道岔平面线型动力分析及其设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
道岔设计中平面线型的选取是影响列车过岔速度和自身使用性能的关键因素之一,针对各种号码及不同应用范围的道岔,需选择合适的平面线型以满足行车安全性、平稳性和结构稳定性要求。本文在结合国内外现有理论的基础上,对道岔平面线型的选型评估及设计方法做了相关研究,主要内容分为以下几个方面:
     1.针对不同道岔平面线型轮轨接触几何关系计算方法的建立
     基于普通线路典型的轮轨接触几何关系计算方法,将其应用于道岔区接触关系求解过程中,其中利用三次样条函数拟合岔区钢轨控制断面,并在各断面间插值得到任意所需计算断面,然后采用迹线法将车轮上接触点的存在范围从踏面整个曲面缩小到一条空间曲线上,进而可通过最小距离法在所得钢轨计算断面和车轮迹线间精确搜索轮轨接触点位置,计算相关接触参数。以上述方法为基础,编制道岔区轮轨接触几何关系计算子程序,不仅可用于评价道岔平面线型类型对轮轨关系的影响,又可作为动力学计算中使上部车辆和下部道岔结构产生耦合关系的关键部分。
     2.车辆-道岔动力耦合模型的建立及求解
     以车辆动力学和道岔动力学理论为基础,建立车辆-道岔动力耦合模型,用于分析不同道岔平面线型对系统振动特性的影响,其中车辆子模型为由车体、两个转向架和四个轮对组成的单列整车多刚体模型,车体和两转向架分别考虑沉浮、横移、侧滚、摇头和点头五个自由度,各轮对考虑沉浮、横移、侧滚和摇头四个自由度,刚体间通过弹簧阻尼原件相联接;道岔子模型除包括转辙器、连接部分和辙叉三大主要结构以外,还考虑了各零部件对其振动的影响,然后利用有限单元法将其离散为有限元模型。使用道岔区轮轨接触关系将两子模型相耦合,采用哈密尔顿原理建立整体系统振动方程,并编制车辆-道岔动力耦合模型计算程序,从动力学角度指导道岔平面线型设计。
     3.各种平面线型下车辆-道岔动力耦合模型振动特性分析
     将道岔按号码大小进行分类,通过改变平面线型参数及类型分别为其设立工况,利用车辆-道岔动力耦合模型计算程序对比分析各工况振动特性,并研究列车过岔速度改变对系统动力响应的影响。由结果可知,小号码道岔选用单圆型和复圆型平面线型以及大号码道岔选用圆缓型和缓圆缓型线型时,均可保证在其各自允许过岔速度下列车侧向行驶的安全性、平稳性及道岔结构稳定性,且增加侧股曲线半径或为小号码道岔选用复圆曲线线型及大号码道岔选用缓圆缓曲线线型,将提高道岔的行车性能及对列车提速过岔的适应性,但应综合结构尺寸、设计及使用条件等因素确定具体线型。
     4.尖轨切削方式对转辙器部位系统动力响应及钢轨磨耗性能的影响研究
     利用车辆-道岔空间耦合振动模型及爱因斯磨耗指数计算方法,分别对不同号码道岔尖轨采用多种切削方式时的系统振动及钢轨磨耗进行对比分析,并研究列车过岔速度及线型参数改变对磨耗指数的影响。由结果可知,小号码道岔尖轨选用半切线型和半割线型切削方式时,车辆运行状态较优,钢轨磨耗性能良好,且随列车过岔速度和道岔侧股半径变化的改变量不大,此时相离半切线型切削方式对应各方面性能虽有所降低,但由于其显著提高了尖轨粗壮度,也可作为小号码道岔尖轨主要切削类型之一:大号码道岔尖轨切削方式中半切线型尖轨可在行车性能达到最优时所得钢轨磨耗指数较小,适用性最强。
     5.适用于多种道岔平面线型计算方法的建立
     建立了适用于多种道岔平面线型计算的平面参数法,推导了单圆型、复圆型、圆缓型和缓圆缓型四种道岔平面线型,以及切线型、半切线型、割线型、半割线型和相离半切线型五种尖轨切削方式关键参数的计算过程,并对其进行基本的结构尺寸及运动学评价,同时介绍了三种岔枕排布方式,即整体垂直于直股排布、辙叉区垂直于角平分线排布和整体扇形排布,此方法可减少由人为因素产生的误差,为道岔平面线型的精确设计打下了基础。
     6.道岔平面线型计算及绘图软件的开发与验证
     基于平面参数法开发了道岔平面线型计算及绘图软件,本软件由计算模块和绘图模块两部分组成,通过设定原始参数,可完成包括四种平面线型、五种尖轨切削方式和三种岔枕排布样式在内的多种设计的组合,配合绘图软件的使用,能够迅速绘制线型图用于方案比选,提高了工作效率。利用本软件针对低速小号码道岔和高速大号码道岔分别进行不同平面线型的试算,验证了软件的可用性。
The horizontal alignment selection in turnout design is one of decisive factors to affect the speed by train passing over a turnout and the using performance. It is necessary to choose appropriate plane alignment for turnouts of various numbers and different application ranges to satisfy the train running safety and stability, and structural stationarity. Based on the existing theories in our country and abroad, the selection and evaluation and design method for turnout horizontal alignment were studied in this paper. The main content is divided into the following five aspects:
     1. wheel/rail contact geometry calculation method established according to various horizontal alignments for turnouts
     Based on the typical wheel/rail contact geometry calculation method for common track rail, the turnout wheel/rail contact relationship calculation method was set up. The detail steps are listed:firstly apply cubic spline function to fit rail profiles in the key sections in turnout zone, and obtain profiles in any calculation section by interpolation between key sections; secondly use contact line method to get a space curve of all possible contact points on wheels; finally use minimum distance method to find out the wheel/rail contact point between the calculation section and the space curve, and then calculate all responding contact parameters. Following the steps above, the subprogram to calculate the wheel/rail contact geometry in turnout zone was developed. This subprogram can not only be applied into evaluating the influences of turnout horizontal alignment to wheel/rail contact relationship, but also was a key part to make the upper vehicle and lower switch structure form a coupling relationship which was essential in the dynamic program.
