纳米α-Fe_2O_3和α-FeOOH尺寸效应对结构及性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们用水解法合成了不同粒径的纳米α-Fe_2O_3(粒径为10-63nm),还利用水热法合成了不同粒径的纳米α-FeOOH(粒径为12.8-31.6nm)。利用X射线粉末衍射(XRD)、透射电镜(TEM)、场发射扫描电镜(FESEM)、红外光谱(IR)、热重-差热(TG-DTA)、紫外-可见光谱(UV-VIS)和磁性测试等实验表征手段,对合成的纳米α-Fe_2O_3和α-FeOOH进行了物理化学性质与尺寸效应关系的研究。在纳米α-Fe_2O_3体系中,随着粒径的减小,纳米α-Fe_2O_3表现出晶格膨胀,轴比c/a增加。这一结论明显的与早期文献研究的结果不同,这些研究认为在小粒径时,α-Fe_2O_3具有高的晶格对称性。对纳米α-Fe_2O_3的表面水合作用的研究发现,表面水合作用与粒径有强烈的依赖关系,粒径越小,其表面水合作用越强。纳米α-Fe_2O_3由于表面水合作用和晶格膨胀的缘故,其晶格振动,电子跃迁和磁性行为明显地发生变化。在这个工作中,我们首次报道了随着粒径的减小,540cm~(-1)垂直模式的振动频率发生红移,同时在可见光范围内,双激发跃迁的能量发生蓝移。粒子的矫顽力也随着尺寸的减小而明显减小。在纳米α-FeOOH体系中,我们重点研究了尺寸效应对纳米α-FeOOH受热失水过程中的影响,根据实验结果,不同于其他文献报道对失水过程的划分,我们发现纳米α-FeOOH的失水过程可划分为四个阶段。同时我们详细分析了各失水过程与粒径的依赖关系,研究发现在失去物理吸附水时,随着粒径的减小,DTA吸热峰对应的温度
α- Fe_2O_3 nanocrystals (10-63nm) with controlled diameters were successfully prepared by hydrolysis mothod, and different particle size of α-FeOOH nanocrystals (12.8-31.6nm) were prepared using hydrothermal mothod. The finite size effects in α-Fe_2O_3 nanocrystals and α-FeOOH nanocrystals were probed by X-ray diffraction (XRD) , infrared spectroscopy (IR) , thermogravimetric analysis (TG-DTA) , UV-visible spectrum (UV-VIS) , and magnetization measurements. With a size reduction, α-Fe_2O_3 nanocrystals showed a lattice expansion and an enlarged axial ratio of c/a that is in apparent contradiction to the previous conjecture of high lattice symmetry for α- Fe_2O_3 nanocrystals at small sizes. The surface terminations of α- Fe_2O_3 nanocrystals were found to be highly hydrated with a size dependence. The lattice vibrations, electronic transitions, and magnetic properties of α- Fe_2O_3 nanocrystals were significantly modified by surface hydration and lattice expansion. The finite size effects that occurred in α-Fe_2O_3 nanocrystals at small sizes were first
引文
(1) 张立德,牟季美,纳米材料和纳米结构(第二版),北京,科学出版社,2001
    (2) 刘吉平,郝向阳,纳米科学与技术,北京,科学出版社,2002,10
    (3) 苏品书,超微粒子材料技术,台湾,复汉出版社,1989,123-126
    (4) 张立德,牟季美,开拓原子和物质的中间领域——纳米微粒与纳米固体,物理,1992,21(3),167-172
    (5) 袁伟,超微粒子的特性、制备和应用,陕西化工,1997,12,8-12
    (6) 马振叶,李凤生,崔平,白华萍,纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能,催化 学报,2003,24(10),795-798
    (7) Ping Li, Donald E. Miser, Shahryar Rabiei, Ramkuber T. Yadav and Mohammad R. Hajaligol, The removal of carbon monoxide by iron oxide nanoparticles, Applied Catalysis B: Environmental, 2003, 43(2), 151-162
    (8) 李泉,曾广赋,席时权,纳米粒子,化学通报,1995,6,29-34.
