基于WAMS的高压输电网络故障定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压输电线路故障定位研究如何及时、准确地找到故障位置,从而不仅能快速修复线路,发现绝缘隐患和保证供电可靠,而且对保证整个电力系统的安全稳定和经济运行都有十分重要的作用。随着自动化技术的发展、信息传输技术的不断进步,尤其是近年来广域测量系统(Wide Area Measurement System,WAMS)的诞生与普及,为故障定位算法的研究带来了新的契机,因此基于广域测量系统的故障定位研究具有非常重要的现实意义和工程价值。在这样的工程背景下,本文对目前该领域中存在的问题进行了分析,并开展了深入的研究,取得了一些创新性的研究成果。
     首先,本文分析了WAMS给高压输电线路故障定位研究带来的契机。在简介WAMS系统的基础上,总结了现有基于同步相量技术的各种故障定位算法,按采集的数据量对各种方法进行了分类比较,并对其特点及应用效果作出评价:进而分析了当前该领域的研究热点,并指出了故障定位理论还需要进一步研究和突破的地方,引出了本文的研究内容。
     其次,为提高WAMS感知电网拓扑改变的能力,从而给输电网络的故障定位研究提供精确的拓扑信息,本文提出了母线有功负荷相对改变量指标用于判断母线负荷是否发生负荷构成改变,并基于此发展了一种新的电力网络拓扑实时分析方法。该方法依靠同步相量测量单元(Phasor Measurement Unit,PMU)测量量突变检测和潮流分析进行初步判别;对于拓扑改变后线路两端潮流仍处于合理范围内的特殊情况,则依靠假设验证法进一步进行区分和定位。仿真实验表明该方法能够有效地区分拓扑改变与大负荷增减扰动。
     第三,针对特定电网结构的故障定位问题进行了深入的研究,本章提出两种基于PMU的实用故障定位算法。首先,针对分支线路为长距离线路的情况,提出一种基于多端PMU的输电线路故障定位算法,假定线路各端点均配置PMU,利用新定义的节点电流非平衡量指标,发掘其本身的内在特性,把故障支路判断和精确定位融为一体,从而实现快速、准确的故障定位。其次,针对分支线路为较短接入线路的情况,提出一种基于双端PMU的多分支输电线路故障定位算法,仅假定线路两端配置PMU,通过多次的故障区域判断,锁定故障发生所在支路,以最少的PMU实现精确故障定位,从而解决双端故障定位算法的通用性问题。仿真实验表明上述两种方法能有效地解决多分支输电线路的故障定位问题。
     第四,为实现故障定位算法在实际大电网中的应用,本文提出两种适于任意电网结构的实用故障定位算法。方法1首先根据对称分量法和线性叠加原理,建立故障后的附加正序网络并定义了故障定位因子;进而应用波形匹配原理,对故障时的定位因子与仿真波形进行匹配,以决定故障发生的位置;在方法一的基础上,方法2推导出关于电网故障位置的一元目标函数,即转化为最小值求解问题,进而基于该函数运用遍历搜索方法寻找故障点的位置;上述两种算法仅利用电压相量进行计算,能够避免由电流互感器饱和所带来的误差影响,且仅需少量PMU的配置。仿真实验表明该方法能够有效地定位任意电网结构的短路故障,并且不受故障类型、过渡电阻等因素的影响。
     最后,总结了本文二至四章所提出的基于WAMS的各种故障定位算法,分析评价了本文各项研究的创新点和不足之处;展望了未来的进一步研究方向。
Fault location algorithm for High voltage transmission lines can promptly and accurately detect the fault point. It not only can greatly decrease the restoring work and outage time, bus also can detect the defective insulation. Fault location plays an important role in the security, stabilization and economic operation of power system. With the development of automation and information transfer techniques, WAMS (Wide Area Measurement System) comes into being which brings new opportunities for the Fault Location research. As a result, there is a great practical significance and engineering value in the Fault Location research based on WAMS. Under such engineering background, this thesis conducts research on this research interests and obtains some innovative research results.
     Firstly, the new opportunities for the research on fault location based on WAMS are analyzed. After the basic principle of WAMS is briefly introduced, the various existing algorithms based on synchronization technologyis are concluded. These different methods are classified and analysed by the amount of data used, while their characteristics and application performance are evaluated. At last, the current research interests in this area is presented, and the existing problem on the fault locagtion theory is pointed out, which leads to the research content of this thesis.
