超临界溶液快速膨胀过程制备复合微粒
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合微粒制备技术不仅可以避免单一超细微粒的团聚问题,还可以改变超细微粒的功能化特性和表面反应特性。通过表面包覆而获得良好表面特性对于包覆型复合微粒的实用化设计和广泛应用具有重要意义,使其在化工、结构材料、军事和生物等领域有着广阔的应用前景。
     超临界溶液快速膨胀(RESS)技术是近年来提出的一种制备复合微粒的新方法,温和的操作条件使得该方法在处理热敏性以及生物活性物质时具有传统技术无可比拟的优势。目前应用RESS技术制备复合微粒尚处于初步实验阶段,仍然面临着许多问题。
     本文应用一种改进的RESS技术,分别对石蜡、苯甲酸和聚乳酸包覆细微颗粒进行了系统的实验研究,考察了萃取压力、萃取温度、膨胀前温度以及撞击距离对包覆效果的影响。
     利用光学显微镜、SEM和TGA等仪器对实验制备的复合微粒进行了表征,结果表明:应用这种改进的RESS过程能够对细微颗粒进行包覆处理,制备出包覆层厚度可控的复合微粒。通过该过程制备的复合微粒,包覆层连续、均匀,微粒问无明显团聚现缘。
     在实验范围内,萃取压力的升高会使复合微粒包覆层厚度增加;萃取温度对包覆层厚度影响不大;膨胀前温度的升高导致复合微粒包覆层厚度增加;撞击距离的增大会使复合微粒包覆层厚度增加。萃取压力、膨胀前温度、撞击距离是影响复合微粒包覆层厚度的主要因素。
     通过本文的研究,为复合微粒的制备提供了一种新方法,同时,了解了各过程参数对复合微粒包覆层厚度的基本影响规律,为进一步研究提供了必要的基础性数据。
The preparation technology of composite particles can not only solve the problem of fine particles agglomeration, but also change the functional characteristics and surface reaction characteristics of the fine particles. Good characteristics can be obtained by surface coating, which is very important for the practical design and extensive application of composite particles. It has a broad prospect for the composite particles used in the fields of chemical engineering, structure material, military and biological industry.
     The rapid expansion of supercritical solution (RESS) technology is a new method for the preparation of composite particles. It has incomparable advantages over the traditional methods in the treatment of heat sensitive and bioactive materials because of its mild operation conditions. At present, it is still in preliminary experiment stage using RESS technology to prepare composite particles and many problems have to be faced with.
     An improved RESS technology is presented in this paper. The coating of fine particles using wax, benzoic acid and lactic acids were studied respectively by experiment. The influences of extraction pressure, extraction temperature, pre-temperature and impinging distance on coating effect were investigated.
     The optional microscope, SEM and TGA were adopted to characterize the composite particles. The results show that the coating of fine particles can be accomplished by the improved RESS process and the thickness of the coating layer of composite particles can be controlled. The coating layer prepared by this process is continuous, uniform and combining without obvious agglomeration.
     Over the investigated range of the experiments, the thickness of coating layer increases with the increase of pressure, pre-temperature and impinging distance. The extraction temperature has little effect on the coating layer. Therefore, the extraction pressure, pre-temperature and impinging distance are the main influencing factors.
     The research in this paper provides the preparation of composite particles with a new method. Moreover, the influences of process parameters on the thickness of coating layer were obtained and the experimental results can be used as necessary fundamental datum for further study.
引文
[1] 徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002.03.
    [2] 林海,松全元,李定一等.超细非金属矿物颗粒表面的无机化改性.矿产综合利用,1999,(6):42.
    [3] 丁延伟,范崇政.纳米二氧化钛表面包覆的研究.现代化工,2001,21(7):18.
    [4] 阎子峰.纳米催化技术.北京:化学工业出版社,2003.04.
    [5] 柯扬船.聚合物-无机纳米复合材料.北京:化学工业出版社,2002.12
    [6] 高濂,靳喜海,郑珊.纳米复相陶瓷.北京:化学工业出版社,2004.04.
    [7] 李凤生,杨毅等.纳米/微米复合技术及应用.北京:国防工业出版社.2002.08.
    [8] 李凤生,杨毅等.纳米功能复合材料及应用.北京:国防工业出版社,2003.06.
    [9] 贾修伟.纳米阻燃材料.北京:化学工业出版社,2004.08.
    [10] 钟振声,章莉娟.表面活性剂在化妆品中的应用.北京:化学工业出版社,2003.07.
    [11] 庞兴梅,赵晖,王东美.纳米技术在医药领域中的研究现状及前景.吉林医学,2005.26(4):401-403.
    [12] 胡忠洁,张志耘.纳米技术在医药学领域中研究应用进展.天津药学,2001.13(5):1-3.