     2. Vehicle-turnout dynamic coupling model establishing and solution
     Based on vehicle dynamics and turnout dynamics, vehicle-turnout dynamic coupling model was established to analyze the influences of horizontal alignment to the system vibration characteristics. The vehicle sub model was a single vehicle multi-rigid body model which was composed of the car body、two bogie and four wheelsets. In this model, the car body and the two bogie were both modeled with consideration of the five degrees of freedom including floating-sinking, sway, rolling, galloping and hunting; the wheelsets were modeled with consideration of four degrees of freedom including floating-sinking, sway, rolling and hunting; all rigid bodies were connected by the spring-damping component. Turnout sub model was built up with consideration of the three main structures including switch, common crossing and closure rail, and also of other components, and then all components were dispersed into finite element model. Apply the wheel/turnout contact relationship to couple the twp sub models, use Hamiltonian theory to establish the whole system equation, and then develop the calculation program for vehicle-turnout dynamic coupling model, and finally guide the turnout horizontal alignment design from the dynamic perspective.
     3. Vibration characteristics analysis of vehicle-turnout dynamic coupling model with various horizontal alignments
     Different analysis cases were designed according to the parameters and the types of various horizontal alignments. The vibration characteristics of all cases were comparatively analyzed by using vehicle-turnout dynamic coupling model, and the influences of the speed by train passing over turnout to the system dynamic responses were also analyzed. Results show that small-size turnouts with single circular or composite circular alignment and large-size turnouts with circular-easement or easement-circular-easement curves can both satisfy the safety and stability when trains pass through turnout branch at their permissive speed, and the turnout structure stability; increasing curve radius of turnout branch or choosing small-size turnouts with composite circular alignment and large-size turnouts with easement-circular-easement curve can improve train running performance and turnout adaptability by train passing over it. However, the specific alignment should be determined with the overall consideration of structure dimensions、designs and working conditions.
     4. The influences of the cutting style of switch rail to the system dynamic responses and rail wearing ability in switch zone
     Based on vehicle-turnout space coupling vibration model and wear index calculation method, the system vibration responses and rail wearing ability of various sizes turnouts with the switch rail of different cutting styles were comparatively analyzed, and the influence of the speed by train passing over turnout and alignment parameters' changing to the wear index was also analyzed. Results show that when the cutting way of small-size turnout switch rail is semi-tangent or semi-secant alignment, the vehicle running state and rail wearing ability are good, and changes little with the change of the train passing speed and the radius of turnout branch. When the cutting way is disjoint semi-tangent, all respects of states are decreased, but this cutting style significantly improves the robustness of switch rail, so it can also be one of the cutting styles of switch rail; large-size turnout with semi-tangent switch rail can make the running state be best, and rail wear index less, so its applicability is best.
     5. The establishing of the calculation method applied to various turnout horizontal alignments
     The plane parameter method was set up which could carry out the calculation of various turnout horizontal alignments; the key parameters of four horizontal alignments including single circular、composite circular circular-easement and easement-circular-easement, and of five switch rail cutting styles including tangent, semi-tangent, secant, semi-secant, and disjoint semi-tangent were derived, and all types of turnouts were evaluated in terms of structure dimension and kinematics. Three kinds of switch sleeper layout were introduced, which were the straight-line layout, the sector layout and a layout being vertical to the crossing angle in the crossing zone. All the switch sleeper layout methods can reduce error caused by human factors, and lay the foundation for turnout horizontal alignment design.
     6. The development and confirmation of the calculation and drawing software of turnout horizontal alignment
     Based on the plane parameter method, the calculation and drawing software of turnout horizontal alignment was developed. This software consisted of the calculation module and the drawing module. By setting the original parameters, it could provide lots of design plans with different combinations of four horizontal alignments、five switch-rail cutting ways and three switch-sleeper layouts, and then it drew all alignments to provide for the plan comparison and selection. This software improved the efficiency of turnout alignment design. Different horizontal alignments for low-speed small-size turnout and high-speed large-size turnout were calculated respectively by using the software, and the results verify the usability of the software.
