荷载试验研究[J].岩土工程学报,2005,27(3),275~278.
    [61]张帆,龚维明,戴国亮.大直径超长灌注桩荷载传递机理的自平衡试验研究[J].岩土工程学报,2006,28(4),464~469.
    [62]黄生根,龚维明.大直径超长桩压浆后承载性能的试验研究及有限元分析[J].岩土力学,2007,28(2),297~301.
    [63]马远刚,杨春和.极限状态及变形量控制下自平衡试桩承载力分析[J].岩土力学,2009,30(9),2787~2791.
    [64]戴国亮,龚维明,程晔,等.自平衡测试技术及桩端后压浆工艺在大直径超长桩的应用[J].岩土工程学报,2005,27(6),690~694.
    [65]黄生根,龚维明.超长大直径桩压浆后的承载性能研究[J].岩土工程学报,2006,28(1),113~117.
    [66]戴国亮,龚维明,薛国亚,等.超长钻孔灌注桩桩端后压浆效果检测[J].岩土力学,2006,27(5),849~852.
    [67]龚剑,赵锡宏.对101层上海环球金融中心桩筏基础性状的预测[J].岩土力学,2007,28(8),1695~1699.
    [68] DAI Biao-bing, AI Zhi-yong, ZHAO Xi-hong, FAN Qing-guo, DENG Wen-long.Field experimental studies on super-tall buildings, super-longpiles & super-thick raft in Shanghai [J].Chinese Journal of Geotechnical Engineering,2008,30(3),406~413.
    [69]张忠苗,贺静漪,张乾青,等.温州323 m超高层超长单桩与群桩基础实测沉降分析[J].岩土工程学报,2010,32(3),330~337.
    [70]曾友金,章为民.用有限单元法分析超长单桩的荷载传递[J].岩土力学,2002,23(6),803~806.
    [71]王俊杰,朱俊高,魏松.不同桩底地层超长桩工作性能的数值模拟[J].岩土力学,2005,26(2),328~336.
    [72]吴鹏,龚维明,梁书亭.用三维有限元法对超长单桩桩端承载力的研究[J].岩土力学,2006,27(10),1795~1799.
    [73]吴鹏,龚维明,梁书亭.考虑深度效应的超长单桩荷载传递性状的研究[J].岩土力学,2007,28(6),1265~1268.
    [74]王俊杰,朱俊高,吴寿昌.大规模超长群桩基础工作性能的数值模拟[J].岩土力学,2008,29(3),701~706.
    [75]张齐兴,陆朝新.均质土层中超长两桩基础承载性状的数值研究[J].岩土工程学报,2008,30(6),945~951.
    [76]郑刚,王丽.竖向及水平荷载加载水平、顺序对单桩承载力的影响[J].岩土工程学报,2008,30(12),1796~1804.
    [77]黄生根,彭从文.超长大直径桩的变形特性研究[J].岩土力学,2009,12(增刊),308~311.
    [78]董建国,赵锡宏.桩箱(筏)基础沉降计算新方法[J].岩土工程学报,1996,18(1),80~84.
    [79]杨敏,杨桦,王伟.长短桩组合桩基础设计思想及其变形特性分析[J].土木工程学报,2005,38(12),103~108.
    [80]曾友金,章为民,王年香,等.基桩有效桩长几个问题的探讨[J].岩土力学,2003,24(增刊),529~534.
    [81]曾友金,章为民,王年香,等.按桩的割线刚度确定深厚覆盖土层中普通桩有效桩长J].岩土力学,2005,24(5),724~728.
    [82]郦建俊,黄茂松,王卫东,等.软土地基中扩底抗拔中长桩的极限承载力分析[J].岩土力学,2009,30(9),2646~2650.
    [83]周德泉,张可能.钻芯检测超长桩的最大桩长计算与关键技术[J].岩土力学,2003,24(增刊),535~537.
    [84]王成,董倩.超长桩稳定承载力计算新方法[J].岩土力学,2005,26(增刊),180~182.
    [85]刘礼标,王成.考虑桩侧双线性土抗力时长桩临界荷载计算[J].岩土力学,2007,28(增刊),927~930.
    [86]姚文娟,仇元忠,程泽坤.超长嵌岩桩初始后屈曲性状分析[J].岩土工程学报,2009,31(5),738~742.
