Gasar多孔铜(合金)的气孔结构及其力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Gasar,也被称为金属-气体共晶定向凝固,是一种基于气体在金属固/液两相中的溶解度差而发展起来的制备多孔金属的新工艺。相比于烧结,发泡等传统方法制备的多孔金属,Gasar多孔金属由于其内部气孔呈圆柱形且沿凝固方向定向排列,使其除具有传统多孔金属小比重、高刚度、减震性能好等特点外,还具有自己特殊的综合性能优势,如优异的力学性能、热交换性能,因而其具有重要的潜在应用价值。结构参数是影响Gasar多孔金属性能的重要因素。为达到对多孔金属气孔结构的定量控制,以满足其在不同领域的应用背景,前期研究者开展了其各自的研究工作。但在现有的文献报道中,并未深入分析气泡生长的动力学(形核和长大)对Gasar气孔结构的影响机制;也未从金属-气体共晶定向凝固热力学基础理论分析的角度,建立起一个相对简易的气孔结构预测模型;同时缺少合金化对Gasar气孔结构影响的深入研究;此外,对多气孔结构参数复合作用下的Gasar多孔金属力学行为特征等方面的研究也较少。本文从Gasar多孔金属的制备方法出发,针对以上四个方面内容逐一展开研究。
     依托课题组自行开发研制的Gasar定向凝固装置,利用简单模铸法制备了不同结构参数的Gasar多孔Cu试样。根据(溶质)质量守恒定律,推导得出能准确预测多孔Cu气孔率的公式。此外,通过对气泡形核和长大过程的深入分析,明晰了气体压力及过热度等工艺参数对Gasar气孔结构的影响机制。
     在简单模铸法实验研究结果的基础上,为实现对Gasar多孔金属气孔结构的定量控制,通过连续铸造法制备得到不同拉速及气压下的多孔Cu试样。通过对金属-氢共晶定向凝固过程的热力学分析,建立了一个用来描述Gasar工艺中工艺参数对气孔直径及气孔间距影响的理论模型;并用该模型与连铸实验数据进行比较。结果表明,理论计算结果与相应实验结果总体吻合良好;低下拉速率下,气孔结构与模型假设理想结构的偏离,以及固/液界面附近的熔体对流,是造成理论计算值与实验值存在一定的偏差的主要原因。
     采用连续铸造法,拉制出横截面分别为Φ15mm和80×12mm的Gasar多孔Cu、Cu-Zn及Cu-Ni合金试样,并研究了合金元素含量对多孔Cu气孔结构和形貌的影响。结果表明:随Zn、Ni含量增加,固/液界面前沿“糊状区”宽度的增加,以及固/液界面凝固模式的改变(平面---胞状---柱状枝晶---等轴枝晶),是造成Gasar多孔合金气孔结构规则性和均匀性逐渐恶化的主要原因。
     在多气孔结构参数的复合作用下,研究了Gasar多孔Cu室温下的力学行为及各向异性性能。结果表明,气孔率及加载方向等结构参数是影响多孔金属力学性能的主要因素。
Gasar, also called "unidirectional solidification of metal-gas eutectic", which is based on the gap of gas solubility between liquid and solid metals, is a revolutionary process for fabricating porous metal. Compared with the randomly distributed pore structure of traditional sintered or frothed porous metals, the pores in Gasar porous metals are aligned one direction. This resulted in an unique combinations of physical and mechanical properties such as higher mechanical property and superior capacity of heat transmission for Gasar porous metals. Therefore, this kind of porous metal has important potential applications. The pore structure parameter is significant factor that impact the porous metals properties. In order to quantitative control the pore structures, the appropriate studies have been carried out by many researchers. Few researches are systematically made on the pore nucleation and growth processes and their impact on the pore structures, and no researches have been made on the prediction model obtained from the thermodynamic analysis on directional solidification of metal-hydrogen eutectic. The other is that the influence of alloying on pore structure of Gasar porous metal has not been further researched. In addition, the research concerned the mechanical behavior of Gasar porous metal under the recombination action of pore structure and loading direction is still deficient. This thesis will be concentrated on these three aspects.