    (9) 余润兰,余润州,Ag-TiO_2纳米催化剂的制备、表征及环氧化催化性能,化学研究与应用,2002,14(5)587-588
    (10) Liping Li, Xiaoqing Qiu, and Guangshe Li, Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures, Applied Physics Letters, 2005, 87, 124101-124103
    (11) Guangshe Li, Liping Li, Juliana Boerio-Goates, and Brian F. Woodfield, High Purity Snatase TiO_2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc. 2005, 127 (24), 8659-8666
    (12) Zhang F, Chen CH, Hanson JC, et al., Phases in ceria-zirconia binary oxide (1-x)CeO_2-xZrO(2) nanoparticles: The effect of particle size, Jorunal of the american ceramic society, 2006, 89 (3), 1028-1036
    (13) 汪信,陆路德,纳米金属氧化物的制备及应用研究的若干进展,无机化学学报,2000,16(2),213-21
    (14) M. Sorescu, R. A. Brand, D. Mikhaila-Tarabasanu, L. Diamandescu, Synthesis and magnetic properties of haematite with different particle morphologies, Journal of Alloys and Compounds, 1998, 280(1-2), 273-278
    (15) Lae-Young Lee, Sei J. Oh, J. G. Sohn, Soon-Ju Kwon, On the correlation between the hyperfine field and the particle size of fine goethi te synthesized in chloride solution, Corrosion Science 2001, 43(5), 803-808
    (16) D. Walter, G. Buxbaum, W. Laqua, The Mechanism of the Thermal transformation from Goethite to Hematite, J. thermal analysis cal 2001, 63 (3), 733-748
    (1) 孟新强,国外雷达隐身和红外隐身技术的发展动向与分析(续),飞航导弹,2005,7,34-42
    (2) 曾乐才,廖文俊,魏铮,纳米技术国内外研究概况于在装备业中的应用前景新材料产业,2005,5,58-62
    (3) 牛新书,徐荭,徐甲强,溶胶凝胶法纳米α-Fe_2O_3的合成、结构及气敏性能,功能材料,2001,32(6),649-651,654
    (4) 庞兴梅,赵晖,王东美,纳米技术在医药领域中的研究现状及前景,吉林医学,2005,26(4),401-403
    (5) K. Przepiera, A. Przepiera, Kinetics of Thermal Transformations of Precipitated Magnetite and Goethite, Journal of Thermal Analysis and Calorimetry, 2001, 65 (2), 497-503,
    (6) 郭保文,纳米材料及其技术在涂料工业中的应用研究,新材料产业,2003,111(2),62-67
    (7) 陈家华,陈敏,许志刚,纳米材料在皮革涂饰剂中的应用,中国皮革,2002,31(1),11-13
    (8) 王燕,景志红,吴世华等,不同方法掺杂Au对纳米α-Fe_2O_3气敏性能的影响,物理化学学报,2006,22(1),114-118
    (9) 闫涛,白守礼,罗瑞贤等,纳米α-Fe_2O_3的制备及气敏性质的研究,北京化工大学学报,2003,30(1),106-108,110
    (10) 徐宏,刘剑洪,陈沛等,纳米氧化铁的制备及其对吸收药热分解催化作用的研究,火炸药学报,2002,3,51-52,65
    (11) 马振叶,李凤生,崔平,白华萍,纳米Fe_2O_3的制备及其对高氯酸铵热分解的催化性能,催化学报,2003,24(10),795-798
    (12) Ping Li, Donald E. Miser, Shahryar Rabiei, Ramkuber T. Yadav and Mohammad R. Hajaligol, The removal of carbon monoxide by iron oxide nanoparticles, Applied Catalysis B: Environmental, 2003, 43 (2), 151-162
    (13) 蔡哲斌,石振贵,Fe_2O_3/Al_2O_3催化氧化苯偶姻制备苯偶酰,有机化学,2002,22(6),446-449
    (14) 于耀宇,李安民,章翔等,磁导向下磁性药物载体脑定位分布的研究,中华实验外科 杂志,2000,17(3),257-258
    (15) 朱以华,王强斌,古宏晨等,表面功能化磁性微球的制备及在核酸分离与固定化酶中的应用,中国医学科学院学报,2002,24(2),18-123
    (16) 肖曙光,施利毅,纳米氧化铁黄颜料的制备和表征,上海大学学报(自然科学版) 2002,8(3),251-254
    (17) 黄光斗,贾泽宝,胡兵等,透明氧化铁黄颜料的制备,无机盐工业,1999,31(5),12-14
    (18) 曹宏明,吴秋芳,陈杰等,纺锤形透明氧化铁颜料的制备及表面处理,无机盐工业,2000,32(5),7-9
    (19) 欧延,邱晓滨,许宗祥等,均匀沉淀法合成纳米氧化铁,厦门大学学报(自然科学版),2004,43(6),882-885
