猪流行性腹泻病毒主要结构蛋白不同抗原片段在重组干酪乳杆菌中的表达及其免疫学评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪流行性腹泻(Porcine epidemic diarrhea,PED)是猪的一种以严重腹泻、呕吐和脱水为临床特征的高度接触性传染病。此病多发生于冬季12月至来年2月寒冷季节,在夏季也可发生。哺乳仔猪、断奶仔猪和育肥猪发病率可达100%,成年母猪为15%~19%,以哺乳仔猪受害最严重,死亡率可达95%以上,而成年猪死亡率在10%以下。PEDV主要通过被感染猪只排出的粪便或污染物经口自然感染,新生仔猪潜伏期为24-36小时,肥育猪为2日以上,病猪腹泻开始时排黄色粘稠便,以后变成水样便,腹泻的同时伴有精神沉郁,厌食,消瘦及衰竭。年龄越小,症状越严重,死亡率越高。PED在世界上分布很广,呈现地方性流行性。近年来,流行区域有逐渐扩大的趋势,危害比较严重,给养猪业带来重要经济损失。
     本研究首先克隆了PEDV LJB/03株s、n基因,并对其分子特征、遗传变异作出分析,结果显示,不同毒株间的变异率很小,表现出了高度的保守性,适合用作基因工程疫苗研究。针对目前PEDV保护性抗原还不清楚的现状,试验中利用实验室构建的重组大肠杆菌,诱导并纯化了PEDV S蛋白的各个片段s1(22-505aa)、S2(488-980aa)、S34(951-1383aa)、PS420(461-638aa)、S22(502-792aa)以及N蛋白,之后利用纯化蛋白免疫试验兔制备高免血清,以高免血清做中和试验,结果显示,除N蛋白外,所有重组蛋白的抗血清的均具有一定的中和活性,中和效价在1:23~1:93之间,其中以S1、S22、PS420的抗血清中和活性较高,分别可达1:93、1:74、1:89;S34中和效价为1:52;S2抗血清中和效价较低,为1:23;抗血清组合后中和效价呈现不同程度的提高,其中以S1、S22、PS420组合抗血清中和活性最好,可达1:363:S1、S2、S34抗血清组合中和活性为1:199,S22与PS420抗血清组合中和活性1:186。从而筛选出适合于基因工程疫苗研究的基因片段。
     为探讨大肠杆菌不耐热肠毒素B单位(LTB)在乳酸菌传递系统的佐剂活性,并进一步提高PS420的免疫原性,试验中克隆了LTB基因并与ps420基因融合,命名为lp0。
     以筛选到的免疫保护性抗原蛋白的基因ps1(包含S1、PS420、S22)、ps420、lp0、n为靶基因,分别亚克隆至细胞表面表达型乳酸菌载体pPG-1及分泌表达型乳酸菌载体pPG-2中,电转化后,构建了表达PEDV免疫保护性抗原蛋白的重组干酪乳杆菌表达系统。
     将获得的8种重组干酪乳杆菌以2%乳糖为诱导剂进行诱导表达。细胞表面表达型重组干酪乳杆菌诱导后经Western blot、间接免疫荧光、全菌体ELISA试验证实,蛋白获得表达,并且定位于干酪乳杆菌菌体表面;分泌表达型重组干酪乳杆菌经诱导后,Western blot、间接ELISA实验表明,重组的目的蛋白获得了分泌表达。
     为探讨表达重组的重组干酪乳杆菌系统作为活菌疫苗潜在的应用价值,本实验以BALB/c小鼠为实验动物,进行免疫学研究。共分为pPG-1-lp0/L.casei393免疫组、pPG-2-lp0/L.casei393免疫组、pPG-1-ps420/L.casei393免疫组、pPG-2-ps420/L.casei393免疫组、pPG-1-n/L.casei393免疫组、pPG-2-n/L.casei393免疫组、pPG-1-ps1/L.casei393免疫组、pPG-2-ps1/L.casei393免疫组、pPG-1联合免疫组(pPG-1-n/L.casei393、pPG-1-ps1/L.casei393)、pPG-2联合免疫组(pPG-2-n/L.casei393、pPG-2-ps1/L.casei393)、pPG-1/L.casei393免疫对照组、pPG-1/L.casei393免疫对照组、PBS对照组,共13组。口服接种10~9活菌量,每2周免疫一次,共免疫三次,每次连续免疫3d,一天免疫一次。免疫后分别于0d、7d、21d、35d、49d、63d、77d收集免疫小鼠新鲜粪便、血液、眼冲洗物、鼻腔冲洗液、外生殖道冲洗液等样品。分别测定样品中特异性的sIgA以及小鼠血清中IgG;用MTT法检测免疫小鼠细胞脾淋巴细胞增殖情况,并检测小鼠脾细胞培养上清中细胞因子IL-4、IFN-γ的水平。
     ELISA检测结果表明,口服免疫重组干酪乳杆菌后在小鼠粪便、眼冲洗液、鼻冲洗液、外生殖道冲洗液、肠黏液中均检测到了特异性sIgA,各组一般在免疫后21d即可产生明显的抗体水平(P<0.05),第35d或49d达到sIgA抗体水平最高峰,与和对照组相比,差异均为显著(P<0.05)或极显著(P<0.01),到77d也可检测到抗体存在。同时在小鼠血清中检测到了较高水平的血清抗体,各组一般在免疫后21d即可产生明显的抗体水平(P<0.05),第35d或49d达到sIgA抗体水平最高峰,和对照组相比,差异均为显著(P<0.05)或极显著(P<0.01),到77d也可检测到抗体存在。淋巴细胞增殖试验和细胞因子测定结果显示,免疫组可产生明显的细胞免疫应答。
     口服免疫效果表明,该8种重组干酪乳杆菌表达系统均能刺激动物黏膜免疫应答和系统免疫应答,不但在肠道,而且在眼、鼻、外生殖道等部位均可产生分泌型IgA抗体,并可检测到高水平血清IgG;不仅能诱导体液免疫反应,还可诱导细胞免疫效应。中和试验结果表明,血清抗体、肠粘液sIgA均有一定的保护效果,血清抗体中和效价在1:6~1:93之间,肠黏液IgA中和效价1:3~1:35之间。
     试验证实细胞表面表达型干酪乳杆菌系统可诱导比分泌表达型干酪乳杆菌系统具有更好的免疫反应;表达ps1基因的重组干酪乳杆菌和表达n基因的重组干酪乳杆菌联合免疫可诱导更强的免疫应答;导向分子LTB的引入增强了重组乳酸菌疫苗的免疫效果,具有佐剂效应。
     以上结果说明所构建的重组干酪乳杆菌表达系统作为口服疫苗具有潜在的应用价值,为探索新型PED口服疫苗的研制奠定了基础。
Porcine epidemic diarrhea virus(PEDV),a member of the Coronaviridae,causes an economically important disease in neonatal piglets,which characterized by severe enteritis with anorexia,vomiting,acute diarrhea,dehydration and significant mortality in swine,thereby incurring serious economic losses worldwide due to the death of neonatal piglets and weight loss of the infected pigs.Morbidity and mortality in infected neonatal piglets less than 5 days old approach 100%because of severe diarrhea and dehydration.However,mortality in infected piglets older than 10 days is less than 10%.PED have been reported in many countries,caused serious economic losses due to the death of neonatal piglets and weight loss of the infected pigs.