     By use of the developed Gasar mould casting apparatus, porous Cu samples with different pore structure parameters have been fabricated. Based on the law of mass conservation, a theoretical formula was proposed for calculating the porosity in Gasar porous Cu. Furthermore, through a deep analysis of the process of pore nucleation and growth, find out the mechanism of how the process parameters (gas pressure and degree of superheat) influence the pore structure.
     In order to quantitative control the pore structures of Gasar porous metal, a Gasar continuous casting technique was developed to fabricate porous metal. A lot of porous Cu samples were fabricated under different hydrogen pressures and withdraw rates. With the thermodynamic analysis on directional solidification of metal-hydrogen eutectic, a theoretical model was developed to predict the effect of the Gasar processing parameters on the pore diameter and inter-pore spacing. The model can predict the overall tendency of the experimental results. The deviation between the calculated and experimental values in the case of lower withdrawal rate is considered to be associated with the difference between the real pore structure and ideal pore structure, and the melt convection in the vicinity of solid/liquid interface.
     Gasar porous Cu, Cu-Zn and Cu-Ni samples with different cross-sections (φ15mm and80×12mm) have been fabricated by using the continuous casting technique under a hydrogen press of0.6MPa at various withdraw rates. The influences of Zn and Ni contents on the pore structure and morphology were investigated. The change of pore structure and morphology of porous alloy samples is primarily dependent on the solidification mode (planar, cellular, columnar dendritic, equiaxed dendritic) and the width of mushy zone, which are controlled by the alloying element contents.
     The anisotropic mechanical properties of Gasar porous Cu under the recombination action of pore structure and loading direction was studied. The results shows the mechanical behaviors depend on the porosity and the loading directions.
引文
[1]刘培生.多孔材料引论[M].北京:清华大学出版社,2004
    [2]陈祥,李言祥.金属泡沫材料研究进展[J].材料导报,2003,17(5):5-11
    [3]BANHART J. Manufacture, Characterization and Application of Cellular Metals and Metal Foams [J]. Progress in Materials Science.2001,46:559-632
    [4]刘培生,李铁藩,傅超.多孔金属材料的应用[J].功能材料,2001,32(1):12-15
    [5]李言祥,刘源.金属/气体共晶定向凝固规则多孔金属的研究进展[J].材料导报,2003,17(4):1-4
    [6]DEGISCHER H P, KRISZT B. Handbook of Cellular Metals:Production, Processing, Application [M]. Weinheim:Wiley-VCH Verlag Gmbh,2002:1-373
    [7]王肇经.铸造铝合金中的气体和非金属夹杂物[M].北京:兵器工业出版社,1988
    [8]陈永.多孔材料制备与表征[M].合肥:中国科学技术大学出版社,2010
    [9]GIBSON L J, ASHBY M F. Cellular Solids:Structure and Properties [M].Cambridge:Cambridge University Press,1997.