    (20) 李大成,付云德,胡鸿飞等,胶溶相转移法制备超微细透明氧化铁颜料的研究,四川大学学报,2000,32(1),37-40
    (21) Tadao Sugimoto, Yinsheng Wang, Hiroyuki Itoh, et al. Systematic control of size, shape and internal structure of monodisperse α-Fe_2O_3 particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 134: 265-279
    (22) 喻德忠,蔡汝秀,潘祖亭,纳米级氧化铁的合成及其对六价铬的吸附性能研究,武汉大学学报(理学版),2002,48(2),136-138
    (23) 曹维良,张敬畅,石锦华等,超微粒子氧化铁的制备研究,应用科学学报,2000,18 (2),171-174
    (24) Wei Yu, Liu Hui, Preparation of nano-needle hematite particles in solution, Materials Research Bulletin, 1999, 34 (7), 1227-1231
    (25) 景志红,王燕,吴世华,不同形态的α-Fe_2O_3纳米粉体的水热合成、表征及其磁性研究,无机化学学报,2005,21(1),145-148
    (26) Zhihong Jing, Shihua Wu, Synthesis and characterization of monodisperse hematite nanopartieles modified by surfactants via hydrothermal approach, Materials Letters, 2004, 58 (27-28), 3637-3640
    (27) S. Giri, S. Samanta, S. Mail, S. Ganguli, A. Bhaumik, Magnetic properties of α-Fe_2O_3 nanoparticle synthesized by a new hydrothermal method, Journal of Magnetism and Magnetic Materials 2005, 285(1-2), 296-302
    (28) G. S. Li, R. L. Smith, Jr., H. Inomata, K. Arai, Preparation and magnetization of hematite nanoerystals with amorphous iron oxide layers by hydrothermal conditions, Materials Research Bulletin, 2002, 37(5), 949-955
    (29) 韩晓斌,黄丽,回峥,微波水解法制备针形α-Fe_2O_3纳米粒子,无机材料学报,1999,14(4),669-672
    (30) 张文敏,刘强,汤永铮,添加剂对微波法制备均分散α-Fe_2O_3纳米粒子的影响,材料科学与工程,1999,17(2),29-32
    (31) Xuehong Liao, Junjie Zhu, Wei Zhong, et al., Synthesis of amorphous Fe_2O_3 nanoparticles by microwave irradiation, Material Letters, 2001, 50(5-6), 341-346
    (32) Q. Li, Y. Wei, Study on preparing monodispersed hematite nanoparticles by microwave-induced hydrolysis of ferric salts solution, Materials Research Bulletin, 1998, 33(5), 779-782
    (33) Hiroaki Katsuki, Sridhar Komarneni, Microwave-Hydrothermal Synthesis of Monodispersed Nanophase α-Fe_2O_3, J. Am. Ceram. Soc. 2001, 84(10): 2313-2317
    (34) S. Music, S. Krehula, S. Popovic, Effect of HCl additions on forced hydrolysis of FeCl_3 solutions, Materials Letters, 2004, 58 (21), 2640-2645
    (35) 魏雨,贺会兰,郑学忠等,均分散纺锤形α-Fe_2O_3的制备研究,应用科学学报,1997,15(4),494-498
    (36) 钟红梅,杨延钊,张为民等,回流法制备纳米氧化铁的研究,山东大学学报(理学版),2002,37(2),160-162
    (37) 魏雨,赵建路,韩秀玉,高浓度Fe~(3+)盐溶液的催化相转化制备均匀铁红胶粒,催化学报,1998,19(1),7-8
    (38) S. Music, S. Krehula, S. Popovic, et al., Some factors influencing forced hydrolysis of FeCl_3 solutions, Materials letters, 2003, 57(5-6), 1096-1102
    (39) 魏雨,赵建路,武瑞涛,张艳峰,一种液相制备均匀α-Fe_2O_3微粉的新方法,功能材料,2000,31(1),105-106
    (40) 邱春喜,姜继森,赵振杰等,固相法制备α-Fe_2O_3纳米粒子,无机材料学报,2001,16(5),957-960
    (41) 景苏,鲁新宇,室温固相法合成纳米FeOOH及Fe_2O_3,南京工业大学学报,2002,24(6),52-55
    (42) Toshiro maruyama, Yoshitaka Shinyashiki, Iron-Iron oxide composite thin films prepared by chemical vapor deposition from iron pentacarbonyl, Thin Solid films, 1998, 333 (1-2), 203-206