引文
[1]童大埙.铁路轨道[M].北京:中国铁道出版社,1988.
    [2]郝瀛.铁道工程[M].北京:中国铁道出版社,2002.
    [3]李成辉.轨道[M].北京:中国铁道出版社,2005.
    [4]Tung T H. Railroad Track [M]. Shanghai Institute of Railway Technology Press, Shanghai,1989.
    [5]Esveld C. Modern Railway Track [M] Second Edition. MRT-Productions, Zaltbommel, 2001.
    [6]Bernhard L. Track Compendium[M]. Eurail Press, Germany,2005.
    [7]王平.高速铁路道岔设计理论与实践[M].成都:西南交通大学出版社,2011.
    [8]卢祖文.我国铁路道岔的现状及发展[J].中国铁路,2005(4):11-14.
    [9]顾培雄.关于高速铁路的道岔问题[J].铁道建筑,1992(4):1-6.
    [10]顾培雄.关于道岔现况及其发展问题[J].铁道建筑,1995(4):1-6.
    [11]侯爱滨.时速250km客运专线铁路60kg/m钢轨18号单开道岔结构设计[J].铁道标准设计,2006(6):1-4.
    [12]何华武.时速250km级18号道岔设计理论与试验研究[J].铁道学报,2007,29(1):66-71.
    [13]任尊松,孙守光,翟婉明.岔枕受力与振动特性分析[J].铁道学报,2002,24(1):65-69.
    [14]陈小平,王平,杨一农.交叉渡线混凝土铰接岔枕有限元分析[J].铁道建筑,2004(3):52-54.
    [15]王树国.客运专线60kg/m钢轨18号有砟道岔研究进展[J].铁道建筑,2008(1):79-83.
    [16]乔神路,高亮,曲村,辛涛.桥上纵连板式无砟轨道无缝道岔力学特性[J].西南交通大学学报,2010,45(5):669-675.
    [17]宋建恩.无砟轨道无缝道岔设计计算方法及受力与变形规律探讨[J].铁道标准设计,2009(5):3-5.
    [18]任尊松,孙守光.道岔区轮轨接触几何关系研究[J].工程力学,2008,25(11):223-230.
    [19]田春香,颜华,赵坪锐,王平.无碴轨道道岔区轨下基础受力分析[J].铁道工程学报,2006(5):48-66.
    [20]王伟峰.提速道岔控制电路在客专中的应用研究[J].铁道通信信号,2010,46(9):40-42.
    [21]冀光民,吕文超,宋剑.道岔板铺设精密测量技术[J].铁道标准设计,2010(1): 86-89.
    [22]袁宝军,费维周.时速250km客运专线铁路60kg/m钢轨18号单开道岔制造工艺[J].铁道标准设计,2006(S1):179-181.
    [23]王丹,王平.铺设锁定轨温差对无缝道岔受力与变形的影响[J].西南交通大学学报,2006,41(1):80-84.
    [24]何国英,张玉明.道岔精细化管理思路探讨[J].铁道标准设计,2009(12):17-19.
    [25]韩启孟.德国铁路道岔技术介绍[J].铁道标准设计,1995(11):1-4.
    [26]杨卫平.法国高速铁路道岔技术特性[J].中国铁路,2006(8):40-41.
    [27]费维周.法国铁路高速道岔的主要技术特性[J].铁道工程学报,2009(9):18-35.
    [28]涂荣昌.高速铁路道岔结构与材质[J].中国铁道科学,1998,19(1):95-109.
    [29]郭福安.国外高速铁路的道岔设计[J].中国铁路,2006(2):48-50.
    [30]杨西.客运专线铁路道岔的研制[J].铁道标准设计,2006(S1):173-176.
    [31]王树国,顾培雄.客运专线道岔技术研究[J].中国铁路,2007(8):21-28.
    [32]史玉杰.铁路道岔的最新研究进展[J].中国铁路,2003(11):24-28.
    [33]沈长耀.我国铁路道岔整体技术发展的新阶段[J].铁道工程学报,2005(1):51-60.
    [34]魏建明,石文.常用道岔的类型[J].铁道标准设计,1999(S2):57-59.
    [35]沈长耀.60kg/m钢轨12号提速道岔研制情况[J].铁道标准设计,1997(3):3-6.
    [36]蔡成标,翟婉明,王其昌.无缝提速道岔钢轨温度力与位移的计算[J].西南交通大学学报,1997,32(5):513-517.
    [37]许有全.60kg/m钢轨12号可动心轨辙叉提速单开道岔的设计[J].铁道标准设计,1996(5):6-7.
    [38]蒋听.60kg/m钢轨12号单开提速道岔(固定型辙叉)的设计[J].铁道标准设计,1997(2):22-24.
    [39]史玉杰.60-12提速道岔的试验研究[J].铁道学报,1997,19(6):121-124.
    [40]谷爱军,范俊杰,高亮.60kg/m钢轨12号固定辙叉无缝道岔铺设的理论计算分析[J].北方交通大学学报,1999,23(1):65-68.