     Lactic acid bacteria(LAB),considered to be safe bacteria with a GRAS(generally regarded as safe) status,possesses many properties that has been thought to be an ideal vaccine which has a good perspective.
     The main goals of this thesis were:(1) to understand the knowledge of the data of molecular biology of PEDV strains that are prevalent in China;(2) and select the protective antigen of PEDV; (3) to study the efficacy,immunogenicity of recombinant Lactobacillus casei after oral vaccination.
     Above all,we cloned s gene of PEDV LJB/03 strain,then the gene fragment was subcloned into pMD18-T vector,sequenced and analysised.Comparing with PEDV reference strains,S gene had some mutant,and homology of nucleotides and amino acids sequences was between 94.4%and 100%.The LJB/03 n gene has also a high sequence homology to those of other PEDV isolates.The analysis result showed that LJB/03 have high homology with different isolates,so it can serve as target antigen to develop genetic engineering vaccine.
     Some of the structural proteins of PEDV carry major epitopes involved in virus neutralization and are essential for the induction of protective humoral responses and the development of an effective vaccine.Rabbit antisera were prepared using full-length N proteins and five truncated expressed fragments covering the S protein fragments[s1(22-505aa),S2(488-980aa), S34(951-1383aa),PS420(461-638aa),S22(502-792aa)].Antisera to S proteins were found to have different neutralizing titres towards PEDV infection in vivo,ranging from 1:23~1:93.Antiserum to the N protein did not contain neutralizing antibodies.Epitopes inducing protective humoral responses to virus infection were located mainly in the region S1,S22,PS420.The in vitro neutralization assay has important implications for the design of an effective vaccine preventing PEDV infection.
     The selective gene ps1(including S1,S22,PS420),ps420,n,1p0(LTB and ps420) were subcloned into the expression vector pPG-1 or pPG-2,and then transformed into L.casei 393 by electroporation,resulting in recombinant strain pPG-1-n/L.casei393,pPG-1-ps1/L.casei393,pPG-1 -1p0/L.casei393,pPG-1-ps420/L.casei393,pPG-2-n/L.casei393,pPG-2-ps1/L.casei393,pPG-2-1p0-/L.casei393, pPG-2-ps420/L.casei393,respectively.
     The recombinant strains constructed in this study were induced by 2%lactose in MRS medium to express interest protein.The expression protein in the cell-surface expression system (pPG-1-n/L.casei393,pPG-1-ps1/L.casei393,pPG-1-1p0/L.casei393,pPG-1-ps420/L.casei393) was detected by Western blot and the whole bacterica ELISA.The indirect immunofluorescence test showed that the expressed protein was displayed on the cell surface of L.casei 393.
     The recombinant strain pPG-2-n/L.casei393,pPG-2-psl/L.casei393,pPG-2-1p0/L.casei393, pPG-2-ps420/L.casei393 was detected via Western blot and indirect ELISA.The result of Western blot indicated that the expressed protein possessed the antigenic specificity same as the native virus protein.The indirect ELISA test also indicated that the interest protein was expressed and secreted into the culture supernatant.
     To evaluate the immune responses of recombinant L.casei 393 expressing PEDV protein as oral vaccine,BALB/C mouse were used as animal model immunized with recombinant strains by intragastric administration,and the immune efficacy was analyzed.