     Secondly, in order to obtain the accurate topology information for fault location research and improve the ability of perceiving the power network topology change based on WAMS, a new index, the relative variation of bus load, is proposed to identify the change of load structure. On the basis of this new index, a novel real time topology processing method is proposed. Most of the topology change perturbations can be identified by measurement change detection and power flow analysis. But for the special case that the power flow change is within the reasonable range after the perturbation, the hypothesis-verification method is used to distinguish topology change from large load change. The simulation results show that by using this algorithm we can effectively locate the topology change.
     Thirdly, the particular power structure in transmission network is studied in this chapter, and two kinds of practical PMU-based fault algorithm are proposed. In algorithm one, the branch lines are assumed as the long-distance lines, and then an efficient PMU-based fault location technique for the multi-terminal transmission lines is presentd. It is assumed that all the terminals are placed with PMU. This technique is based on a fault location index, which is defined as nodal current unbalance. By analyzing the special features of the index, through fault section identification and exact fault location, the fault point can be accurately and effectively achieved. In algorithm two, the branch lines are assumed as the short-distance lines, and then an adaptive PMU-based fault location technique for transmission line with tapped lines is presented. It is assumed that only two terminals are placed with PMU. Through multi fault region estimation, the fault line section can be located. Then the two-terminal fault location algorithm can be applied to implement high accurate fault location. This method solves the problem with the minimum of PMU, which also give a generic algorithm for the two-terminal transmission line.
     Fourthly, in order to achieve practical application of the fault location algorithm in power grid, two kinds of fault location algorithm suitable for transmission network with any construction are presented in this chapter. In algorithm one, basing on symmetrical component method and linear superposition principle, the additional positive sequence network is established. Then the fault location factor is defined and matching during-fault recorded factors with the during-fault simulated factors is used to determine the fault location. In algorithm two, a fault location optimization model is derived. Using the objective function, the line-based search method is applied to search all lines in the suspicious fault regions and find the exact fault point where the matching degree index is minimal. Numerical studies verify that the two proposed fault location method can accurately and quickly locate a fault under the conditions of different fault types, fault positions, and fault resistances. The proposed approach is especially promising for large-scale power system, and only requires sparse PMU placment.
     Finally, the researches in this thesis are summarized, and the innovation points and inadequacies are analyzed and evaluated. Then the further work is prospected.
引文
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996
    [2]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [3]卢强,梅生伟.面向21世纪的电力系统重大基础研究[J].自然科学进展,2000,10(10):870-876.
    [4]施世鸿.高压输电线路故障测距研究:[学位论文].杭州:浙江大学电气工程学院,2007
    [5]刘振亚.特高压交流输电技术研究成果专刊[M].北京:中国电力出版社.2006.
    [6]宋国兵.双回线时域法故障定位研究:[博士学位论文].西安:西安交通大学,2006
    [7]Zimmerman K,Costello D.Impedance-Based Fault Location Experience[J].IEEE Trans on Power Delivery,2005,25(10):211-226.
    [8]ZHANG Feng,LIANG Jun,ZHANG Li.A New Fault Location Method Avoiding Wave Speed and Based on Traveling Waves for EHV Transmission Line[A].in:DRPT[C].Nanjing(China):2008.1753-1757
    [9]徐青山,陈锦根,唐国庆.考虑母线分布电容影响的单端行波测距法[J].电力系统自动化,2007,31(2):70-73.
    [10]董新洲,葛耀中,徐丙垠.利用GPS的输电线路行波故障测距研究[J].电力系统自动化,1996,20(12):37-40
    [11]Gracia J,Mazon A J.Best ANN Structures for Fault Location in Single and Double-Circuit Transmission Lines[J].IEEE Trans on Power Delivery,2005,20(4):2389-2395.
    [12]de Souza S M,da Silva A P A.Voltage and Current Patterns for Fault Location in Transmission Lines[A].in:Proceedings of International Joint Conference on Neural Networks[C].Orlando,Florida(USA):2007.1475-1480.