    [41]侯爱滨.60kg/m钢轨18号提速道岔研究与设计[J].铁道标准设计,1998(6):25-26.
    [42]侯小康,袁宝军.60kg/m钢轨30号改进型可动心轨单开道岔的研制[J].铁道标准设计,2007(1):19-21.
    [43]顾培雄.秦沈客运专线道岔综述[J].中国铁路,2002(7):15-18.
    [44]郭福安.秦沈客运专线可动心轨辙叉单开道岔技术特点[J].铁道建筑,2003(8):62-65.
    [45]史玉杰,胡仁伟,李古.秦沈客运专线无缝道岔的优化设计和试验研究[J].中国铁道科学,2002,23(2):65-70.
    [46]卢祖文,郭福安.秦沈客运专线18号和38号可动心轨辙叉单开道岔[J].中国铁路,2003(4):19-23.
    [47]田德仓.秦沈客运专线60kg/m钢轨18号单开道岔设计[J].铁道标准设计,2000(S1):63-65.
    [48]王平,陈嵘,陈小平.高速铁路道岔设计关键技术[J].西南交通大学学报,2010,45(1):28-33.
    [49]王平,刘学毅,陈嵘.我国高速铁路道岔技术的研究进展[J].高速铁路技术,2010,1(2):6-13.
    [50]郭福安.我国高速道岔技术体系[J].中国铁路,2011(4):1-5.
    [51]王平,刘学毅.无缝道岔计算理论与设计方法[M].成都:西南交通大学出版社,2007.
    [52]王平,陈嵘,杨嵘山,刘学毅.桥上无缝道岔设计理论[M].成都:西南交通大学出版社,2011.
    [53]末冈等著,王其昌译.铁道车辆车轮和钢轨的耦合振动[M].成都:西南交通大学出版社,1994.
    [54]翟婉明,王其昌.轮轨动力分析模型研究[J].铁道学报,1994,16(1):64-72.
    [55]练松良.轨道动力学[M].上海:同济大学出版社,2003.
    [56]Winkler E. Die Lehre von der Elastizitaet und Festigkeit[M]. Verlag H. Domimicus, Prag,1867.
    [57]Timoshenko S. Method of Analysis Statical and Dynamical Stresses in Rail[J]. Proc. of the 2nd International Congress of Applied Mechanics, Zurich,1926:407-418.
    [58]Criner H E, McCann G D. Rail on Elastic Foundations under the Influence of High Spend Traveling Loads [R]. JAM,20-1,1953.
    [59]Effect of Flat Wheels on Track and Equipment [R]. Proc. of AREA,53,1952.
    [60]Betzhold C. Erhohung der Beanspruchung des Eisenbahnoberbaues durch Wechsel-wwirkung zwischen Fahrzeug und Oerbau [J]. Glaser Annalen,1957 (4).
    [61]Sauvage R. La Flexion des Rail sous Charge Roulants[D]. Doctoral The ses (Universite de Paris),1961.
    [62]Meier H. Das Sicherheits Problem Beim Luckenlosen Gleis [J]. Verkehr und Technik, 1963(8),8-16.
    [63]佐藤裕.轨道列车落轴试验[R].铁道技术研究资料,1958.
    [64]佐藤裕,璺田昌羲.高速列车作用下轨道变形[R].科研报告,1965.
    [65]Lyon D. The Calculation of Track Forces due to Dipped Rail Joint, Wheel Flats and Rail Welds [R]. The Second ORE Colloquium on Technical Computer Programs, 1972.
    [66]Jenkins H H, et al. The Effect of Track and Vehicle Parameters on Wheel/rail Vertical Dynamic Forces [J]. Railway Engineering Journal,1972,3 (1):2-16.
    [67]Newton S G, Clark R A. An Investigation into The Dynamic Effects on The Track of Wheel Flats on Railway Vehicles [J]. Journal of Mechanical Engineering Science, 1979,21 (4):287-297.
    [68]Clark R A, Dean P A, Elkins J A & Newton S G An Investigation into The Dynamic Effects of Railway Vehicle Running on Corrugated Rails [J]. Journal of Mechanical Engineering Science,1982,24(2):65-76.
    [69]Sato Y. Abnormal Wheel Load of Test Train [J]. Permanent Way. Tokyo,1973 (14): 1-8.
    [70]佐藤裕著,卢肇英译.轨道力学[M].北京:中国铁道出版社,1981.
    [71]Ahlbeck D R, Meacham H C, Prause R H. The Development of Analytical Models for Railroad Track Dynamics [M].A.D.Kerr(Ed.) Railroad Track Mechanics & Technol-ogy, Pergamon Press, Oxford,1978.
    [72]邢书珍.铁路轨道振动的理论[J].中国铁道科学,1980,2(1):42-56.
    [73]李定清.轨道接头区轮轨动力效应的研究[D].长沙:长沙铁道学院硕士学位论文,1984.
    [74]李定清.铁路轨道接头区轮轨动力效应的研究[J].长沙铁道学院学报,1985(4):47-59.