    [10]许庆彦,熊守美.多孔金属的制备工艺方法综述[J].铸造,2005,54(9):840-843
    [11]刘源.金属-气体共晶定向凝固制备藕状多孔金属基础研究[D].北京:清华大学,2003
    [12]张华伟.金属-气体共晶定向凝固的理论与实验研究[D].北京:清华大学,2006
    [13]SHAPOVALOV V I. Method of Manufacture of Porous Articles:US, Patent No. 5181549 [P].26th, January,1993
    [14]蒋光锐.氢在合金熔体中的溶解度与定向凝固多孔铜锰合金的研究[D].北京:清华大学,2010
    [15]谢建新,刘新华,刘雪峰,方玉诚,王浩.藕状多孔纯铜棒的制备与表征[J].中国有色金属学报,2005,15(11):1869-1873
    [16]SHAPOVALOV V I. Porous Metals [J]. MRS Bulletin,1994(4):24-29
    [17]SHAPOVALOV V I, FINK V Y. Features of Casting Formation During Crystallization of Gas-Saturated Melts [J]. Liteinoe Proizvodstvo,1993, (10) 5-6
    [18]SHAPOVALOV V I. Structure Formation Behavior of Alloys during Gas-Eutectic Transformation and Prospects of the Use of Hydrogen in Alloys [M]. In:LAVERNIA E J, GUNGOR M N, eds. Micro-structural Design by Solidification Processing. WARRENDALE, PA, USA:The Minerals, Metals and Materials Society,1992:207-216
    [19]SHAPOVALOV V I. Formation of Ordered Gas-solid Structures via Solidification in Metal-hydrogen System [J]. Materials Research Society Symposium Proceeding,1997,512:281-290
    [20]NAKAJIMA H. Fabrication, Properties and Application of Porous Metals with Directional Pores [J]. Progress in Materials Science,2007,52:1091-1173
    [21]PARK J S, HYUN S K, SUZUKI S, NAKAJIMA H. Effect of Transference Velocity and Hydrogen Pressure on Porosity and Pore Morphology of Lotus-type Porous Copper Fabricated by a Continuous Casting Technique [J]. Acta Materialia,2007,55:5646-5654
    [22]KASHIHARA M, YONETANI H, KOBI T, HYUN S K, SUZUKI S, NAKAJIMA H. Fabrication of Lotus-type Porous Carbon Steel via Continuous Zone Melting and Its Mechanical Properties [J]. Materials Science and Engineering,2009,524A:112-118
    [23]PARK J S, HYUN S K, SUZUKI S, NAKAJIMA H. Fabrication of Lotus-type Porous Al-Si Alloys Using the Continuous Casting Technique [J]. Metallurgical and Materials Transactions,2009,40A:406-414
    [24]KUJIME T, HYUN S K, NAKAJIMA H. Fabrication of Lotus-type Porous Carbon Steel by the Continuous Zone Melting Method and Its Mechanical Properties [J]. Metallurgical and Materials Transactions,2006,37A:393-398
    [25]刘源,李言祥,张华伟.藕状多孔结构形成的压力条件和气孔尺寸的演变规律[J].金属学报,2005,41(8):886-890
    [26]刘源,李言祥,张华伟.金属/气体共晶定向凝固工艺参数对藕状多孔金属结构的影响[J].稀有金属材料与工程,2005,34(7):1128-1130
    [27]LIU Y, LI Y X, WAN J. Evaluation of Porosity in Lotus-type Porous Magnesium Fabricated by Metal/Gas Eutectic Unidirectional Solidification [J]. Materials Science and Engineering,2005,402A:47-54
    [28]LIU Y, LI Y X. A Theoretical Study of Gasarite Eutectic Growth [J]. Scripta Metallurgies 2003,49(5):379-386
    [29]DRENCHEV L, SOBCZAK J, MALINOV S, SHA W, LONG A. Discussion of "A Theoretical Study of Gasarite Eutectic Growth "[J]. Scripta Metallurgica, 2005,52:799-801