    (43) 刘成林,钟菊花,张兆奎,表面修饰对α-Fe_2O_3超微粒光谱特性的影响,光谱学与光谱分析,2003,23(1),154-156
    (44) D. Sena, P. Deb, S. Mazumder and A. Basumallick, Microstructural investigations of ferrite nanoparticles prepared by nanoqueous precipitation route, Materials Research Bulletin. 2000, 35(8), 1243-1250
    (45) 董睿,姜继森 杨燮龙,非水介质中制备纳米氧化铁,无机材料学报,2002,17(5),967-972
    (46) 刘祥萱,王煊军,刘振玉等,制备方法对纳米氧化铁晶型的影响,火炸药学报,2002,4,85-86
    (47) X. L. Xu, J. D. Guo, Y. Z. Wang, A novel technique by the citrate pyrolysis for preparation of iron oxide nanoparticles, Materials Science and Engineering B, 2000, 77 (2), 207-209
    (48) Fiorani, D.; Testa, A. M.; Suber, L.; Angiolini, M.; Montone, A.; Polichetti, M., Size and shape effect on the canted antiferromagnetism in α-Fe_2O_3 particles, Nanostruct. Mater. 1999, 12(5-8), 939-942.
    (49) Zhang, J. Z., Interracial Charge Carrier Dynamics of Colloidal Semiconductor Nanoparticles, J. Phys. Chem. B 2000, 104(31), 7239-7253.
    (50) Toledano, D. S.; Henrich, V. E., Kinetics of SO_2 Adsorption on Photoexcited α-Fe_2O_3, J. Phys. Chem. B, 2001, 105(18), 3872-3877
    (51) Ayyub, P.; Multani, M.; Barma, M.; Palkar, V. R.; Vijayaraghavan, R., Size-induced structural phase transitions and hyperfine properties of microcrustalline Fe_2O_3, J. Phys. C 1988, 21 (11), 2229-2245.
    (52) Madden, A. S.; Hochella, M. F., A test of geoehemical reactivity as a function of mineral size: Manganese oxidation promoted by hematite nanoparticles, Geochim. Cosmochim. Acta, 2005, 69 (2), 389-398.
    (53) Katsuki, H.; Shiraishi, A.; Komarneni, S.; Moon, W. J.; Toh, S.; Kaneko, K., Rapid synthesis of monodispersed alpha-Fe_2O_3 nanoparticles from Fe(NO_3)_3 solution by microwave irradiation, J. Ceram. Soc. Jpn. 2004, 112 (1307), 384-387.
    (54) Yi, J. H.; Son, S.; Choi, M., Superparamagnetic iron (Ⅲ) oxide nanoparticles synthesized by combustion flame process, Key Eng. Mater. 2002, 206-2, 135-138.
    (55) David M. Sherman, T. David Waite, Electronic spectra of Fe~(3+) oxides and hydroxides in the near IR to near UV, American Mineralogist, 1985, 70, 1262-1269
    (56) 王晓慧,王信,钛酸铅及掺杂体系纳米材料的晶体结构尺寸效应,功能材料,1996,27(3),261-263
    (57) 朱文辉,周光泉,程经毅,纳米晶体材料屈服应力与晶粒尺寸的依赖关系,金属学报 1996,32(9)959-965
    (58) Jae-Young Lee, Sei J. Oh, J. G. Sohn, Soon-Ju Kwon, On the correlation between the hyperfine field and the particle size of fine goethite synthesized in chloride solution, Corrosion Science 2001, 43, 803-808
    (59) Liping Li, Xiaoqing Qiu, and Guangshe Li, Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures, Applied Physics Letters, 2005, 87, 124101-124103
    (60) Ayyub, P.; Palkar, V. R.; Chattopadhyay, S.; Multani, M., Effect of crystal size reduction on lattice symmetry and cooperative properties, Phys. ReV. B 1995, 51 (9), 6135-6138.