     The immune protocol was administered on three consecutive days at days 0,1and 2.A booster immunization was given at days 14,15 and 16 and a second booster was given at days 28,29 and 30,the mice were fed with 10~9 recombinant strains.The groups include pPG-1-1p0/L.casei393 immun-ization group,pPG-2-1p0/L.casei393 immunization group,pPG-1-ps420/L.casei393 immunization group,pPG-2-ps420/L.casei393 immunization group,pPG-1-n/L.casei393 imm -unization group,pPG-2-n/L.casei393 immunization group,pPG-1-ps1/L.casei393 immunization group,pPG-2-ps1/L.casei-393 immunization group,pPG1 divalent immunization group(pPG-1-n /L.casei393 and pPG-1-ps1/L.casei393 ),pPG2 divalent immunization group(pPG-2-n/L.casei393 and pPG-2-ps1/L.casei393).As control,the mice were immunized with L.casei393 harboring pPG-2 or pPG-2,or PBS by oral route.
     Specific anti-PEDV protein sIgA was detected by indirect enzyme linked immunosorbent assay (ELISA) in the feces,nasal wash,vaginal lavage,eye wash,intestines mucus of mice after intragastric administration,and Specific IgG was detected by indirect ELISA in the serum of immunized mice.The spleen lymphocyte proliferation index(LPI) was measured.IFN-γand IL-4 contents in the supematant of spleen cell culture were also assessed by ELISA.
     The results of ELISA showed that the mice immunized with recombinant strains could produce remarkable special slgA level in the feces,nasal wash,vaginal lavage,eye wash of mice on days 21 post oral administration,and highest level were obtained on days 35 or 49 post oral administration. Highest level of anti-PEDV protein IgG in the serum of mice were obtained on days 35 or 49 post oral administration.Special sIgA level in the intestines lavages significant increase.These indicated that the recombinant strains constructed in this study could induce both mucosal immune and system immune responses.The results also demonstrated that recombinant L.casei 393 of cell surface expression type could elicit higher immune response level than that induced by secretion expression type.
     The multiple oral immunizations with recombinant L.casei 393 could induce significantly specific mucosal IgA response as well as serum IgG responses.Moreover,there was significant increase of IFN-γand IL-4 contents in the supernatant of spleen cell culture in immunized group. Statistical significant difference was observed among the LPI among these ten immunized groups of mice and control groups.The results demonstrated that recombinant L.casei 393 of secretion expression type could elicit higher immune response level than that induced by cell surface expression type.pPG-1 divalent immunization group(pPG-1-n/L.casei393 and pPG-1-ps1 -/L.casei393),pPG-1 divalent immunization group(pPG-2-n/L.casei393 and pPG-2-ps1 -/L.casei393 ) can induce more effective immune response,leads to synergic effect.
     The induced antibodies in serum and intestinal lavages demonstrated neutralizing effect on PEDV infection.Another conclusion is LTB could be an effective advjant in intragastric administeration of recombinant L.casei 393.
     Our data has indicated that intragastric administration of the recombinant L.casei 393 could induce specific immune response against PEDV.Our work established a good foundation for further study on the new and effective PEDV recombinant oral vaccines.
引文
薄清如.1989.猪流行性腹泻的病理学研究免疫酶组化法(间接法)抗原定位研究[J].畜牧兽医学报.增刊(2);101-104
    陈辉,贾润清,康白,等.2004.人干扰素α-2b基因在德氏乳杆菌的表达与鉴定[J].中国微生态学杂志,16(3):129-131
    程波财,魏华.2001.乳酸菌与肠黏膜免疫[J].中国微生态学杂志.13(5):302-304
    程庆华,牛小迎,叶成玉.1992.青海地区猪流行性腹泻病调查[J].青海畜牧兽医杂志.22(3):22-23.
    高慎阳,邹运明,李一经.2007.猪流行性腹泻病毒M基因及其片段原核表达效果分析[J],中国预防兽医学报.29(1):28-30
    郭本恒主编.2003.益生菌.第1版.北京:化学工业出版社.101-104
    贾士芳,王荫榆,郭兴华,还连栋.1998,乳杆菌电转化条件的研究[J].生物工程学报.14(4):429-433
    李树根,李施力,霍燕琼,等.1991.使用细胞培养单层分离猪流行性腹泻病毒[J].中国兽医科技.10:24-25
    刘伟杰,张远钰.1989.猪流行性腹泻免疫病理学研究Ⅳ.胃肠道IgA、IgM和IgG产生细胞数及其分泌液和血液中IgA、IgM和IgG含量动态观察[J].中国人民解放军兽医大学学报.9(3):259-264
    马思奇,王明,冯力,等.1994猪流行性腹泻病毒适应Vero细胞培养及以传代细胞毒制备氢氧化铝灭活疫苗免疫效力试验[J].中国畜禽传染病.2:15-18
    孟昭赫主编.1993.乳酸菌与人体健康[M].第一版,北京:人民卫生出版社.24-36
    倪艳秀,何孔旺,俞正玉,等.2003.检测猪流行性腹泻病毒的RT PCR方法的建立.中国畜牧医学会家畜传染病分会成立20周年庆典,暨第十次学术研讨会论文集.545-546
    钱永清,闻人楚,唐永兰,等.1999.猪流行性腹泻的免疫研究[J],上海畜牧兽医通讯.3:4-6
    钱永清,邹勇.2007.猪流行性腹泻和猪传染性胃肠炎病及其防制[J].27(1):57-60
    萨姆布鲁克J.,弗里奇E.F.,曼尼阿蒂斯T.,著,金冬雁,黎孟枫,等译.1993.分子克隆实验指南(第二版)[M],科学出版社.880-898
    师东方,李一经,唐丽杰,等2003.猪传染性胃肠炎病毒核酸免疫昆明鼠的抗体应答[J].中国兽医科技,33(8):31-34.