    [30]LIU Y, LI Y X. Reply to "Comments on a Theoretical Study of Gasarite Eutectic Growth" [J]. Scripta Metallurgica,2005,52:803-807
    [31]张华伟,李言祥,刘源.固-气共晶定向凝固中的工艺判据[J].金属学报,2007,43(6):589-594
    [32]DRENGHEV L, SOBCZAK J, SOBCZAK N, SHA W, MALINOV S. A Comprehensive Model of Ordered Porosity Formation [J]. Acta Materialia,2007, 55:6459-6471
    [33]HYUN S K, MURAKAMI K, NAKAJIMA H. Anisotropic Mechanical Properties of Porous Copper Fabricated by Unidirectional Solidification [J]. Materials Science and Engineering,2001,299A(l-2):241-248
    [34]HYUN S K, NAKAJIMA H. Anisotropic Compressive Properties of Porous Copper Produced by Unidirectional Solidification [J]. Materials Science and Engineering A,2003,340:258-264
    [35]申芳华,李再久,杨天武,金青林,蒋业华,周荣.规则多孔铜基自润滑材料的干摩擦磨损性能[J].摩擦学学报,2012,3(2):150-156
    [36]陈刘涛.定向凝固多孔铜微通道热沉传热性能的研究[D].北京:清华大学,2012
    [37]陈刘涛,张华伟,刘源,李言祥.定向凝固多孔Cu热沉传热性能的实验研究[J].金属学报,2012,48(3):329-333
    [38]ZHANG H W, CHEN L T, LIU Y, LI Y X. Experimental Study on Heat Transfer Performance of Lotus-type Porous Copper Heat Sink [J]. International Journal of Heat and Mass Transfer,2013,56:172-180
    [39]JIANG G R, LIU Y, LI Y X. Influence of Solidification Mode on Pore Structure of Directionally Solidified Porous Cu-Mn alloy [J]. Transactions of Nonferrous Metals Society of China,2011,21:88-95
    [40]王雪,李言祥,刘源.金属/气体共晶二维定向凝固放射状多孔Mg的结构特征[J].金属学报,2007,43(1):6-10
    [41]WANG X, LI Y X, LIU Y. Structural Features in Radical-type Porous Magnesium Fabricated by Radial Solidification [J]. Materials Science and Engineering,2007, A444:306-313
    [42]王雪,李言祥,刘源.熔体流动对Mg-H共晶二维定向凝固的影响[J].金属学报,2008,44(9):1057-1062
    [43]NAKAHATA T, NAKAJIMA H. Fabrication of Lotus-type Porous Silicon by Unidirectional Solidification in Hydrogen [J]. Materials Science and Engineering,2004,384A(1-2):373-376
    [44]NAKAJIMA H. Fabrication of Lotus-type Porous Metals [J]. Intermetallic Compounds and Semiconductors. Materials Science Forum,2005,502:367-372
    [45]ONISHI H, HYUN S K, NAKAJIMA H. Measurement of Pore Length of Lotus-type Porous Nickel [J]. Proceedings of MetFoam,2006,423-426
    [46]HYUN S K, NAKAJIMA H. Fabrication of Porous Iron by Unidirectional Solidification in Nitrogen Atmosphere [J]. Materials Transactions,2002,43(3): 526-531
    [47]HYUN S K, NAKAJIMA H. Fabrication of Lotus-structured Porous Iron by Unidirectional Solidification under Nitrogen Gas [J]. Advanced Engineering Materials,2002,4(10):741-744
    [48]HYUN S K, IKEDA T, NAKAJIMA H. Fabrication of Lotus-type Porous Iron and Its Mechanical Properties [J].Science and Technology of Advanced Materials,2004,5(1-2):201-205