    [75]陈道兴.非线性轮轨动力效应研究[D].北京:铁道部科学研究院硕士学位论文,1986.
    [76]陈道兴.非线性轮轨系统竖向动力效应分析[J].中国铁道科学,1990,11(2):62-72.
    [77]王澜.轨道结构随机振动理论及其在轨道结构减振研究中的应用[D].北京:.铁道部科学研究院博士学位论文,1988.
    [78]许实儒,徐维杰,仲延禧.钢轨接头处轮轨冲击力的模拟分析[J].铁道学报,1989(4):99-109.
    [79]许实儒.关于轮轨冲击力P1计算问题的探讨[J].兰州铁道学院学报,1992,11(4):1-9.
    [80]翟婉明.车辆-轨道垂向耦合动力学[D].成都:西南交通大学博士学位论文,1991.
    [81]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [82]Zhai W M, Sun X. A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track [J]. Vehicle System Dynamics,1994,23 (S1):603-615.
    [83]翟婉明.高速列车-轨道垂向耦合动力学的研究[J].铁道学报,1997,19(4):16-21.
    [84]翟婉明,黄志辉.列车动力学的非线性数值分析方法[J].西南交通大学学报,1991,26(1):16-21.
    [85]翟婉明.大型结构动力分析的Newmark显式算法[J].重庆交通学院学报,1991,10(2):33-41.
    [86]Zhai W M. Two Simple Fast Integration Methods for Large-scale Dynamic Problems in Engineering [J]. International Journal for Numerical Methods in Engineering,1996, 39(24):4199-4214.
    [87]Zhai W M, Cai C B, Guo S Z. Coupling Model of Vertical and Lateral Vehicle/track Interaction [J]. Vehicle System Dynamics,1996,26(1):61-79.
    [88]翟婉明.车辆/轨道相互作用理论研究进展及发展趋势[J].力学进展,1998,28(3):339-348.
    [89]翟婉明.车辆-轨道耦合动力学[M]第三版.北京:科学出版社,2007.
    [90]Zhai W M, True H. Vehicle/track Dynamics on a Ramp and on the Bridge:Simulation and Measurements [J]. Vehicle System Dynamics,1999,33 (S1):604-615.
    [91]翟婉明,王开云,杨永林,孟宏,封全保.车辆-轨道耦合动力学理论在现代机车车辆设计中的应用实践[J].铁道学报,2004,26(4):24-30.
    [92]翟婉明,蔡成标,王开云.高速列车-轨道-桥梁动态相互作用原理及模型[J].土木工程学报,2005,38(11):132-137.
    [93]翟婉明,王开云,陈建政.铁路货车横向非线性动态行为的理论与试验研究[J].机械工程学报,2008,44(11):138-144.
    [94]李成辉.轨道结构振动理论及应用研究[D].成都:西南交通大学博士学位论文,1996.
    [95]李成辉.轨道、车辆系统竖向振动模态分析[J].西南交通大学学报,1995,30(3):291-294.
    [96]李成辉.高底不平顺不利波长及其与车速关系[J].西南交通大学学报,1997,32(6):633-636.
    [97]刘学毅.钢轨波形磨耗的影响因素及减缓措施[D].成都:西南交通大学博士学位论文,1996.
    [98]刘学毅,王平,万复光.重载线路钢轨波形磨耗成因研究[J].铁道学报,2000,22(1):98-103.
    [99]刘学毅,王平,万复光.轮轨空间耦合振动分析模型及其应用[J].铁道学报,1998,20(3):102-108.
    [100]李德建,曾庆元.列车-直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(1):101-107.
    [101]全玉云.机车车辆/轨道系统垂向耦合动力学有限元分析的研究[D].北京:中国铁道科学研究院博士学位论文,2000.
    [102]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学博士学位论文,2000.
    [103]王开云,刘鹏飞.车辆蛇形运动状态下重载铁路轮轨系统振动特性[J].工程力学,2012,29(1):235-239.
    [104]王其昌,蔡成标,罗强,蔡英.高速铁路路桥过渡段轨道折角限值分析[J].铁道学报,1998,20(3):109-113.
    [105]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].成都:西南交通大学博士学位论文,2003.
    [106]雷晓燕,张斌,刘庆杰.轨道过渡段动力特性的有限元分析[J].中国铁道科学,2009,30(5):15-21.
    [107]王于,翟婉明,王其昌,林良明.一种确定轨道过渡段长度的新方法[J].铁道工程学报,1999(12):25-28.
    [108]蔡成标.高速铁路列车-线路-桥梁耦合振动学理论及应用研究[D].成都:西南交通大学博士学位论文,2004.
    [109]金学松,刘启跃.轮轨摩擦学[M].北京:中国铁道出版社,2004.
    [110]Cooperider N K, Law E H, Hull R, Kadala P S, Tuten J M. Analytical and Experimental Determination of Nonlinear Wheel/Rail Geometric Constraints [C]. Trans. ASME,1976:41-69.