    斯特劳B.E,阿莱尔S.D,蒙加林W L,等.2000.猪病学(第8版)[M].赵德明,张中秋,沈建忠,译.北京:中国农业大学出版社.181-187
    孙东波,冯力,陈建飞,等.2007.猪流行性腹泻病毒CH/JL毒株s基因的克隆、序列分析及线性抗原表位区的鉴定[J].病毒学报.23(3):224-228
    孙东波,冯力,时洪艳,等.2007.猪流行性腹泻病毒蛋白中和表位区单克隆抗体的制备与鉴定[J].中国预防兽医学报.29(11):887-890
    孙东波,朗洪武,时洪艳,等.2007PEDV S蛋白B细胞抗原表位的筛选和鉴定[J].生物化学 与生物物理进展.34(9):971-977
    田心田.实验性流行性腹泻仔猪小肠粘膜上皮细胞肠系膜淋巴结的超微结构.中国人民解放军兽医大学学报,1988 8(2),63-66
    佟有恩,冯力,马思奇,等.1998.猪流行性腹泻弱毒株的培育[J].中国畜禽传染病.20(6):329-332
    童昆周,李力复,林志雄,等.1996.猪流行性腹泻弱毒疫苗的研究[J].中国兽医科技.26(1):3-4
    王春凤,秦泽荣,徐镔蕊,等.2002.饲喂转球虫基因功能乳酸杆菌后对雏鸡体重的影响[J].畜牧兽医学报.33(6):591-593
    王红梅.2003.重组hCGβ乳酸杆菌的构建及其对小鼠阴道黏膜免疫的效果[D].博士论文.34-42
    王红梅,李大金,袁敏敏,等.2003.表达hCG β的乳酸杆菌经阴道粘膜免疫的研究[J],中国免疫学杂志,19(10):701-703
    王明,马思奇,周金法,等.1997.猪传染性胃肠炎与猪流行性腹泻穴位针刺免疫的研究[J].中国畜禽传染病.19(6):6-12
    王明,马思奇,周金法等.1993.猪流行性腹泻灭活苗疫苗的研究[J].中国畜禽传染病.5:17-19
    谢明星.1988.猪流行性腹泻病毒实验感染猪血清抗体的消长规律[J].中国人民解放军兽医大学学报.8(2):181
    徐镔蕊,王春凤,孙哲,等.2005.转球虫SO7基因功能乳酸杆菌对肉仔鸡感染球虫后盲肠病理学变化的影响[J].畜牧兽医学报.36(1):74-76
    徐慎苓.1986.猪流行性腹泻免疫病理学研究Ⅰ.人工感染猪流行性腹泻病毒仔猪外周血SIg B细胞及T细胞的动态观察[J].中国人民解放军兽医大学学报.6(1):18-24
    徐义刚.2007.共表达猪瘟病毒T细胞表位与猪细小病毒VP2蛋白重组乳酸菌系统的构建及其免疫学评价.[D].博士论文.
    宣华,邢德坤,王殿派,等.1984.应用猪胎肠单层细胞培养猪流行性腹泻的研究[J].中国人民解放军兽医大学学报.4(3):202-208
    杨臣.1986.猪流行性腹泻病毒在人工感染仔猪体内的分布[J].中国人民解放军兽医大学学报.10(1):21-25
    杨洁彬,黄庆生,王加启.2002.饲料乳酸菌类益生素的作用机制和应用[J].动物营养学报.14(4):12-17
    杨群,何孔旺,陆承平.2006.应用多重RT-PCR方法检测158例猪粪样中的两冠状病毒[J].中国预防兽医学报.28(4):431-35
    姚晓英,李大金,袁敏敏.2006.表达hCGβ的重组乳酸杆菌经阴道免疫小鼠后的体液免疫应答[J].中华微生物学和免疫学杂志.26(7):659-664
    于晓龙.2007.猪流行性腹泻病毒和猪传染性胃肠炎病毒混合感染的调查[J].安徽农学通报.13(14):156-157
    余丽芸,侯喜林.2005.流行性腹泻病毒M基因与甲病毒载体重组RNA的构建[J].动物医学 进展.26(5):73-76
    张强敏,郭福生,尹燕博,等.2002.猪流行性腹泻的诊断与防治[J].中国兽医杂志.38(10):42-45
    张远钰.猪流行性腹泻免痤病理学研究:Ⅰ.人工感染仔猪免疫器官B、T淋巴细胞的动态观察[J].中国人民解放军兽医大学学报 1989;9(2):146-149.
    张远钰.1992.猪流行性腹泻发病机制及免疫病理学研究进展[J].中国病理生理杂志.8(4)443-446
    张远钰.猪流行性腹泻免疫病理学研究Ⅰ.人工感染仔猪外周血ANAE~+T淋巴细胞及其亚群的动态观察[J].中国人民解放军兽医大学学报.1988-8(1):64-68
    Anton I.M,Sune C,Meloen R.H,et al.1995.A Transmissible Gastroenteritis Coronavirus Nucleoprotein Epitope Elicits T-Helper Cells that Collaborate in the in Vitro Antibody Synthesis to the There Major Structure Viral Proteins[J].Virol.212:746-751.