    [49]HYUN S K, NAKAJIMA H, IKEDA T. Fabrication of Lotus-type Porous Iron and Steel and the Mechanical Properties [J]. Proceedings of 8th Japan International SAMPE Symposium,2003,2:753-756
    [50]NAKAJIMA H, IKEDA T. Fabrication of Lotus-type Porous Metals and Their Physical Properties [J]. Proceedings of MetFoam,2003,191-202
    [51]NAKAHATA T, NAKAJIMA H. Fabrication of Lotus-type Porous Silver with Directional Pores by Unidirectional Solidification in Oxygen Atmosphere [J]. Materials Transactions,2005,46(3):587-592
    [52]HYUN S K, NAKAJIMA H. Effect of Solidification Velocity on Pore Morphology of Lotus-type Porous Copper Fabricated by Unidirectional Solidification [J]. Materials Letters,2003,57:3149-3154
    [53]IKEDA T, AOKIT, NAKAJIMA H. Fabrication of Lotus-type Porous Stainless Steel by Continuous Zone Melting Technique and Mechanical Properties [J]. Metallurgical and Materials Transactions,2005,36A:77-86
    [54]HYUN S K, PARK J S, TANE M, NAKAJIMA H. Fabrication of Lotus-type Porous Metals by Continuous Zone Melting and Continuous Casting Techniques [J]. Proceedings of MetFoam,2005,211-214
    [55]NAKAJIMA H, IKEDA T, HYUN S K. Fabrication of Lotus-type Porous Metals and Their Physical Properties [J]. Advanced Engineering Materials,2004, 6(6):377-384
    [56]IDE T, TANE M, IKEDA T, HYUN S K, NAKAJIMA H. Compressive Properties of Lotus-type Porous Stainless Steel [J]. Journal of Materials Research,2006,21(1):185-193
    [57]KASHIHARA M, HYUN S K, YONETANI H, KOBI T, NAKAJIMA H. Fabrication of Lotus-type Porous Steel by Unidirectional Solidification in Nitrogen Atmosphere [J]. Scripta Materialia,2006,54:509-512
    [58]TANE M, ICHITSUBO T, NAKAJIMA H. Elastic Properties of Lotus-type Porous Iron:Acoustic Measurement and Extended Effective-Mean-Field Theory [J]. Acta Materialia,2004,52(17):5195-5201
    [59]NAKAJIMA H. Fabrication of Lotus-type Porous Metals, Intermetallic Compounds and Semiconductors [J]. Materials Science Forum,2005, 502:367-372
    [60]IDE T, TANE M, HYUN S K, NAKAJIMA H. Fabrication of Lotus-type Porous M3AI Intermetallics [J]. Journal of the Japan Institute of Metals,2004, 68(2):39-42
    [61]SUGIYAMA M, HYUN S K, TANE M, NAKAJIMA H. Fabrication of Lotus-type Porous NiTi Shape Memory Alloy [J]. Proceedings of MetFoam, 2005,233-236
    [62]UENO S, LIN L M, HYUN S K, NAKA.IIMA H. Fabrication of Lotus-type Porous Alumina by Unidirectional Solidification [J]. Proceedings of MetFoam, 2005,251-261
    [63]SUZUKI S, KIM T B, NAKAJIMA H. Fabrication of Al-Cu Alloy with Elongated Pores by Continuous Casting Technique [J]. Journal of Physics Conference Series,2009,165:012068
    [64]张华伟,李言祥,刘源.Gasar工艺中金属-氢二元相图的研究[J].金属学报,2005,41(1):55-59