    [111]Hull R, Cooperider N K. Influence of Nonlinear Geometry on Stability of Rail Vehicle [J]. Journal of Engineering for Industry, Trans. ASME,1977,99 (1).
    [112]Elkins J A, Gostling R J. A General Quasi-static Curving Theory for Railway Vehicles [C]. Proceedings 5th VSD-2nd IUTAM Symposium, Vienna,1977.
    [113]Huilgol R R. Hopf-Friedrichs Bifurcation and the Hunting of a Railway Axle[J]. Quarterly of Applied Mathematics,1978 (8):85-94.
    [114]Scheffel H. The Influence of the Suspension on the Hunting Stability of Railway Vehicles [J]. Rail International,1979 (8).
    [115]Elkins J A, Bickhoff B M. Advances in Nonlinear Wheel/Rail Force Prediction Method and Their Validation [C]. Paper Presented at the American Society of Wech. Engr's Conference, New York,7Dec,1979.
    [116]Grassie S L. The Corrugation of Railway Track [D]. Ph.D Dissertation, University of Cambridge,1980.
    [117]Grassie S L, Gregory R W, Johnson K L. The Behaviour of Railway Wheelsets and Track at High Frequencies of Excitation [J]. Journal of Mechanical Engineering Science,1982,24(2):103-111.
    [118]Grassie S L, Gregory R W, Harrison D, Johnson K L. The Dynamic Response of Railway Track to High Frequency Vertical Excitation [J]. Journal of Mechanical Engineering Science,1982,24 (2):77-90.
    [119]Grassie S L, Gregory R W, Johnson K L. The Dynamic Response of Railway Track to High Frequency Lateral Excitation [J]. Journal of Mechanical Engineering Science, 1982,24(2):91-96.
    [120]Grassie S L, Gregory R W, Johnson K L. The Dynamic Response of Railway Track to High Frequency Longitudinal Excitation [J]. Journal of Mechanical Engineering Science,1982,24(2):97-102.
    [121]Grassie S L, Cox S J. The Dynamic Response of Railway Track with Unsupported Sleepers [J]. Proceedings Institute Mechanical Engineers,1985,199(2):123-136.
    [122]Munjal M L, Heckl M. Some Mechanisms of Excitation of a Railway Wheel [J]. Journal of Sound and Vibration,1982,81 (4):477-489.
    [123]Nagurka M L, Hedrick J K, Wormley D N. Curving Performance of Rail Transit Trucks[J]. Vehicle System Dynamics,1983 (12):18-23.
    [124]Sueok A, Ayabe T, Kawakami M, Tamura H. An Approximate Model with an Infinite Number of Vehicles for Analysis of Coupled Vibrations Between Railway Vehicle Wheels and Rail in Vertical Direction [J]. JSME International Journal,1988,31 (4): 739-747.
    [125]Kalker J J. The Quasistatic Contact Problem with Friction for Three-Dimensional Elastic Bodies [J]. Journal de Mecanique Theorique et Appliquee,1988,7(1):55-66.
    [126]Kalker J J. Wheel-Rail Rolling Contact Theory [J]. Wear,1991,144(1-2):243-261.
    [127]Knothe K, Grassie S L. Modelling of Railway Track and Vehicle/Track Interaction at High Frequencies [J]. Vehicle System Dynamics,1993,22 (3-4):209-262.
    [128]Ripke B, Knothe K. Simulation of High Frequency Vehiele-track Interactions [J]. Vehicle System Dynamics,1995,24(S1):72-85.
    [129]Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction Computer Models and Full-scale Experiments [J]. Vehicle System Dynamics,1998,28 (S1):73-84.
    [130]Auersch L. Vehicle-Track Interaction and Soil Dynamics [J]. Vehicle System Dynamics,1998,28 (S1):553-558.
    [131]Andersson C, Oscarsson J, Nielsen J. Dynamic Train/track Interaction Including State-dependent Track Properties and Flexible Vehicle Components [J]. Vehicle System Dynamics,1999,33 (S1):47-58.
    [132]Gerard R, Anthony S, Vincent G. Comparative Study of Numerical Explicit Time Integration Algorithms [J]. Advances in Engineering Software,2005,36(4): 252-265.
    [133]顾经文.高锰钢整铸辙叉的垂直不平顺及其与机车车辆的相互作用[D].北京:铁道部科学研究院硕士学位论文,1982.
    [134]范佳.固定式辙叉竖向荷载的计算分析[D].北京:铁道部科学研究院硕士学位论文,1985.
    [135]赵曦.固定式辙叉区轮轨动力有限元分析及其弹性值的优选[D].北京:铁道部科学研究院硕士学位论文,1988.
    [136]张远荣.可动心轨辙叉道岔对高速运行条件的适应性[D].北京:铁道部科学研究院硕士学位论文,1991.
    [137]王平.道岔区轮轨系统动力学的研究[D].成都:西南交通大学博士学位论文,1998.
    [138]王平,万复光.铁路轨道横向不平顺区轮轨动力响应的研究[J].铁道学报,1997,19(1):108-113.