    (61) Liu, H.; Caldwell, W. A.; Benedetti, L. R.; Panero, W.; Jeanloz, R., Static compression of alpha-Fe_2O_3: linear incompressibility of lattice parameters and high-pressure transformations, Phys. Chem. Miner. 2003, 30 (9), 582-588.
    (62) Serna, C. J.; Ocana, M.; Iglesias, J. E., Optical properties of α-Fe_2O_3 microcrystals in the infrared, J. Phys. C 1987, 20(3), 473-484.
    (63) Serna, C. J.; Rendon, J. L.; Iglesias, J. E., Infrared surface modes in corundum-type microcrystalline oxides, Spectrochimica Acts A 1982, 38(7), 797-802.
    (64) Wang, Y. S.; Muramatsu, A.; Sugimoto, T., FTIR analysis of well-defined alpha-Fe_2O_3 particles, Colloids Surf. A 1998, 134 (3), 281-287.
    (65) McHale, J. M.; Navrotsky, A.; Perrotta, A. J., Effects of Increased Surface Area and Chemisorbed H_2O on the Relative Stability of Nanocrystalline γ-Al_2O_3 and α-Al_2O_3, J. Phys. Chem. B 1997, 101(7), 603-613.
    (66) Jones, F.; Rohl, A. L.; Farrow, J. B.; Bronswijk, W. V., Molecular modeling of water adsorption on hematite, Phys. Chem. Chem. Phys. 2000, 2(14), 3209-3216.
    (67) Kittaka, S.; Umezu, T.; Ogawa, H.; Maegawa, H.; Takenaka, T., Interaction of alcohols with surface hydroxyls on chromium(Ⅲ) oxide, Langmuir 1998, 14(4), 832-838.
    (68) Liu, P.; Kendelewicz, T.; Brown, G.; Nelson, E.; Chambers, S., X-ray structure analysis on the particle of metal ultra-fine powder nickel, Surf. Sci. 1998, 417(1), 53-65.
    (69) Herman, G.; MeDaniel, E.; Joyce, S., Interaction of D_2O with the Fe_3O_4(111) and the biphase ordered structures on α-Fe_2O_3(0001), J. Electron Spectrosc. Relat. Phenom. 1999, 101-103, 433-438.
    (70) Kurtz, R. L.; Heinrich, V. E., Surface electronic structure and chemisorption on corundum transition-metal oxides: α-Fe_2O_3, Phys. ReV. B 1983, 36(6), 3413-3421.
    (71) Navrotsky, A., Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles, Prec. Natl. Acad. Sci. U. S. A. 2004, 101 (33), 12096-12101.
    (72) Schroeer, D.; Nininger, R. C., Morin Transition in α-Fe_2O_3 Microcyrstals, Phys. ReV. Lett. 1967, 19(11), 632-634.
    (73) Stewarta, S. J.; Borzi, R. A.; Cabanillas, E. D.; Punte, G.; Mercader, R. C., Effects of milling-induced disorder on the lattice parameters and magnetic properties of hematite, J. Magn. Magn. Mater. 2003, 260(3), 447-454.
    (74) Guangshe Li, Liping Li, Juliana Boerio-Goates, and Brian F. Woodfield, High Purity Anatase TiO_2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. AM. CHEM. SOC. 2005, 127 (24), 8659-8666
    (75) Navrotsky, A., Energetics of nanoparticle oxides: interplay between surface energy and polymorphism, Geochem. Trans. 2003, 4, 34-37.
    (76) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. ReV. 1995, 95, 735.
    (77) Trainer, T. P.; Chaka, A. M.; Eng, P. J.; Newville, M.; Waychunas, G. A.; Catalano, J. G.; Brown, G. E., Structure and reactivity of the hydrated hematite (0001)surface, Surf. Sci. 2004, 573(2), 204-224.