    [13]陈铮,董新洲,罗承沐.单端工频电气量故障测距算法的鲁棒性[J].清华大学学报(自然科学版),2003,43(3):310-313.
    [14]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距原理[J].中国电机工程学报,2005,25(2):22-27.
    [15]刘劲,孙扬生,罗毅.一种基于时间域的实用单端电量故障测距方法[J].电力系统自动化,1994,18(5):52-56
    [16]毛小明,刘沛.利用单端电气量的高压输电线路故障测距算法研究[J].电 网技术,1998,22(11):15-17.
    [17]李志民,陈学允.基于单侧信息的输电线路故障测距新方法[J].中国电机工程学报,1997,17(6):416-419
    [18]王茂海,孙元章.基于DFT的电力系统相量及功率测量新算法[J].电力系统自动化,2005,29(2):20-24.
    [19]陈晓刚.电网广域安全监测系统若干关键技术问题研究:[学位论文].杭州:浙江大学电气工程学院,2009
    [20]闵勇,丁仁杰,韩英铎.自适应调整采样率的相量在线测量算法研究[J].电力系统自动化,1998,22(10):10-13.
    [21]江道灼,孙伟华,陈素素.电网相量实时同步测量的一种新方法[J].电力系统自动化,2003,27(15):40-44
    [22]江道灼,吕翔,杨贵玉.一种同步时标可自由设定的新型相量测量装置[J].电力系统自动化,2008,32(3):56-60.
    [23]张剑云.电力系统暂态稳定安全防御中广域观测与控制的研究[博士论文].北京.清华大学.2006.
    [24]Adamiak M.G.,Apostolov A.P.,Begovic M.M.,et al.Wide area protection-technology and infrastructures[J].IEEE Transaction on Power Delivery,2006,21(2):601-609
    [25]IEEE.IEEE Std C37.118-2005.IEEE standard for synchrophasors for power systems[M].NewYork:IEEE.March 2006.
    [26]Phadke A.G.,Thorp J.S.,Karimi K.J.State estimation with phasor measurements[J].IEEE Transaction on PWRS,1986,1(1):233-238.
    [27]Joe-Air Jiang,Jun-Zhe Yang,Ying-Hong Lin.An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines Part Ⅰ:Theory and Algorithms[J].IEEE Trans on Power Delivery,2000,15(2):486-493.
    [28]Joe-Air Jiang,Jun-Zhe Yang,Ying-Hong Lin.An Adaptive PMU Based Fault Detection/Location Technique for Transmission Lines-Part Ⅱ:PMU Implementation and Performance Evaluation[J].IEEE Trans on Power Delivery.2000,15(4):1136-1146.
    [29]梁远升,王钢,李海锋.消除暂态过程影响的滤波算法及其在故障测距中的应用[J].电力系统自动化,2007,31(22):77-82.
    [30]CHEN Zheng,LUO Cheng-mu,SU Jin-xi.A Fault Location Algorithm for Transmission Line Based on Distributed Parameter[J].IEE,2001,32(14):411-413.
    [31]刘涤尘,杜新伟,李媛.基于遗传算法的高压长线路双端故障测距研究[J].高电压技术,2007,33(3):21-25.
    [32]辛振涛,尚德基,尹项根.一种双端测距算法的伪根问题与改进[J].继电器,2005,33(6):36-39.
    [33]FAN Chun-ju DU Xiu-hua LI Sheng-fang.An Adaptive Fault Location Technique Based on PMU for Transmission Line[J].IEEE Trans on Power Delivery.2007,15(4):1-6.
    [34]范春菊,郁惟镛,高翔.一种实用的高压输电线路双端电气量故障测距算法[J].中国电力,2003,36(7):31-34.
    [35]王亚强,焦彦军.超高压长线路故障测距研究[J].华北电力大学学报,2006,33(1):20-24.
    [36]黄雄,尹项根,辛振涛.基于分布参数模型的平行双回线故障测距新算法[J].电力自动化设备,2003,23(11):4-8.
    [37]GONG Qing-wu,CHEN Yun-ping,ZHANG Cheng-xue.A Study of the Accurate Fault Location System for Transmission LineUsing Multi-Terminal Signals[J].IEEE Trans on Power Delivery,2000,16(4):2533-2538
    [38]陈允平,吴夙,龚庆武,等.输电线路故障定位的最小二乘法实现[J].电力系统自动化,2001.25(13):54-56.