    Aseffa A,Gumy A,Launois P,et al.2002.The early IL-4 response to Leishmania major and the resulting Th2 cell maturation steering progressive disease in BALB/c mice are subject to the control of regulatory CD4~+CD25~+T cells[J].J Immunol,169(6):3232-3241.
    Bae J L,Jang YS,Yang MS,et al.2003.Induction of Antigen-specific Systemic and Mucosal Immune Responses by Feeding Animals Transgenic Plants Expressing the Antigen[J].Vaccine.21(25/26):4052-4058
    Barrow P A,Brooker B E,Fuller R,et al.1980.The attachment of bacteria to the gastricepit helium of the pig and its importance in the microecology of the intestinal[J].Journal of Applied B acteriology,48:147-154
    Bernasconi C,Guscetti F,Utiger A,et al.1995.Experimental infections of gnotobiotic piglets with a cell culture adapted porcine epidemic diarrhoea virus:clinical histopathoiogicai and immunohistochemical findings[A].Immunobiology of Viral Infections[C].Edited by M Schwyzer & M,Ackermann Lyon,France:Fondation Marcel Merieux.542-546
    Bernet M F,Brassart D,Neeser J R,et al.1994.L actobals aci dophi l us LA1 binds to cult ured human intestinal cell lines and inhibits cell-attachment and cell-invasion by enterovirulent bacteria[J].Gut.35:483-489.
    Bos E C,Luytjes W,van der Meulen H V,et al.1996.The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus[J].Virology.218(1),52-60
    Brian D A,Baric R S.2005.Coronavirus genome structure and replication[J].Curr Top Microbiol Immunol.287:1230
    Bridgen A,Duarte M,Tobler K,et al.1993.Sequence determination of the nucleocapsid protein gene of the porcine epidemic diarrhea virus confirms that this virus is a coronavirus related to human coronavirus 229E and porcine transmissible gastroenteritis virus[J].J Gen Virol.74(9):1795-1804
    Bridgen A,Kocherhans R,Tobler K,et al.1998.Further analysis of the genome of porcine epidemic diarrhoea virus[J]. Adv Exp Med Biol.440:781-786
    Cavanagh D. 2003 .Severe acute respiratory syndrome vaccine development: experiences of vaccination against avian infectious ronchitis coronavirus[J]. Avian Pathol, 32:567-582.
    Chae C, Kim 0, Choi C,et al. 2000.Prevalence of porcine epidemic diarrhoea virus and transmissible gastroenteritis virus infection in Korean pigs[J]. Vet Rec. 147:606-608
    Chang S H, Bae J L, Kang T J, et al. 2002. Identification of the epitope region capable of inducing neutralizing antibodies against the porcine epidemic diarrhea virus[J].Mol Cells. 14(2):295-299
    Coconnier. ,L ievin, Hemery et al, 1998.Antagonistic Activity against Helicobacter Infection In Virto and In Vivo by the Human Lactobacillus acidophilus Strain LB [J].Appl. Enviro. Microbiol. 64(11): 4573-4580
    Corthesy B, Boris S, Isler P, et al.2005. Oral immunization of mice with lactic acid bacteria producing Helicobacter pylori urease B subunit partially protects against challenge with Helicobacter felis[J]. J Infect Dis. 192(8): 1441-9
    Coussement W, Ducatelle R, Debouck P, et al.1982.Pathology of experimental CV777 coronavirus enteritis in piglets. I. Histological and histochemical study. Vet Pathol. 19(1):46-56
    De Haan L, Feil I K, Verweij W R, et al. Mutational analysis of the role of ADP-ribosylation activity and GM1-binding activity in the adjuvant properties of the Escherichia coli heat-labile enterotoxin towards intranasally administered keyhole limpet hemocyanin[J]. Eur J Immunol, 1998, 28 (4): 1243-1250.
    Debouck P, Pensaert M, Coussement W. 1981. The pathogenesis of an enteric infection in pigs, experimentally induced by the coronavirus-like agent, CV 777[J]. Vet. Microbiol. 6:157-167
    Duarte M, Gelfil J, Lambert P,et al. 1993.Genomic organization of porcine epidemic diarrhoea virus (PEDV)[A].in: Coranaviruses: Molecular Biology and Virus-Host Interaction[C], Edited by H.Larde and J.V.Vautherot, New York: Pleum.
    Duarte M, Laude H. 1994. Sequence of the Spike Protein of the Porcine Epidemic Diarrhoea Virus [J]. J Gen Virol.75:1195-1200
    Duarte M,Laude H.1994.Sequence of the spike protein of the porcine epidemic diarrhoea virus[J]. J Gen Virol.75:1195-1200
    Duarte M,Tobler K, Bridgen A,et al. 1994.sequence analysis of the porcine epidemic diarrhea virus genome between the nucleocapsid and spike protein genes reveals a polymorphic ORF[J]. Virology, 198:466-476
    Ducatelle R, Coussement W, Debouck P, et al.1982.Pathology of experimental CV777 coronavirus enteritis in piglets. II. Electron microscopic study. Vet Pathol. .19(1):57-66
    DueateUe R.1982.Pathology of experimental CV777 eoronavirus enteritis in piglets:I Electron mieroscopie study. Vet Pathol. 19: 57
    Dunne C.1999.In vivo and in vitro adhesion to epithelium of probiotic microorganisms[J]. Gastroenterology.116:4(2): G3058.