    (78) Onari, S.; Arai, T.; Kudo, K., Infrared lattice vibrations and dielectric dispersion in α-Fe_2O_3 Phys. ReV. B 1977, 16(4), 1717-1721.
    (79) Hayashi, S.; Kanamori, H., Infrared study of surface phonon modes in α-Fe_2O_3 microcrystals, J. Phys. C 1980, 13(8), 1529-1538.
    (80) Chen, L. X.; Liu, T.; Thurnauer, M. C.; Csencsits, R.; Rajh, T., Fe_2O_3 Nanoparticle Structures Investigated by X-ray Absorption Near-Edge Structure, Surface Modifications, and Model Calculations, J. Phys. Chem. B, 2002, 106(34), 8539-8546.
    (81) Zhang, J.; Wu, Z. Y.; Ibrahim, K.; Abbas, M. I.; Ju, X. Nucl. Instrum. Methods Phys. Res. B 2003, 199, 291.
    (82) Ingale, A.; Rustagi, K. C., Raman spectra of semiconductor nanoparticles: Disorder-activated phonons, Phys. ReV. B 1998, 58(11), 7197-7204.
    (83) Fahim, M. A., A detailed IR study of the order-disorder phase transition of NaNO_2, Thermochimica Acta 2000, 363(1-2), 121-127.
    (84) Belin, T.; Millet, N.; Villieras, F.; Bertrand, O.; Bellat, J. P., Mood stabilizers in hospitalized children with bipolar disorder: A retrospective review, J. Phys. Chem. B. 2004, 108(17), 5333-5340.
    (85) Predoi, D.; Kuncser, V.; Tronc, E.; Nogues, M.; Russo, U.; Principi, G.; Filoti, G., Magnetic relaxation phenomena and inter-particle interactions in nanosized gamma-Fe_2O_3 systems, J. Phys. C 2003, 15(10), 1797-1811.
    (86) Li, G. S.; Boerio-Goates, J.; Woodfield, B. F.; Li, L. P., Evidence of linear lattice expansion and covalency enhancement in rutile TiO_2 nanocrystals, Appl. Phys. Lett. 2004, 85(11), 2059-2061.
    (87) Bray, K. L., High pressure probes of electronic structure and luminescence properties of transition metal and lanthanide systems, Top. Curr. Chem. 2001, 213, 1-94.
    (88) 理查得 L.卡林,磁化学,南京,南京大学出版社,184-185
    (89) Rath, C.; Sahu, K. K.; Kulkarni, S. D.; Anand, S.; Date, S. K.; Das, R. P.; Mishra, N. C., Microstructure-dependent coercivi ty in monodispersed hematite particles, Appl. Phys. Lett. 1999, 75(26), 4171-4173.
    (90) Jing, Z. H.; Wu, S. H.; Zhang, S. M.; Huang, W. P., Hydrothermal fabrication of various morphological alpha-Fe_2O_3 nanoparticles modified by surfactants, Mater. Res. Bull. 2004, 39(13), 2057-2064.
    (91) Raining, T. P.; Winnubst, A. J. A.; Kats, C. M. V.; Philipse, A. P., The synthesis and magnetic properties of nanosized hematite (alpha-Fe_2O_3) particles, J. Colloid Interface Sci. 2002, 249(2), 346-350.
    (92) Li, G S.; Smith, J. R.; Inomata, H.; Arai, K, Preparation and magnetization of hematite nanocrystals with amorphous iron oxide layers by hydrothermal conditions, Mater. Res. Bull. 2002, 37(5), 949-955.
    (93) Deb, P.; Basumalliek, A.; Chatterjee, P.; Sengupta, S. P., Preparation of alpha-Fe_2O_3 nanoparticles from a nonaqueous precursor medium, Scripta Mater., 2001, 45(3), 341-346.
    (94) Lenglet, M.; Hochu, F.; Simsa, Z., Covaleney of Fe~(3+)-O~(2-) bonds and magnetic structure in mixed oxides, Mater. Res. Bull. 1998, 33912), 1821-1833.
    (95) Muench, G. J.; Arajs, S.; Matijevic, E. J. Appl. Phys. 1981, 52, 2493.
