基于LCL滤波的高速PMSG无位置传感器PWM整流系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有体积小、功率因数高等优点的高速永磁同步发电机在微型燃气轮机系统中有着广泛的应用,但是其电流谐波畸变率很高,不仅降低了发电机的发电效率,还将导致电机发热老化、永磁体退磁、寿命减短等问题。此外,为了获得较高的功率因数,需要准确的转子位置,但高速系统中位置传感器安装也受到了空间位置、环境、精度等因素的限制。因此本文研究发电侧基于LCL模型滤波的高速PMSG无位置PWM整流系统。
     本文首先建立了高速永磁同步发电机PWM整流器不同坐标系下的数学模型,并进一步分析了基于LCL滤波系统数学模型的改变与特点,并以此为基础分析了永磁同步发电机PWM整流器的控制策略以及在高速运行时系统的改进方法。
     为了提高系统功率因数并省去位置传感器,本文分析了滑模观测器在高速PMSG整流系统中的应用。在串入滤波环节后,采用电容电流反馈和等效总电感两种不同输入信号的滑模建立方法并分析了其优缺点。
     LCL模型滤波环节可以得到更好的滤波效果,但是其存在阻抗为零的频率点。这种现象削弱了滤波效果并威胁系统的稳定运行。本文从原理上分析了谐振现象的产生并研究了无源阻尼和有源阻尼法在对谐振现象抑制上的应用。另一方面,本文以根轨迹原理对系统的稳定性进行了分析,研究了不同阻尼方法以及不同反馈电流时系统的稳定性。
     本文进一步研究了系统各部分参数的合理化设计。在分析了参数设计限制的基础上,分析了滤波环节以及母线电容的选取方法,并通过系统整定的方法研究了电压电流环PI参数的选择方法以得到最佳系统性能。
     基于对系统的整体分析,本文利用MATLAB建立了基于LCL模型滤波的永磁同步发电机PWM整流器模型。对系统的电流滤波效果、转子位置检测、谐振现象的抑制等进行了仿真验证。最后,构建了以DSP为基础数字化系统实验平台,设计了系统的软硬件结构,通过实验验证了基于LCL模型滤波的PMSG无位置传感器PWM整流系统的可行性。
The high-speed permanent magnet synchronous generator has been Widely used in microturbine system due to the advantage of high power factor and small size. However, due to its high speed, while switching frequency is somewhat limited, which led to its generation high current harmonic distortion. This not only reduces the efficiency of the generator's power will also lead to motor heating, aging, Permanent magnet demagnetization, shorting the life span and other issues. In order to obtain high power factor, require accurate rotor position, but the installation of position sensor in high-speed system have some limits such as Location, accuracy and environmental. so This article research on High-speed permanent magnet synchronous generator sensorless PWM rectifier based on LCL filtering model on the generator side.
     This article first analyzes each in a different coordinate system mathematical model of PWM rectifier. And further more, analyzes the changes and features when series LCL filter. The article analyzes the control strategy of the PMSG-PWM system and the improvements of the high-speed system.
     In order to obtain high power factor and eliminate position sensors, this paper analyzes the use of SMO in the rectifier system, proposes capacitor current feedback and equivalent total inductance two kinds of methods to establish SMO, when series with filter, and compares the advantages and disadvantages.
     LCL filter can do better on the suppressing current harmonics, but there are zero-frequency impedances. This phenomenon weakens the filter and threatens the stability of the system operation. This paper analyzes the principle of resonance and study the passive damping and active damping method to suppress the resonant phenomenon. On the other hand, based on the principle of root locus, this paper analyzes the stability of the system using different damping methods and different feedback current.
     Further more, this paper analyzes the rational design of parameters. Due to the research on the parameters selection limits this paper researches on the selection method of the parameters of the filter and bus capacitor. And then,analyzes the methods of finding PI parameters to meet good system performance.
     Based on the overall analysis of the system, we established the model of Permanent Magnet Synchronous PWM Rectifier with filter under MATLAB and verified the effect of current filtering, the detection of rotor position and the suppression of resonance. Finally, the paper established a DSP-based experimental platform of digital systems and designed the hardware and software of the system. Through Experiments, this article verifies the feasibility of the system of the position sensor-less high-speed PMSG PWM rectifier based on LCL filtering model.