    Dunne C, Murp hy L, Flynn S, et al. 1999. Probiotics :from myth to reality. Demonst ration of functionality in animal models of disease and in human clinical trials[J]. Antonie Van L eeuwenhoek.76 :279 - 292
    Enjuanes L, Van der Zeijst B A M. 1995.Molecular basis of transmissible gastroenteritis virus epidemiology[A]. in: the Coronaviridae[C]. Edited by Siddell. New York:Plenum Press.337-376
    Fan JH, Li YJ. 2005.Cloning and sequence analysis of the M gene of porcine epidemic diarrhea virus LJB/03[J]. Virus Genes.30, 69-73
    Gallagher T M, Buchmeier MJ.2001 .Coronavirus spike proteins in viral entry andpathogenesis [J]. Virology. 279(2):371-374
    Grangette C, Muller-Alouf H, Goudercourt D,et al.2001.Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum[J]. Infect Immun. 69(3): 1547-53
    Haller D,Bode, Hammeswp, et al.1999.Cytokine Secretion by Stimulated Monocytes Depends on the Grow th Phase and Heat T reatment of Bacteria:A Comparative Study between LacticA cid Bacteria and Invasive Pathogens [J].Microbiol Immunol.43 (10): 925-935
    Harris L J , Daeschel M A ,Stiles M E , et al . 1989. Antimicrobial activit y of lactic acid bacteria against Lister a monocyto genes [J]. Jou rnal of Food Protect ion ,52 (6) :384 - 387.
    Hee Kyung Lee, Sang-geon Yeo.2003 .Cloning and sequence analysis of the nucleocapsid gene of porcine epidemid diarrhea virus Chinju99[J]. Virus Genes. 26,207-212
    Hirai T, Nunoya T, Ihara T, et al. 2001.Dual infection with PCV-2 and porcine epidemic diarrhoea virus in neonatal piglets[J].Vet Rec.148:482-484
    Ho PS, Kwang J, Lee YK.2005.Intragastric administration of Lactobacillus casei expressing transmissible gastroentritis coronavirus spike glycoprotein induced specific antibody production[J]. Vaccine.3;23(11):1335-42
    Hoag KA,Lipscomb MF,Izzo AA,Street NE.1997.IL-12 and IFN-gamma are required for initiating the protective Th1 response to pulmonary cryptococcosis in resistant C.B-17 mice[J].Am J Respir Cell Mol Biol. 17(6):733-739.
    Hofmann M, Wyler R.1988. Propagation of The Virus of PED in Cell Culture[J]. J Clin Microbiol. 26:2235-2239
    Hofmann M, Wyler R. 1989. Quantitation, Biological and Physicochemical Properties of Cell Culture-adapted Porcine Epidemic Diarrhea Coronavirus (PEDV)[J]. Vet Microbiol.20: 131-142
    Ishikawa K, Sekiguchi H, Ogino T, et al. 1997. Direct and Rapid Detection of Porcine Epidemic Diarrhoea Virus by RT-PCR [J]. J Virol Method. 69:191-195
    JS Oh, DS Song, JS Yang, JY Song, HS Yoo, YS Jang. 2004. Effect of soluble porcine aminopeptidase N on antibody production against PEDV[J]. J Vet Sci. 5(4):353-7
    JS, Oh., DS, Song., and BK, Park. 2003. Identification of a putative cellular receptor 150 kDa polypeptide for porcine epidemic diarrhea virus in porcine enterocytes[J].J Vet Sci. 4(3):269-75
    Jung K, Kim J, Kim O, et al. 2003. Differentiation between Porcine Epidemic Diarrhea Virus and Transmissible Gastroenteritis Virus in Formalin-fixed Paraffin-embedded Tissues by Multiplex RTNested PCR and Comparison with in situ Hybridization [J]. J Virol Methods.108(1):41-47
    Kadoi K, Sugiok H, Satoh T,et al. 2002.The Propagation of a Porcine Epidemic Diarrhea Virus in Swine Cell Lines[J]. New Microbiol.25,285-290
    Kaila M, Isolauri E, Soppi E,et al. 1992. Enhancement of the circulating antibody secreting cell response in human diarrhea by a human Lactobacillus strain[J].Pediatr Res.32:141-144
    Kang T J , Kim Y S , J ang Y S , et al. 2005. Expression of the synthetic neutralizing epitope gene of Porcine epidemic diarrhea virus in tobacco plants without nicotine[J].Vaccine. 23:2294-2297
    Kang T, Jang Y S, Yang M S, et al. 2005.Cloning and Sequence Analysis of the Korean Strain of Spike Gene of Porcine Epidem is Diarrhea Virus and Expression of Its Neutralizing Epitope in Plants[J]. Protein Expr Purif. 41(2):378-383
    Kim O, Chae C. 2002. Comparison of Reverse Transcription Polymerase Chain Reaction Immunohistochemistry and in situ Hybridization for the Detection of Porcine Epidemic Diarrhea Virus in Pigs [J]. Can J Vet Res.66(2):112-116
    Kim SY, Song DS, Park BK. 2001. Differential detection of transmissible gastroenteritis virus and porcine epidemic diarrhoea virus by duplex RT-PCR[J].J Vet Diagn Invest. 13(6):516-20 Kim TW, Lee JH, Hung CF,et al. 2004.Generation and characterization of DNA vaccines targeting the nucleocapsid protein of severe acute respiratory syndrome coronavirus[J].J Virol, 8: 4638 -4645.