    [87] Burland, J.B.,Hancock, R.J.R. Underground car park at the House of Commons,London:Geotechnical aspects[J]. The Structural Engineer, 1977,55(2), 87~100.
    [88] Iwasaki, Y., Watanabe, H., Fukuda, M., Hirata, A.,Hori, Y. Construction control for underpinning piles and their behaviour during excavation[J].Geotechnique, 1994, 44(4), 681~689.
    [89]朱火根,孙加平.上海地区深基坑开挖坑底土体回弹对工程桩的影响[J].岩土工程界, 2004, 8(3), 43~46.
    [90]陈孝贤.深基坑开挖坑底土体隆起对工程桩影响的探讨[J].福建建设科技, 2006, 21(3), 15~16.
    [91]徐情根,徐醒华,梁朝晖,等.深基坑开挖对坑底桩基的影响[J].广东土木与建筑, 2006, 34(1), 33~34.
    [92] Wright, R.H.,Doe, G. Littile Britain Project: Construction of basement[J].Proceedings of International Conference on Piling and Deep Foundations,1989, 1, 221~230.
    [93] Troughton, V.M. The design and performance of foundations for the Canary Wharf development in London Docklands[J]. Geotechnique, 1992, 42(3),381~393.
    [94] Lee, C.J., Al-Tabbaa, A.,Bolton, M.D. Development of tensile force in piles in swelling ground[A]. Proceedings of the Third International Conference on Soft Soil[C]. Hong Kong, 2001, 1, 345~350.
    [95] Al-Tabbaa, A. Theoretical analyses of heave induced pile tension in straight-shafted bored piles[A]. 4th International Conference on Problem of Pile Foundation Engineering[C]. Russian, 1994, 1, 234~239.
    [96] Wan, F.S.K. Experimental and theoretical analysis of a bored pile in swelling ground. [硕士学位论文D]. Birmingham: University of Birmingham, 1995.
    [97] Zeevaert, L. Foundation engineering for difficult subsoil conditions[M]. New York: Van Nostrand Reinhold Company, 1985.
    [98] O'reilly, M.P.,Al-Tabbaa, A. Heave induced pile tension: a simple one-dimension analysis[J]. Ground Engineering, 1990, 25(5), 28~33.
    [99]郦建俊,黄茂松,王卫东,陈峥.开挖条件下抗拔桩承载力的离心模型试验[J].岩土工程学报, 2010, 32(3), 388~396.
    [100]罗耀武.大面积深开挖对抗拔桩承载性状的影响研究. [博士学位论文D].杭州:浙江大学, 2010.
    [101] Zheng, G., Peng, S.Y., Diao, Y.,Ng, C.W.W. In-flight investigation of excavation effects on smooth single piles[A]. 7th International Conference onPhysical Modelling in Geotechnics[C]. Zurich, Switzerland, 2010, 2,847~852.
    [102]郑刚,刁钰,吴宏伟.超深开挖对单桩的竖向荷载传递及沉降的影响机理有限元分析[J].岩土工程学报, 2009, 31(6), 837~845.
    [103]胡琦,凌道盛,陈云敏,程泽海,冉龙.深基坑开挖对坑内基桩受力特性的影响分析[J].岩土力学, 2008, 30(07), 1965~1970.
    [104]陈锦剑,王建华,范巍,王卫东.抗拔桩在大面积深开挖过程中的受力特性分析[J].岩土工程学报, 2009, 31(3), 402~407.
    [105]黄茂松,郦建俊,王卫东,陈峥.开挖条件下抗拔桩的承载力损失比分析[J].岩土工程学报, 2008, 30(9), 1291~1297.
    [106]黄茂松,任青,王卫东,陈峥.深层开挖条件下抗拔桩极限承载力分析[J].岩土工程学报, 2007, 29(11), 1689~1695.
    [107]辛公锋,张忠苗,夏唐代,等.高荷载水平下超长桩承载性状试验研究[J].岩石力学与工程学报. 2005, 13(24), 2397~2402.
    [108]张忠苗,辛公锋.软土地基超长桩受力性状分析[J].工程勘察, 2003, 3, 10~13.