    [65]LIU Y, LI Y X. A Theoretical Study of Gasarite Eutectic Growth [J]. Scripta Metallurgica, 2003,49(5):379-386
    [66]刘源,李言祥,刘润发,周荣,蒋业华,黎振华.连铸法Gasar工艺中抽拉速率对多孔金属结构影响的理论分析[J].金属学报,2010,46(2):129-134
    [67]SIMONE A E. The Tensile Strength of Porous Copper Made by the GASAR Process [D]. Massachusetts:Massachusetts Institute of Technology,1994
    [68]陈文革,罗启文,张强,等.定向凝固技术制备多孔铜及其力学性能[J].机械工程材料,2007,31(7):42-44
    [69]彭震.结构参数对规则多孔铜力学行为的影响[D].昆明:昆明理工大学,2011
    [70]刘培生,李铁藩,傅超,等.多孔金属材料的应用[J].功能材料,2001,32(1):12-15
    [71]左孝青,孙加林.泡沫金属制备技术研究进展[J].材料科学与工程学报,2004,22(1):90-93
    [72]陈文革,罗启文,张强,等.定向凝固技术制备多孔铜及其力学性能[J].机械工程材料,2007,31(7):42-44
    [73]项亦斌,李言祥,刘源.定向凝固规则多孔镁的力学性能研究[J].特种铸造及有色合金,2006年年会专刊:36-38
    [74]项亦斌,李言祥,刘源.定向凝固多孔镁的力学性能的有限元分析[J].2006年材料科学与工程新进展,2006,581-587
    [75]NAKAJIMA H, HYUN S K, OHASHI K, OTA K, et al. Fabrication of Porous Copper by Unidirectional Solidification under Hydrogen and Its Properties [J]. Colloids and Surfaces,2001,179A:209-214
    [76]SIMONE A E, GIBSON L J. The Tensile Strength of Porous Copper Made by the GASAR Process [J]. Acta Metallurgica 1996,44(4):1437-1447
    [77]SIMONE A E, GIBSON L J. The Compressive Behaviour of Porous Copper Made by the GASAR Process [J]. Journal of Materials Science,1997,32: 451-457
    [78]彭震,杨天武,李再久,黎振华,金青林,周荣.规则多孔铜的拉伸性能及其各向异性[J].中国有色金属学报,2011,21(5):1045-1051
    [79]KOVACIK J. The Tensile Behavior of Porous Metals Made by GASAR Process [J]. Acta Metallurgica 1998,46(15):5413-5422
    [80]HYUN S K, IKEDA T, NAKAJIMA H. Fabrication of lotus-type porous iron and its mechanical properties [J]. Science and Technology of Advanced Materials,2004,5:201-205
    [81]HYUN S K, NAKAJIMA H. Anisotropic Compressive Properties of Porous Copper Produced by Unidirectional Solidification [J]. Materials Science and Engineering A,2003,340:258-264
    [82]黄峰,杨天武,李再久,黎振华,金青林,周荣.规则多孔铜的压缩性能的各向异性[J].中国有色金属学报,2011,21(3):604-610
    [83]刘新华,姚迪,刘雪峰,谢建新.藕状多孔纯铜沿垂直气孔方向的压缩变形行为与本构关系[J].中国有色金属学报,2009,19(7):1237-1244
    [84]姚迪,刘新华,刘雪峰,谢建新.藕状多孔纯铜轴向压缩变形行为与本构关系[J].中国有色金属学报,2009,18(11):1996-2001
    [85]HYUN S K, NAKAJIMA H, BOYKO L V, SHAPOVALOV V I. Bending Properties of Porous Copper Fabricated by Unidirectional Solidification [J]. Materials Letters,2004,58:1082-1086
    [86]MURAKAMI K, NAKAJIMA H. Formation of Pores during Unidirectional Solidification of Water Containing Carbon Dioxide [J]. Materials Transactions, 2002,43(10):2582-2588
    [87]SHAPOVALOV V I, TIMCHENKO A G. Production of Gas-Crystal Structures in Aluminium and Its Alloys in the Presence of Hydrogen [J]. The Physics of Metals and Metallography,1993,76(3):335-337
    [88]PARADIES C J, TOBIN A, WOLLA J. The Effect of GASAR Processing Parameters on Porosity and Properties in Aluminum Alloy [J]. Materials Research Society Symposium Proceedings,1998,297-302