    Kocherhans R,Bridgen A,Ackermann M,et al. 2001.Completion of the Porcine epidemic diarrhoea coronavirus(PEDV)genome sequence[J]. Virus Genes.23(2):137-144
    Krueger DK, Kelly SM, Lewicki DN, et al. 2001. Variations in disparate regions of the murine coronavirus spike protein impace the initiation of membrane fusion[J]. J Virol.75 (6): 2792-2803
    Kubota S, Sasaki O, Amimoto K, et al. 1999.Detection of porcine epidemic diarhea virus using polymerase chain reaction and comparison of the nucleocapsid protein genes among strains of the virus[J]. J Vet Med Sci. 61:827-830
    Kuo L and Masters P S. 2003The small envelope protein E is not essential for murine coronavirus replication [J]. J Virol. 77(8): 4597-4608
    Kweon C H, Kwon B J, Lee J G,et al.1999.Derivation of attenuated porcine epidemic diarrhea virus(PEDV)as candidate[J]. Vaccine. 17:2546-2553
    Kweon C H,Kwon B J,Woo S R,et al. 2000. Immunoprophylactic Effect of chicken Egg Yolk Immunoglobulin(IgY)against porcine epidemic diarrhea virus(PEDV)in piglets[J]. J Vet Med Sci. 62(9):961-4
    Kweon CH, Lee JG, Han MG, Kang YB.1997.Rapid Diagnosis of Porcine Epidemic Diarrhoea Virus Infection by Polymerise Chain Reaction[J]. J Vet Med Sci.59(3):231-232
    Lai M.M., Cavanagh D. 1997.The molecular biology of coronaviruses[J]. Adv. Virus Res. 48, 1-100
    Lee H K, Yeo S G 2003 .Cloning and sequence analysis of the nucleocapsid gene of Porcine epidemic diarrhea virus Chinju99[J]. Virus Genes. 26 (2) :207-212
    Lee J S, Poo H, Han D P,et al. 2006.Mucosal immunization with surface-displayed severe acute respiratory syndrome coronavirus spike protein on Lactobacillus casei induces neutralizing antibodies in mice[J]. J Virol. 80(8):4079-87
    Lin M, Tseng H K, Trejaut J A, et al.2003.Association of HLA class I with severe acute respiratory syndrome coronavirus infection[J].BMC Med Genet.4(1):9
    Lin Y, Shen X, Yang RF, et al.2003.Identification of an epitope of SARS-coronavirus nucleocapsid protein[J].Cell Research. 13(3): 141-145
    Liu C, KokuhoT, Onodera T,et al. 2001. DNA Mediated Immunization with Encoding the Nucleoprotein Gene of Porcine TransmisibleGastroenteritisvirus [J]. Virus Res, 80(1/2): 75-82.
    Liu D X, Cavanagh D, Green P, et al. 1991.A polycistronic mRNA specified by the coronavirus infectious bronchitis virus [J].Virology. 184:531-544
    Lontok E, Corse E, Machamer C E.2004.Intracellular targeting signals contribute to localization of coronavirus spike proteins near the virus assembly site [J].J Virol.78(11):5913-5922
    Mack D R, Michail S, Wei S, Mcdougall L, et al. 1999. Probiotics inhibit enteropat hogenic E. Col i adherence in vit ro by inducing intestinal mucin gene expression[J]. American Journal of Physiology.276(39) :941-950
    Macneughton M.R., Davies H.A.1978.Ribonucleoprotein-like structures from coronavirus particles[J]. J. Gen. Virol. 39 (3):545-549
    Mahender Singh. 1999. A novel internal open reading frame product expressed from a polycistronic mRNA of porcine epidemic diarrhoea virus may not contribute to virus[J]. J Gen Virol.80:1959-1963
    Mongini PK, Tolani S, Fattah RJ, et al. Antigen receptor triggered upregulation of CD86 and CD80 in human B cells: augmenting role of the CD21/CD19 co-stimulatory complex and IL-4.Cell Immunol, 2002, 216(1-2): 50-64
    Oliveira M L, Areas A P, Campos I B, et al. 2006. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A[J]. Microbes Infect. 8(4):1016-24
    Oliveira ML, Monedero V, Miyaji EN, Leite LC, Lee HP, Perez-Martinez G. 2003. Expression of Streptococcus pneumoniae antigens, PsaA (pneumococcal surface antigen A) and PspA (pneumo-coccal surface protein A) by Lactobacillus casei. FEMS Microbiol Lett. 227:25-31
    Pei H, Liu J, Cheng Y, Sun C, et al. 2005.Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination. Appl Microbiol Biotechnol. [J]. 68:220-227
    Pensaert M. 2005.Porcine epidemic diarrhea nowenzootic in Asia[J]. Pig Progress. Enteric Diseases Special Ⅲ, 20-21
    Poo H, Pyo HM, Lee TY, et al. 2006. Oral administration of human papillomavirus type 16 E7 displayed on Lactobacillus casei induces E7-specific antitumor effects in C57/BL6 mice[J]. Int J Cancer. 119(7): 1702-9
    Pospischil A, Hess RG, Bachmann PA. 1981.Light microscopy and ultrahistology of intestinal changes in pigs infected with epizootic diarrhoea virus (EVD): comparison with transmissible gastroenteritis (TGE) virus and porcine rotavirus infections.Zentralbl Veterinarmed B. 28(7):564-77
    Pospischil A, Stuedli A, Kiupel M, et al. 2002.Update on porcine epidemic diarrhea[J]. J Swine Health Prod. 10(2):81-85
    Raamsman M J B, Locker J k, Hooge A D, et al. 2000.Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E [J]. J Virol.74(5) :2333-2342
    Rossi-Bergmann B,Muller I,Godinho EB. 1993.TH1 and TH2 T-cell subsets are differentially activated by macrophages and B cells in murine leishmaniasis[J]. Infect Immun. 61(5):2266-2269.