    [39]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2006,30(8):65-70.
    [40]鲁文,徐晨亮,丁孝华,等.一种考虑分布电容的模糊故障测距算法[J].电力系统自动化,2006,30(8):57-60.
    [41]Kang Y C,Kang S H,Parkj K,et al.Development and Hardware Implementation of a Compensating Algorithm for the Secondary Current of Current Transformers[J].IEE Proceedings Electric Power Applications,1996,143(1):41-249.
    [42]CHEN K W,GLAD S T.Estimation of the Primary Current in Asaturated Transformer[A].in:Proceedings of the 30th Conference on Decision and Control[C]Brighton,U K.Piscataway,NJ,USA:IEEE,1991:2363-2365.
    [43]Kojovic L A,Cummins J C,YU D C.Simplified Artificial Neural Network s Ructure wit h the Current Transformer Saturation Detector Provides a Good Estimation of Primary Currents[A].in:Proceedings of IEEE Power Engineering Society Summer Meeting[C].2000,Seattle,WA,USA.Piscataway,NJ,USA:IEEE,2000:1373-1378.
    [44]Saha M,Izykowskj J,Rosolowski E.A Two End Method of Fault Location Immune to Saturation of Current Transformers[A].in:Proceedings of IEE 8th International Conference on Developmentsin Power System Protection[C].Amsterdam(Netherlands) Stevenage,U K:2004.172-175.
    [45]De Morais Pereira C E,ZANETTA J R L C.Optimization Algorithm for Fault Location in Transmission Lines Considering Current Transformers Saturation[J].IEEE Trans on Power Delivery,2005,20(2):603-608.
    [46]施世鸿,何奔腾.不受TA饱和影响的高压输电线路故障测距算法[J].电力系统自动化,2008,32(2):67-71
    [47]Brahma Sukumar M,Girgis Adly A.Fault Location on a Transmission Line Using Synchronized Voltage Measurements[J].IEEE Trans on Power Delivery,2004,19(4):1619-1622.
    [48]Brahma Sukumar M,Girgis Adly A.Fault Location Scheme for a Multi-Terminal Transmission Line Using Synchronized Voltage Measurements[J].IEEE Trans on Power Delivery,2005,20(2):1325-1331.
    [49]宋振红,张举,唐杰.一种基于双端电压相量测量的故障测距新算法[J].电力自动化设备,2006,26(6):27-29.
    [50]Zamora I,MiAambres J F,et al.Fault Location on Two-terminal Transmission Lines Based on Voltages[J].IEE Proceedings Gener Transm & Distrib,1996,143(1):1-6.
    [51]Zamora I,MiAambres J F.A New Technique Based on Voltages for Fault Location on Three-terminal Transmission Lines[J].Electric Power Systems Research,1996,37:143-151.
    [52]Abe M,Otsuzuki N,Emura T,et al.Development of a New Fault Location System foe Multi-terminal Single Transmission Lines[J].IEEE Trans on Power Delivery,1995,10(1):1516-1532.
    [53]田羽,范春菊,龚震东.带同杆双回线的T型线路故障分支判定算法[J].电力系统自动化,2006,30(21):71-76.
    [54]Girgis A A,Hart D G,Peterson W L.A New Fault Location Technique for Two-and Three-Terminal Lines[J].IEEE Trans on Power Delivery,1992,7(1):98-107.
    [55]施世鸿,何奔腾.一种T形高压输电线路故障测距新方法[J].电力系统自动化,2008,32(11):49-54.
    [56]Lien Kai-ping,Liu Chih-wen,Jiang Joe-air.A Novel Fault Location Algorithm for Multi-Terminal Lines Using Phasor Measurement Units[J].IEEE Trans on Power Delivery,2005,21(10):576-581.
    [57]Lin Ying-hong,Liu Chih-wen,Jiang Joe-Air.An Adaptive Fault Locator for Transmission Lines Tapped with a Source of Generation-Using Synchronized Voltage and Current Phasors[J].IEEE Trans on Power Delivery,2000,13(4):1379-1385.