引文
[1]尹玉君.高速永磁同步发电机逆变电源研究[D].重庆大学硕士学位论文.2006:1~3.
    [2]唐任远.现代永磁电机.机械工业出版社[M].2008:1~4.
    [3] Zhao, L, et al, Design of optimal digital controller for stable super-high-speed permanent-magnet synchronous motor[J]. Electric Power Applications, IEE Proceedings,2006.153(2): p. 213~218.
    [4]徐永向,胡建辉,邹继斌.姚郁.高速永磁同步电动机全数字化矢量控制研究[J].微电机.2007,40(7):7~9.
    [5] Lee, J, J Son, and H Kim, A High Speed Sliding Mode Observer for the Sensorless Speed Control of a PMSM[J]. Industrial Electronics, IEEE Transactions on, 2010. PP(99): p. 1~1
    [6]陈瑶,童亦斌,金新民.基于PWM整流器的SVPWM谐波分析新算法[J].中国电机工程学报.2007,27(13):76~79.
    [7] Shimizu, T, et al, A unity power factor PWM rectifier with DC ripple compensation[J]. Industrial Electronics, IEEE Transactions on, 1997. 44(4): p. 447~455.
    [8] Liserre,M, F Blaabjerg,and S. Hansen,Design and control of an LCL-filter-based three-phase active rectifier[J]. Industry Applications, IEEE Transactions on, 2005. 41(5): p. 1281~1291.
    [9]黄宇淇,姜新建,邱阿瑞. LCL滤波的电压型有源整流器新型主动阻尼控制[J].电工技术学报.2008,23(9):87~90.
    [10] Huynh C,Hawkins L,Farahani A,et al.Design and development of a 2MW,High Speed Permanent Magnet Alternator for Shipboard Application[J].Naval Engineers Journal,2005,117(4):23~29(7)
    [11]安忠良.超高效永磁同步电动机研究开发.沈阳工业大学硕士学位论文[D].2006:3~5.
    [12]周凤争,沈建新,林瑞光.从电机设计的角度减少高速永磁电机转子损耗[J].浙江大学学报.2007,41(9):1587~1591.
    [13] B.Andreas,5.Tobias,K.Markus,Fixation of buried and surfaee-mounted magnets in high-sPeed Permanent-magnet synchronous machines[J],IEEETrans.on Industry APPlieations,vol.42,no.4,2006,PP.1031~1037.
    [14]张国强,李欣宇,陈浩.基于装配模型的曳引机整体强度有限元分析[J].华中科技大学学报.2006,23(2)52~55.
    [15]张兴.PWM整流器及其控制策略研究[M].合肥工业大学博士学位论文.2003:3~5.
    [16]王毅,李和明,石新春,朱凌.多电平PWM逆变电路谐波分析与输出滤波器设计[J].中国电机工程学报.2003,23(10):78~82.
    [17] Barrado, A., et al., PWM-PD multiple output DC/DC converters: operation and control-loop modeling[J]. Power Electronics, IEEE Transactions on, 2004. 19(1): p. 140~149.
    [18] Chien-Ming, W., ZCS-PWM boost rectifier with high power factor and low conduction losses[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2004. 40(2): p. 650~660.
    [19]王晓晨.三相PWM整流器间接电流控制动态性能的改进[J].电力电子技术.2007,41(10):110~114.
    [20] Rahmani, S., K. Al-Haddad, and H.Y. Kanaan, Two PWM techniques for single-phase shunt active power filters employing a direct current control strategy[J]. Power Electronics, IET, 2008. 1(3): p. 376~385.
    [21] Chang, H.C., et al., Establishment and control of a three-phase switched reluctance motor drive using intelligent power modules[J]. Electric Power Applications, IET, 2010. 4(9): p. 772~782.
    [22]贺昱曜,徐德民.谐振直流环节变换器非线性特性分析及仿真[J].中国电机工程学报.2000,20(9):1~5.
    [23]刘秀翀,张化光,陈宏志.四桥臂逆变器中第四桥臂的控制策略[J].中国电机工程学报.2007,27(33):87~92.
    [24] Morimoto, S., M. Sanada, and Y. Takeda, High-performance current-sensorless drive for PMSM and SynRM with only low-resolution position sensor[J]. Industry Applications, IEEE Transactions on, 2003. 39(3): p. 792~801.