    Scheppler L, Vogel M, Zuercher AW, et al.2002.Recombinant Lactobacillus johnsonii as a mucosal vaccine delivery vehicle[J]. Vaccine. 26;20(23-24):2913-20
    Schmitz A, Tober K, Suter M, et al.1998. Prokaryotic Expression of Porcine Epidemic Diarrhoea ORF3 [J]. Adv Exp Med Biol.440:775-780
    Schmitz A.Tober K,Suter M,et al.1998.Prokaryotic expression of porcine epidemic diarrhea ORF3 [J]. Adv Exp Med Biol.440:775-780
    Seegers J F. 2002.Lactobacilli as live vaccine delivery vectors: progress and. prospects[J]. Trends Biotechnology.20(12): 508-515
    Seong-Jun Park, Hyoung-Joon Moon, Jeong-Sun Yang et al. 2007.Sequence analysis of the partial spike glycoprotein gene of porcine epidemic diarrhea viruses isolated in Korea[J].Virus Genes.35:321-332
    Seong-Jun Park, Hyoung-Joon Moon, Yuzi Luo.et al. 2008.Cloning and further sequence analysis of the ORF3 gene of wild- and attenuated-type porcine epidemic diarrhea viruses[J], Virus Genes.36(1):95-104
    Shoup D I, Jackwood D J, Saif L J.1997.Active and passive immune responses to transmissible gastroenteritis virus(TGEV)in swine inoculated with recombinant baculovirus-expressed TGEV spike (S)glycoprotein vaccines[J].Am J Vet Res, 58:242-250.
    Shuichi Kubota, Osamu Sasaki, Katsuhiko Amimoto,et al.1999.Detection of Porcine Epidemic Diarrhea Virus Using Polymerase Chain Reaction and Comparison of the Nucleocapsid Protein Genes among Strains of the Virus[J]. J. Vet Med. Sci. 61(7): 827-830
    Song D S, Yang J S, Oh J S, et al. 2003 .Differentiation of a Vero cell adapted Porcine epidemic diarrhea virus f rom Korean field strains by restriction fragment length polymorphism analysis of ORF 3[J]. Vaccine.21:1833-1842
    Song DS, Park BK, Kang BK, et al. 2007.Oral efficacy of Vero Cell Attenuated Porcine Epidemic Diarrhea Virus DR13 Strain[J].Res Vet Sci. 82(2): 134-40
    Theresa L.-Y. Chang, Chia-Hwa Chang,et al. 2003. Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4[J]. Proc. Natl. Acad. Sci. USA .100 (20): 11672-11677.
    Thoreux K, Schmucker DL. 2001.Kefir milk enhances intestinal immunity in young but not old rats[J]. J Nutr. 131:807-812
    Tuboly T and Nagy E. 2001.Construction and Characterization of Recombinant Porcine Adenovirus Serotype 5 Expressing Thetransmissible Gastroenteritis Virus Spike Gene[J].J Gen Virology. 82(1):183-190.
    Utiger A, Rkosskopf M, Guscetti F, et al. 1993. Preliminary Characterization of A Monoclonal Antibody Specific for a Viral 27kD Glycoprotein Family Synthesized in Porcine Epidemic Diarrhoea Virus Infected Cells[J].Adv Exp Med Biol.342:197-202
    Utiger A,TobIer K,Bridgen A, et al. 1995. Identification of protein specified by porcine epidemic diarrhea virus[J]. Adv Exp Med Biol.380:287-290
    Vennema H, Godeke G J, Rossen J W, et al. 1996.Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes[J]. EMBO J. 15 (8):2020-2028
    Wang J, Wen J, Li J,et al. 2003.Assess ment of Immunoreactive Synthetic Peptides from the Structural Proteins of Severe Acute RespiratorySyndrome Coronavirus[J].Clin Chem.49(12): 1989-1996.
    Walmsley AM, Amtzen CJ. 2000. Plants for delivery of edible vaccines[J]. Current Opinion in Biotechnology. 11:126-130.
    Xu S, Xue J H, Yu C Y, et al. 2003.Small envelope protein E of SARS: cloning, expression, purification, CD determination, and bioformatics analysis [J]. Acta Pharmacol Sin.24(6): 505-511 Yamamoto M, Mcghee J R, Ha Giwara Y,et al. 2001. Genetically manipulated bacterial toxin as a new generation mucosal adjuvant [J]. Scand J Immunol, 53 (3) :211-217.
    Yu X, Bi W Z, Weiss S R, et al.1994.Mouse hepatitis virus gene 5b protein is a new virion envelope protein [J]. Virology.202(2): 1018-23
    Zhao P, Cao J, Zhao LJ, , et al. 2005. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine[J]. Virology.331:128-135
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.