    [58]Lin Ying-hong,Liu Chih-wen,Yu Chi-shan.A New Fault Locator for Three-Terminal Transmission Lines-Using Two-Terminal Synchronized Voltage and Current Phasors[J].IEEE Trans on Power Delivery,2002,17(2):452-460.
    [59]Yu Chi-shan,Liu Chih-wen,Lin Ying-hong.A Fault Location Algorithm for Transmission Lines with Tapped Leg-PMU Based Approach[J].IEEE Trans on Power Delivery,2001,7(1):915-920.
    [60]Yu C S,Liu C W,Yu S L et al.A New PMU-based Fault Location Algorithm for Series Compensated Lines[J].IEEE Trans on Power Deilvery,2002, 17(1):33-46.
    [61]彭疆南,孙元章,王海风.考虑系统完全可观测性的PMU最优配置方法[J].电力系统自动化.2003.27(4):10-16
    [62]Denegri G.B.,Invernizzi M.and Milano F.A Security Oriented Approach to PMU Positioning for Advanced Monitoring of a Transmission Grid[C].//Proceeding of PowerCon 2002,Kunming,China,2002,1:798-803
    [63]Baldwin T.L.,Mili L.Power system observability with minimal phasor measurement placement[J].IEEE Trans on Power Systems.1993.8(2):707-715
    [64]Denegi G.B.,Invernizzi M.,Serra P.Perturbation Identification via Voltage Phasor Monitroing in Transmission System[C].//IEEE Bologna PowerTech Conference,Bologna,Italy,2003,3:8-19
    [65]Reynaldo F.N..State Estimation and Voltage Security Monitoring Using Synchronized Phasor Measurements[Doctoral Dissertation].Blacksburg(VA).Virginia Polytechnic Institute and State University.2001
    [66]Denegri G.B.,Invernizzi M.and Milano F.A Security Oriented Approach to PMU Positioning for Advanced Monitoring of a Transmission Grid[C].//Proceeding of PowerCon 2002,Kunming,China,2002,1:798-803 136
    [67]李欣然,贺仁睦,周文,等.一种具有全电压范围适应性的综合负荷模型[J].中国电机工程学报.1999.5(5):71-75
    [68]Dai F.T.,Milanovic J.V.,Jenkins N.,et al.Development of a dynamic power system load model[C].// Seventh International Conference on AC and DC Transmission,London,UK,2001,1:344-349
    [69]宋晓娜,毕天姝,吴京涛,等.基于WAMS的电网扰动识别方法[J].电力系统自动化.1999.30(5):24-28
    [70]Milano,Fcderico.PSAT User Manual 1.3.3.[EB\OL].http://www.power.uwaterloo.ca/~fmilano/downloads.htm
    [71]GALIJASEVIC Zijad,ABUR Ali.Fault Location Using Voltage Measurements IEEE transactions on power delivery,2002,17(2):441-445.
    [72]LUO S.S.,KEZUNOVIC M.,SEVICK D.R.Locating faults in the transmission network using sparse field measurements,simulation data and genetic algorithm.Electric Power Systems Research.2004.71:169-177.
    1)Wang Bo,Quanyuan Jiang,Yijia Cao.Transmission Network Fault Location with Spare PMU Placement.The First International Conference on Sustainable Power Generation and Supply(SUPERGEN),2009,Nanjing,China.(国际会议、EI 收录源)
    2)王波,江全元,陈晓刚,曹一家.基于同步电压相量的故障定位新算法.电力系统自动化,2009,33(11):33-37(EI:20092812177024)
    3)王波,周煜勇.基于多端PMU的输电线路故障测距新方法,电力系统保护与控制,2009,37(12):45-51(EI:20093112234110)
    4)王波,王伟,陈超.基于同步相量技术的输电线路故障测距综述,电力系统保护与控制,2009,37(13):122-128(EI:20093212244504)
    5)王波,郑煜,陈晓刚.考虑TA饱和的输电线路故障测距新方法,机电工程,录用
    6)王波,黄世暄,陈晓刚.基于非同步电压相量的T型输电线路故障测距算法,机电工程,录用
    7)陈晓刚,王波,江全元、曹一家.满足多种约束条件的最优PMU配置方法,浙江大学工学版,录用
    8)江全元,王波.基于稀疏PMU配置的大型输电网络故障定位方法,国家发明专利受理(申请号:200910097334.4)
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.