    [89]ATWOOD R C, SR1DHAR S, ZHANG W. Diffusion-Controlled Growth of Hydrogen Pores in Aluminium-Silicon Castings:in Situ Observation and Modelling [J]. Acta Materialia,2000,48(2):405-417
    [90]LEE P D, HUNT J D. Hydrogen Porosity in Directionally Solidified Aluminium-Copper Alloys:A Mathematical Model [J]. Acta Materialia,2001, 49(8):1383-1398
    [91]MELO M L, RIZZO E M, SANTOS R G. Numerical Model to Predict the Position, Amount and Size of Microporosity Formation in Al-Cu Alloys by Dissolved Gas and Solidification Shrinkage [J]. Materials Science and Engineering A,2004,374(1-2):351-361
    [92]赵海东,吴朝忠,李元元.垂直向上凝固Al-Cu铸件中微观孔洞形成的数值模拟[J].金属学报,2008,44(11):1340-1347
    [93]JAMGOTCHIAN H, TRIVEDI R, BILLIA B. Interface Dynamics and Coupled Growth in Directional Solidification in Presence of Bubbles [J]. Journal of Crystal Growth,1993,134(3-4):181-195
    [94]HOSHIYAMA H, IKEDA T, NAKAJIMA H. Fabrication of Lotus-type Porous Magnesium and Its Alloys by Unidirectional Solidification under Hydrogen Atmosphere [J]. High Temperature Materials and Process,2007,26(4):303-316
    [95]PARK J S, HYUN S K, SUZUKI S. Fabrication of Lotus-type Porous A1-Si Alloys Using the Continuous Casting Technique [J]. Proceedings of MetFoam, 2007,229-232
    [96]PARK C, NUTT S R. Metallographic Study of GASAR Porous Magnesium [J]. Materials Research Society Symposium Proceeding,1998,315-320
    [97]GOKCEN N. The Cu-Mn (Copper-Manganese) System [J]. Journal of Phase Equilibria and Diffusion,1993,14(1):76-83
    [98]陈刘涛.定向凝固多孔铜微通道热沉传热性能的研究[D].北京:清华大学,2012
    [99]OGUSHI T, CHIBA H, NAKAJIMA H, IKEDA T. Measurement and Analysis of Effective Thermal Conductivities of Lotus-type Porous Copper [J]. Journal of Applied Physics,2004,95(10):5843-5847
    [100]张华伟,李言祥,刘源.氢在Gasar工艺中常用纯金属中的溶解度[J].金属学报,2007,43(2):113-118
    [101]刘源,李言祥,张华伟.藕状多孔金属Mg的GASAR工艺制备[J].金属学报,2004,40(11):1121-1126
    [102]杨天武,周荣,金青林.规则多孔金属理想结构分析[J].特种铸造及有色合金,2012,32(5):400-403
    [103]NEUMANN J V. Metal Interfaces [J]. American Society of Metals,1952: 108-115
    [104]MULLINS W W. Estimation of the geometrical rate constant in idealized three dimensional grain growth [J]. Acta Metallurgical989,37(11):2979-2984
    [105]ERANDES E A, BROOK G B. Smithells Metals Reference Book [M]. Boston: Butterworth-Heinemann,1992
    [106]MIEDEMA A R, BOOM R. Surface Tension and Electron Density of Pure Liquid Metals [J]. Zeitschrift Fuer Metallkunde,1978,69(3):183-190
    [107]CHIDAMBARAM P R, EDWARDS G R, OLSON D I. Thermodynamic Criterion to Predict Wettability at Metal-Alumina Interfaces [J]. Metallurgical Transacions,1992,23B(2):215-222
    [108]张华伟,李言祥,刘源.藕状多孔Cu气孔率的理论预测[J].金属学报,2006,42(11):1165-1170.