    [139]王平.道岔区轮轨系统空间耦合振动模型及其应用[J].西南交通大学学报,1998,33(3):284-289.
    [140]王平,刘学毅,万复光.列车-可动心轨式道岔空间耦合系统动力分析[J].铁道学报,1999,21(3):72-76.
    [141]王平.列车在道岔中的运行稳定性分析[J].西南交通大学学报,2000,35(1):28-31.
    [142]王平.道岔转辙器部分的力学特性分析[J].铁道学报,2000,22(1):79-82.
    [143]赵国堂.高速铁路道岔区动力响应的模拟研究[J].中国铁道科学,1996,17(4),90-94.
    [144]Zhai W M. Wheel/rail Dynamic Interactions on Turnouts [C]. Proceedings of 12th International Wheelset Congress, Qingdao, September 1998:447-451.
    [145]任尊松.车辆-道岔系统动力学研究[D].成都:西南交通大学博士学位论文,2000.
    [146]Ren Z S, Sun S G, Zhai W M. Study on Lateral Dynamic Characteristics of Vehicle/Turnout System [J]. Vehicle System Dynamics,2005,43 (4):285-303.
    [147]任尊松,翟婉明,王其昌.轮轨接触几何关系在道岔系统动力学中的应用[J].铁道学报,2001,23(4),11-15.
    [148]任尊松,何小河.道岔区轮轨力转移与分配特性研究[J].中国铁道科学,2008,29(1),1-6.
    [149]Ren Z S, Sun S G, Xie G. A Method to Determine the Two-point Contact Zone and Transfer of Wheel-rail Forces in a Turnout [J]. Vehicle System Dynamics,2010, 48(10):1115-1133.
    [150]任尊松,何小河.道岔区轮轨间隙动态变化特性研究[J].北京交通大学学报,2007,31(1),22-26.
    [151]罗雁云,朱剑月.线路道岔轨下刚度改变对轮轨动力性能影响研究[J].电力机车与城轨交通,2004,27(5),9-12.
    [152]谭晓春.道岔轨下刚度平顺性与动态特性关系研究[D].上海:同济大学硕士学位论文,2008.
    [153]陈小平.高速道岔轨道刚度理论及应用研究[D].成都:西南交通大学博士学位论文,2008.
    [154]孙加林.秦沈客运专线大号码道岔线型分析和动力响应研究[D].北京:中国铁道科学研究院硕士学位论文,2004.
    [155]罗赟.机车驱动装置悬挂结构及参数的研究[D].成都:西南交通大学博士学位论文,2005.
    [156]吴安伟.列车-变截面道岔动力学仿真分析[D].成都:西南交通大学硕士学位论文,2006.
    [157]曾志平.高速铁路桥上无缝道岔伸缩力及列车-道岔-桥梁系统空间振动研究[D].长沙:中南大学博士学位论文,2006.
    [158]蔡小培.高速道岔尖轨与心轨转换及控制研究[D].成都:西南交通大学博士学位论文,2008.
    [159]陈嵘.高速铁路车辆-道岔-桥梁耦合振动理论及应用研究[D].成都:西南交通大学博士学位论文,2009.
    [160]全顺喜.高速道岔几何不平顺动力分析及其控制方法研究[D].成都:西南交通大学博士学位论文,2012.
    [161]Yasuo S, et al. Characteristics of lateral Force Acting at Guard Rail on turnout [J]. Q Rep of RTRI,1988,29(2):62-66.
    [162]Schmid R, Endlicher K O, Lugner P. Computer-simulation of the Dynamical Behavior of a Railway-bogie Passing a Switch [J]. Vehicle System Dynamics,1994,23(1): 481-499.
    [163]Andersson C, Dahlberg T. Wheel/rail Impacts at a Railway Turnout Crossing[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit,1998,212(2):123-134.
    [164]Kassa E, Andersson C, Nielsen J C O. Simulation of Dynamic Interaction Between Train and Railway Turnout [J]. Vehicle System Dynamics,2006,44 (3):247-258.
    [165]Kassa E, Nielsen J C O. Dynamic Interaction Between Train and Railway Turnout: Full-scale Field Test and Validation of Simulation Models [J]. Vehicle System Dynamics,2008,46(S1):521-534.
    [166]Kassa E, Nielsen J C O. Stochastic Analysis of Dynamic Interaction Between Train and Railway Turnout [J]. Vehicle System Dynamics,2008,46 (5):429-449.
    [167]Kassa E, Nielsen J C O. Dynamic Train-Turnout Interaction in an Extended Frequency Range Using a Detailed Model of Track Dynamics [J]. Journal of Sound and Vibration,2009,320(4-5):893-914.
    [168]Schupp G, Weidemann C, Mauer L. Modelling the Contact Between Wheel and Rail Within Multibody System Simulation [J]. Vehicle System Dynamics,2004,41(5): 349-364.
    [169]Zarembski A M. Reducing Wheel/rail Forces in Turnouts [J]. Railway Track & Structures,1991(5):8-9.
    [170]Bjorn A Palsson, Nielsen J C O. Wheel-rail Interaction and Damage in Switches and Crossings [J]. Vehicle System Dynamics,2012,50 (1):43-58.