    (96) Xiao, Q. F.; Bruck, E.; Zhang, Z. D.; de Boer, F. R.; Buschow, K. H. J., Phase transformation and magnetic properties of bulk CoPt alloy, J. Alloys Compd. 2004, 364(1-2), 64-71.
    (97) Koyama, T.; Onodera, H., Analysis of size dependence on the ordering of FePt nano-particle based on the phase-field method, J. Jpn. Inst. Metals 2004, 68 (12), 1008-1012.
    (1) H. D. Ruan, R. L. Forst, J. T. Klorprogge, L. Duong, Infrared spectroscopy of goethite dehydroxylation. Ⅱ. Effect of aluminium substitution on the behaviour of hydroxyl units, Spectrochimica Acta Part A, 2002, 58(3), 479-491
    (2) B. J. Lemaire, P. Davidson, J. Ferre, etc., Physical properties of aqueous suspensions of goethite (α-FeOOH) nanorods, The European Physical Jounral E, 2004, 13, 291-308
    (3) 尧世斌,许海波,刘海祯,侯新杰,FeOOH脱水与相变机理的理论研究,河南师范大学学报(自然科学版),1996,24(3),35-37
    (4) 王维德,刘义灿,超细氧化铁黄的制备,华侨大学学报(自然科学版)1997,18(1),83-86
    (5) Fumio Watari, P. Delavignette, J. Van Landuty and S. Amelinckx, Electron microscopic study of dehydration transformations. Part Ⅲ: High resolution observation of the reaction process FeOOH →Fe_2O_3, J. Solid State Chem, 1983, 48 (1), 49-64
    (6) C. J. Goss, The kinetics and reaction mechanism of the goethite to hematite transformation, Mineral. Mag., 1987, 51, 437-451
    (7) Emilia Wolska, Relations between the existence of hydroxyl ions in the anionic sublattice of hemati te and its infrared and X-ray characteristics, Solid Stare Ionics,, 1988, 28-30 (part 2), 1349-1351
    (8) Ozden Ozdemir and David J. Dunlop, Intermediate magnetite formation during dehydration of goethite, Earth and Planetary Science Letters, 2000, 177 (1-2), 59-67
    (9) 古绪鹏,陈同云,针状超微铁黄形成机理的研究,无机盐工业,2001,33(4) 8-9,14-15
    (10) Jae-Young Lee, Sei J. Oh, J. G. Sohn and Soon-Ju Kwon, On the correlation between the hyperfine field and the particle size of fine goethite synthesized in chloride solution, Corrosion Science, 2001, 43(5), 803-808
    (11) Ivan Mitov, Daniela Paneva, Boris Kunev, Comparative study of the thermal decomposition of iron oxyhydroxide, Thermochimica Acta, 2002, 386 (2), 179-188
    (12) Honglei Fan, Baozhen Song, Juhua Liu, Zhenqiu Yang, Qiaoxia Li, Thermal formation mechanism and size control of spherical hematite nanoparticles, Materials Chemistry and Physics, 2005, 89 (2-3), 321-325
    (13) J. D. Betancur, C. A. Barrero, J. M. Grenche, G. F. Goya, The effect of water content on the magnetic and structural properties of goethite, Journal of Alloys and Compounds, 2004, 369(1-2), 247-251
    (14) S. Krehula, S. Popovic, S. Music, Synthesis of acicular α-FeOOH particles at a very high pH, Materials Letters, 2002, 54 (2-3), 108-113
    (15) Sara Goni-Elizalde—Maria E. Garcia-Clavel, Characterization Studies of Goethite Samples of Varying Crystallinity Obtained by the Homogeneous Precipitation Method, J. Am. Ceram. Soc, 1990, 73 (1), 121-126
    (16) S. Music, A. Vertes, G. W. Simmons, etc., Mossbauer spectroscopic study of the formation of Fe (Ⅲ) oxyhydroxi des and oxides by hydrolysis of aqueous Fe (Ⅲ) salt solutions, J. Colloid Interface Sci., 1982, 85 (1), 256-266