    [109]LIU Y, LI Y X. Theoretical Analysis of Bubble Nucleation in GASAR Materials [J]. Transactions of Nonferrous Metal Society of China.2003,13(4): 830-834
    [110]张华伟,李言祥.金属熔体中气泡形核的理论分析[J].物理学报,2007,56(8):4864-4871
    [111]KRUZ W, FISHER D J. Fundamental of Solidification [M]. Switzerland:Trans Tech Publications,1989
    [112]FREDRIKSSON H, SVENSSON I. On the Mechanism of Pore Nucleation in Metals [J]. Metallurgical Transactions,1976,7B(4):599-606
    [113]TIWARI S N, BEECH J. Origin of Gas Bubbles in Aluminum [J]. Metal Science,1978,12(8):356-362
    [114]KATO E. Pore Nucleation in Solidifying High-Purity Copper [J]. Metallurgical and Materials Transactions A,1999,30(9):2449-2453
    [115JBRONDYKE K J, HESS P D. Interpretation of Vacuum Gas Test Results for Aluminum Alloys [J], Transactions of A1ME,1964,230(7):1542-1546
    [116]IWAHORI H, YONEKURA K, YAMAMOTO Y, NAKAMURA M. Occurring Behavior of Porosity and Feeding Capabilities of Sodium and Strontium Modified Al-Si Alloys [J]. Transactions of American Foundrymen's Society, 1990,98:167-173
    [117]LASLAZ G, LATY P. Gas Porosity and Metal Cleanliness in Aluminum Casting Alloys [J]. Transactions of American Foundrymen's Society,1991,99:83-90
    [118]APPRILL J M, POIRIER D R, MAGUIRE M C, GUTSCH T C. Maguire. Gasar Porous Metals Process Control [J]. Materials Research Society Symposium Proceedings,1998,521:291-296
    [119]APPRILL J M. Process Control of Gasar Porous Metals [D]. Tucson:The University of Arizona,1998
    [120]崔忠圻.金属学与热处理[M].北京:机械工业出版社,2003
    [121]YAMAMURA S, SHIOTA H, MURAKAMI K, et al. Evaluation of Porosity in Porous Copper Fabricated by Unidirectional Solidification under Pressured Hydrogen [J]. Materials Science and Engineering,2003,318A:137-143
    [122]FLEMINGS M C. Solidification Processing [M]. New York:McGraw-Hill Book Company,1874
    [123]西泽泰二著.郝士明译.微观组织热力学[M].北京:化学工业出版社,2006
    [124]SACRIS E M, PARLEE A D. The Diffusion of Hydrogen in Liquid Ni, Cu, Ag, and Sn [J]. Metallurgical Transactions,1970,1:3377-3382
    [125]MARTIN J W, DOHERTY R D, CANTOR B. Stability of Microstructure in Metallic System [M]. London:Cambridge University Press,1976
    [126]SZEKELY J. Fluid Flow Phenomena in Metals Processing [M]. Newyork, Academic Press,1979
    [127]切尔涅茄著.黄良余,严名山译.有色金属及其合金中的气体[M].北京:冶金工业出版社,1989
    [128]SMITHELLS C J. Smithells Metals Reference Book [M]. Boston, Butterworth-Heinemann,1992
    [129]束德林.金属力学性能[M].北京:机械工业出版社,2002
    [130]刘春廷,马继.材料力学性能[M].北京:化学工业出版社,2009
    [131]NAKAJIMA H, HYUN S K, OHASHI K, OTA K, et al. Fabrication of Porous Copper by Unidirectional Solidification under Hydrogen and Its Properties [J]. Colloids and Surfaces,2001,179A:209-214
    [132]EUDIER M. The Mechanical Properties of Sintered Low-alloy Steels [J]. Powder Metallurgy,1962,5:278-290
    [133]BALSHIN M Y. Relation of Mechanical Properties of Powder Metals and Their Porosity and the Ultimate Properties of Porous Metal-ceramic Materials [J]. Dokl. Akad. Nauk,1949, SSSR 67:831-834
    [134]BOCCACCINI A R, ONDRACEK G, MOMBELLO E, et al. Determination of Stress Concentration Factors in Porous Materials [J]. Science Letters,1995,14: 534-536
    [135]西田正孝(李安定等译).应力集中[M].北京:机械工业出版社,1976
    [136]李皓月,周田朋,刘相新.ANSYS工程计算应用教程[M].北京:中国铁道出版社,2003
    [137]张朝晖.ANSYS 12.0结构分析工程应用实例解析(第三版)[M].北京:机械工业出版社,2010
    [138]邓凡平.ANSYS 10.0有限元分析自学手册[M].北京:北京邮电出版社,2007
    [139]SAEED Mi(王崧,刘丽娟,董春敏,等译).有限元分析—-ANSYS理论与应用(第三版)[M].北京:电子工业出版社,2009
    [140]廖明顺.多孔材料力学性能数值模拟[D].昆明:昆明理工大学,2006
    [141]任重.ANSYS实用分析教程[M].北京:北京大学出版社,2003
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.