    [109]周代表,陈守祥,宋健伟.超长灌注桩在大型火电厂中的应用[J],武汉大学学报(工学版), 2004, 9(37), 120~123.
    [110]任鹏,邓荣贵,于志强.超长钻孔桩竖向承载性状的试验研究[J].岩土力学. 2005, 7(26), 1053~1057.
    [111]王志玲,靳中华,李民生.钻孔灌注桩的垂直承载性状试验研究[A].桩基工程技术[C].北京:中国建材工业出版社,1996.
    [112]蔡健,周万清,林奕禧,等.深厚软土超长预应力高强混凝土管桩轴向受力性状的试验研究.土木工程学报. 2006, 10(39), 102~106.
    [113] David M. W.,Soil behaviour and Critical State Soil Mechanics,British:Cambridge University Press,1990.
    [114]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [115]天津市城乡建设管理委员会. DB29-20-2000岩土工程技术规范[s].北京:中国建筑工业出版社, 2000.
    [116]中华人民共和国住房和城乡建设部. GB50007-2002建筑地基基础设计规范[S].北京:中国建筑工业出版社, 2002.
    [117] Mindlin R D . Force at a Point in the Interior of Semi-Infinte Solid[J].PHYSICS,1936,7(5):195~202.
    [118]袁聚云,赵锡宏.竖向均布荷载作用在地基内部时的土中应力公式[J].上海力学,1995,16(3):213~222.
    [119]袁聚云,赵锡宏.水平均布荷载作用在地基内部时的土中应力公式[J].上海力学,1995,16(4):339~346.
    [120]袁聚云,赵锡宏.竖向线荷载和条形均布荷载作用在地基内部时的土中应力公式[J].上海力学,1999,20(2):156~165.
    [121]蒋希雁,王立军.Mindlin应力解的应用理论分析[J].辽宁工程技术大学学报,2007,26(3):388~390.
    [122]蒋希雁,王立军.基于Mindlin应力解的应用理论分析[J].建筑科学,2008,24(3):19~20.
    [123]蒋希雁,赵坤,郑娜,等.Mindlin应力解的应用理论分析[J].河北建筑工程学院学报,2010,28(1):10~12.
    [124]邓友生,龚维明.基于Mindlin位移解的超大群桩基础沉降计算[J].武汉理工大学学报(交通科学与工程版),2008,32(3):420~422.
    [125]邓友生,龚维明,苏骏.基于Mindlin应力解的超大群桩基础沉降计算[J].铁道学报,2009,31(1):121~125.
    [126]王士杰,张梅,张吉占.对Mindlin解求解地基附加应力的进一步探讨[J].四川建筑科学研究,2000,26(1):51~54.
    [127]王士杰,张梅,周瑞林.工程荷载下的明氏应力实用理论解(I)——现有明氏应力公式的整理与简化[J].四川建筑科学研究,2001,27(2):36~37.
    [128]王士杰,张梅,张吉占.工程荷载下的明氏应力实用理论解(II)——应力系数公式的无因次化[J].四川建筑科学研究,2001,27(4):60~61.
    [129]王士杰,张梅,张吉占.Mindlin应力解的应用理论研究[J].工程力学,2001,18(6):141~148.
    [130]王士杰,张梅,白永兵,等.矩形面积均布荷载下的明氏应力公式[J].河北农业大学学报,2001,24(1):68~72.
    [131]丁继辉,麻玉鹏,宇云飞.基于Mindlin应力公式的地基沉降数值计算与分析[J].水利水电技术,2002,33(5):8~12.
    [132] Geddes J D. Stress in Foundation Soils Due to Vertical Subsurface Load[J].Geotechnique,1966,16(3):231~255.
    [133]中华人民共和国住房和城乡建设部. JGJ106-2003建筑基桩检测技术规范[S].北京:中国建筑工业出版社, 2003.
    [134] Duncan, J.M., Byrne, P., Wong, K.S., and Mabry, P. 1980. The strength, stress-strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses.University of California, Berkeley, Berkeley, Calif. Report CAUCB/Gt/80-01.
    [135] Byrne, P.M., Cheung, H., and Yan, L. 1987. Soil parameters for deformation analysis of sand masses. Canadian Geotechnical Journal, 24(3): 366~376.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.