    (17) M. Gotic, S. POPOVIC, N. Ljubesic and S. Music, Structural properties of precipitates formed by hydrolysis of Fe~(3+) ions in aqueous solvtions containing NO_3~-and Cl~-ions, J. Mater. Sci., 1994, 29, 2474-2480
    (18) S. Music, S. POPOVIC and M. Gotic, Mossbauer spectroscopy and X-ray diffraction of oxide precipitates fromed FeSO_4 solution, J. Mater. Sci., 1990, 25, 3186-3190
    (19) S. Music, S. POPOVIC and M. Gotic Mossbauer spectroscopy and X-ray diffraction of oxide precipitates fromed FeSO_4 solution. Part Ⅱ Croat. Chem. Acta, 1987, 60, 661-675
    (20) Tadao Sugimoto, Yinsheng Wang, Hiroyuki Itch, Atsushi Muramatsu, Systematic control of size, shape and internal structure of monodisperse α-Fe203 particles, Colloids and Surfaces A: Physicochemical and Engineering Aspects 134 (1998) 265-279
    (21) 姚连增,晶体生长基础,安徽,中国科学技术大学出版社,1995,412-413
    (22) 严肖慈,罗明道,界面化学,北京,化学工业出版社,2004,197-198
    (23) Yuanbing Mac, Sarbajit Banerjee, and Stanislaus S. Wong, Large-Scale Synthesis of Single-Crystalline Perovskite Nanostructures, J. AM. CHEM. SOC., 2003, 125 (51), 15718-15719
    (24) Guangshe Li, Liping Li, Juliana Boerio-Goates, and Brian F. Woodfield, High Purity Anatase TiO_2 Nanocrystals: Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry, J. Am. Chem. Soc. 2005, 127 (24), 8659-8666
    (25) Svetozar Music, Ankica Sarc, Stanko Popovic, Kiyoshi Nomura, Tsuguo Sawada, Forced Hydrolysis of Fe~(3+) Ions in NH_4Fe(SO_4)_2 Solutions Containing Urotropin, Croatica Chemica Acta, 2000, 73 (2) 541-567
    (26) Claudio Morterra, Anna Chiorlno and Enzo Borello, An IR spectroscopic characterization of α-FeOOH (goethite), Mater. Chem. Phy. 1984, 10(2), 119-138
    (27) L. Verdonck, S. Hoste, F. F. Roelandt and G. P. Van Der Kelen, Normal coordinate analysis of α-FeOOH-a molecular approach, J. Molec. Struct., 1982, 79, 273-279
    (28) S. Music, S. Krehula, S. Popovic, Effect of HC1 additions on forced hydrolysis of FeCl_3 solutions, Materials Letters, 2004, 58 (21) 2640-2645
    (29) A. Saric, S. Music, K. Nomura, S. Popovic, Microstructural properties of Fe-oxide powders obtained by precipitation from FeCl_3 solutions, Materials Science and Engineering B, 1998, 56 (1), 43-52
    (30) S. Music, Z. Orehovec, S. Popobic., Structural properties of precipitates formed by hydrolysis of Fe~(3+) ions in Fe_2(SO_4)_3 solutions, Journal of Materials Science, 1994, 29, 1991-1998
    (31) Svetozar Music, Genilson P. Santana, Goran Smit, etc, ~(57)Fe Mosbauer, FT-IR and TEM Observations of Oxide Phases Precipitated from Concentrated Fe(NO_3)_3, Solutions, Croatica Chemica Acta, 1999, 72 (1), 87-102
    (32) D. Walter, G. Buxbaum, W. Laqua, The Mechanism of the Thermal Transformation from Goethite to Hematite, Journal of Thermal Analysis and Calorimetry, 2001, 63 (3), 733-748
    (33) Han Yaoxing, Ma Xinsheng, Cao Hongming, Zhang Haiying, Wu Oiufang, Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate, Materials Research Bulletin, 2004, 39 (7-8), 1159-1166
    (34) 罗才卿,李春忠,朱以华等,酸法铁脱水过程微观机制,华东理工大学学报,1995,21(4),412-417
    (35) David M. Sherman, T. David Waite, Electronic spectra of Fe~(3+) oxides and hydroxides in the near IR to near UV, American Mineralogist, 1985, 70, 1262-1269
    (36) 赵珊茸,结晶学及矿物学,北京,高等教育出版社,2004,159
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.