    [171]Sebes M, et al. Application of a Semi-Hertzian Method to the Simulation of Vehicles in High-speed Switches [J]. Vehicle System Dynamics,2006,44(1):341-348.
    [172]Hiroyuki K, et al. Dynamic Analysis of the Vehicle Running on Turnout at High Speed Considering Longitudinal Variation of Rail Profiles [C]. Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference-DETC2005,2005,2149-2154.
    [173]Alfi S, Bruni S. Mathematical Modelling of Train-turnout Interaction [J]. Vehicle System Dynamics,2009,47(5):551-574.
    [174]Drozdizel J, Sowinski B, Groll W. The Effect of Railway Vehicle-Track System Geometric Deviation on Its Dynamics in the Turnout Zone[J]. Vehicle System Dynamics,1999,33 (S1):641-652.
    [175]Gurule S, Wilson N. Simulation of Wheel/Rail Interaction in Turnouts and Special Track Work[J]. Vehicle System Dynamics,1999,33 (S1):143-154.
    [176]徐跃良.数值分析[M].成都:西南交通大学出版社,2005.
    [177]Drozdziel J, Sowinski B. Pre-processing of Wheel and Rail Geometry in Simulation Software [C]. Computers in Railways Ⅷ,2002,623-632.
    [178]王开文.车轮接触点迹线及轮轨接触几何参数的计算[J].西南交通大学学报,1984(2),89-99.
    [179]任尊松.车辆动力学基础[M].北京:中国铁道出版社,2009.Sugiyama H, Tanii Y, Matsumura R. Analysis of Wheel/Rail Contact Geometry on Railroad Turnout Using Longitudinal Interpolation of Rail Profiles [J]. Journal of Tomputational and Nonlinear Dynamics,2011,6(2):024501-1-024501-5.
    [181]Bruni S, Anastasopoulos I, Alfi A. Effects of Train Impacts on Urban Turnouts: Modelling and Validation Through Measurements [J]. Journal of Sound and Vibration,2009,324(3-5):666-689.
    [182]Kassa E, Johansson G. Simulation of Train-Turnout Interaction and Plastic Deformation of Rail Profiles [J]. Vehicle System Dynamics,2006,44 (S1):349-359.
    [183]Bugarin M R, Diaz-de-Villegas J-M G. Improvements in Railway Switches [J]. Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit,2002,216(4):275-286.
    [184]王伟.高速车辆脱轨非线性动力学及其动态仿真[D].哈尔滨:哈尔滨工业大学博士学位论文,2009.
    [185]高学军.铁道客车系统横向运动对称不对称分岔行为与混沌研究[D].成都:西南交通大学博士学位论文,2010.
    [186]刘学毅,王平.车辆-轨道-路基系统动力学[M].成都:西南交通大学出版社,2010.
    [187]Lee H, Sandu C, Holton C. Dynamic Model for the Wheel Rail Contact Friction [J]. Vehicle System Dynamics,2012,50(1-3):299-321.
    [188]Shen Z Y, Hedric J K, Elkins J A. A Comparison of Alternative Creep-Force Models for Rail Vehicle Dynamic Analysis [C]. Proc.8th IAVSD Symp, Cambridge,1984, 591-605.
    [189]Newmark N M. A Method of Computation for Structural Dynamics [J]. Journal of the Engineering Mechanical Division,1959,85 (3):67-94.
    [190]Park K C. An Improved Stiffly Stable Mathod for Direct Integration of Nonlinear Structural Dynamic Equations [J]. Journal of Applied Mechanics,1975,42(2): 464-470.
    [191]龚积球,谭立成,俞铁峰.轮轨磨损[M].北京:中国铁道出版社,1997.
    [192]王福天.车辆系统动力学[M]第二版.北京:中国铁道出版社,1994.
    [193]刘语冰.我国高速铁路道岔技术标准探讨[J].铁道标准设计,2000(2),7-10.
    [194]史玉杰.秦沈客运专线道岔平面设计参数的研究[J].铁道学报,2001,23(4),94-97.
    [195]刘建新,蔡成标.客运专线道岔平面设计参数的动力学研究[J].铁道建筑,2007(5),86-89.
    [196]孙加林,宣言,王树国.铁路大号码道岔合理线型设置的仿真研究[J].铁道建筑,2010(8),125-127.
    [197]铁道部第三勘察设计院.道岔设计手册[M].北京:人民铁道出版社,1975.
    [198]沈阳铁路局工务处.道岔[M].北京:中国铁道出版社,1987.
    [199]中铁宝桥集团有限公司.铁路道岔参数手册[M].北京:中国铁道出版社,2009.
    [200]许实儒.铁路轨道基本理论[M].北京:中国铁道出版社,1997.
    [201]许国平,李秋义.高速铁路缓和曲线线型及其运营性能比较分析[J].铁道勘察,2005(5),58-62.
    [202]冯晓,李敏,杨佳,张明.不同类型缓和曲线的正算与反算的通用算法[J].测绘通报,2008(6),10-13.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.