    [25] Tetsuya Fukumoto, Hiroto Hamane, Yoich Hayashi, et al. Performance Improvement of the IPMSM Position Sensor-less Vector Control System by the On-line Motor Parameter Error Compensation and the Practical Dead-time Compensation[C]. Power Conversion Conference, Nagoya. 2007, April:314~321.
    [26] Aloi, D.N. and O.V. Korniyenko, Comparative Performance Analysis of a Kalman Filter and a Modified Double Exponential Filter for GPS-Only Position Estimation of Automotive Platforms in an Urban-Canyon Environment[J]. Vehicular Technology, IEEE Transactions on, 2007. 56(5): p. 2880~2892.
    [27]汪树东,崔建明,刘瑞英. PMLSM无位置传感器检测技术的研究[J].微特电机.2008,10:13~15.
    [28] Dunnigan, M.W., et al., Position control of a vector controlled induction machine using Slotine's sliding mode control approach[J]. Electric Power Applications, IEE Proceedings -, 1998. 145(3): p. 231~238.
    [29] Wen-Jieh, W. and C. Jenn-Yih, A new sliding mode position controller with adaptive load torque estimator for an induction motor[J]. Energy Conversion, IEEE Transactions on, 1999. 14(3): p. 413~418.
    [30]贺益康,阮元,伴再平.无位置检测器永磁无换向器电机的起动与运行控制[J].浙江大学学报.1993,27(6):822~827.
    [31]谢萌,刘志刚,师睿.基于LCL滤波的PWM整流器应用[J].电力电子技术.2008,42(7):24~25.
    [32] Gabe, I.J., V.F. Montagner, and H. Pinheiro, Design and Implementation of a Robust Current Controller for VSI Connected to the Grid Through an LCL Filter[J]. Power Electronics, IEEE Transactions on, 2009. 24(6): p. 1444~1452..
    [33] Liserre, M., F. Blaabjerg, and S. Hansen, Design and control of an LCL-filter-based three-phase active rectifier[J]. Industry Applications, IEEE Transactions on, 2005. 41(5): p. 1281~1291.
    [34] Vodyakho, O. and C.C. Mi, Three-Level Inverter-Based Shunt Active Power Filter in Three-Phase Three-Wire and Four-Wire Systems[J]. Power Electronics, IEEE Transactions on, 2009. 24(5): p. 1350~1363.
    [35]张宪平,李亚西,林资旭,许洪华. LCL滤波的电压型PWM整流器的有源阻尼控制[J].电气传动.2007,37(11):22~25.
    [36]李芬,邹旭东,吴振兴,邹云屏,唐健.采用LCL滤波器并网的交流电子负载[J].高电压技术.2009,35(10):2522~2527.
    [37]何良,赵继敏,谢海先.三相电压型脉宽调制整流器的LCL滤波器设计[J].电网技术.2006,30:51~52.
    [38] Gullvik, W., L. Norum, and R. Nilsen. Active damping of resonance oscillations in LCL-filters based on virtual flux and virtual resistor[C]. in Power Electronics and Applications, 2007 European Conference on. 2007.
    [39] Serpa, L.A., et al., A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid Through LCL Filters[J]. Industry Applications, IEEE Transactions on, 2007. 43(5): p. 1388~1400.
    [40].徐金榜.三相电压源PWM整流器控制技术研究[D].华中科技大学博士学位论文.2004:11~16
    [41] Wai, R.J. and F.J. Lin, Fuzzy neural network sliding-mode position controller for induction servo motor drive[J]. Electric Power Applications, IEE Proceedings -, 1999. 146(3): p. 297~308.
    [42]张细政,王耀南,杨民生.永磁同步电机无位置传感器双滑模鲁棒控制[J].电机与控制学报.2008,12(6):696~670.
    [43] Dick, C.P., et al. Active damping of LCL resonance with minimum sensor effort by means of a digital infinite impulse response filter[C]. in Power Electronics and Applications, 2007 European Conference on. 2007.
    [44]苏奎峰,吕强,常天庆,等. TMS320x281xDSP原理及C程序开发[M].北京航空航天大学出版社. 2008: 34~71.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.