    [13] 李和平,阮建明,丁志伟.纳米缓释抗癌药物研究进展.山东生物医学工程,2003.26(1):40-52.
    [14] 尹强,杨毅等.超细复合粒子制备技术研究.中国粉体技术,2002,8(6):40-43.
    [15] 崔正刚,殷福珊.微乳化技术及应用.北京:化学工业出版社,1999.02.
    [16] 刘川文等.复合粉体的包覆制备技术现状与发展.新材料开发与应用,2005,(11):44-47.
    [17] 李文秀.超临界反溶剂过程制备药物超细微粒:(硕士学位论文).大连:大连理工大学,2006.
    [18] Paolo Caliceti, Stefano Salmaso, Nicola Elvassore. Effective protein release From PEG/PLA nano-particles produced by compressed gas anti-solvent precipitation lechniques. Journal of Controlled Release, 2004,94(1): 195-205.
    [19] Taki S, Badens E, Charbit G. Controlled release system formed by supercritical antisolvent coprecipi ration of a herbicide and a biodegradable polymer. Journal. of Supercritical Fluids, 2001, 21 (1): 61-70.
    [20] Boutin O, Badens E, Carretier E. Co-precipitation of a herbicide and biodegradable materials by the supercritical anti-solvent technique. Journal of Supercritical Fluids. 2004, 31 (1): 89-99.
    [21] Yulu. Wang, Rajesh N. Dave, Robert Pfeffer. Polymer coating/encapsulation of nanoparticles using a supercritical anti-solvent process..Journal of Supercritical Fluids. 2004, 28 (1): 85-99.
    [22] Yulu Wang, Jun Yang, Robert Pfeffer. Tile application of a supereritical antisolvent process for sustained drug delivery. Powder Technology 2006, 164(2):94-102.
    [23] Hannay JB, Hogarth J. On the Solubility of Solids inGases. Proc Roy Soc, 1879,29(3): 324-331.
    [24] MatsonDW, Fulton JL, Petersen R C. Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers. Ind Eng Chem Res, 1987,26(11):2298-2306.
    [25] Matson D W, Petersen R C, Smith R D. Production of Powders and Films by the Rapid Expansion of Supercritical Solotions. Journal of Materials Science, 1987,22:1919-1928.
    [26] 廖霞,曾继军,何嘉松.超临界流体技术制备超细微粒.化学通报,2002,(1):13-18.
    [27] Pfeffer R, Wang Y L, Wei D W, Dave R. Extraction and precipitation particle coaling using supercritical CO_2 Powder Technology, 2002, 127 (1): 32-44.
    [28] Kim J H, Thomas E P, David L Tomasko, Microencapsulation of Naproxen Using Rapid Expansion of Supercritical Solutions. Biotechnology Progress, 1996, 12(5): 650-661.
    [29] Pablo G, Debenedetti, Jean W Tom, Yeo Sang-Do. Application of supercritical fluids for the production of sustained delivery devices. Journal of Controlled Release, 1993, 24 (3): 27-44
    [30] 金涌,祝京旭,汪展文等.流态化工程原理.北京:清华大学出版社,2001.08.
    [31] 李诗久,周晓君.气力输送理论及应用.北京:机械工业出版社,1992.05.
    [32] Tsutsumi A, Mineoa T, Nakamoto S, Yoshida K. A novel fluidized-bed of fine particles by rapid expansion of supercritical fluid solutions. Powder Technology, 1995, 85(3): 275-278.
    [33] 王亭杰,金涌,堤敦司.超临界流体快速膨胀用于细颗粒包覆技术.化工进展,2000,(4):42-47.
    [34] Wang T J, Tsutsumi A, Hasegawa H. Mechanism of particle coating granulation with RESS process in a fluidized bed. Powder Technology, 2001, 118 (3): 229-235.
    [35] Schreiber R, Brunner G. Fluidized bed coating at supercritical fluid conditions. Supercritical Fluids, 2002, 24 (2): 137-151.
    [36] Krober H, Teipel U. Microencapsulation of particles using supereritical carbon dioxide. Chemecal Engineering and Processing, 2005, 44(2): 215-219.
    [37] 李洪钟,郭慕孙.气固流态化的敞式化.北京:化学工业出版社,2002.10.
    [38] A Tamir. impinging-stream Reactor—Fundamentals and Applications. 北京: 化学工业出版社, 1999, 08.
    [39] 王维,阎红,潘艳秋等.撞击流技术的研究进展及应用前景.化工进展,1999,(4):8-12.
    [40] Tsutsumi A, Ikeda M, Chen W. A nano-coating process by the rapid expansion of supercritical suspensions in impinging-stream reactors. Powder Technology, 2003, 138(3): 211-215.
    [41] MohamedRS, Debenedetti PG, Prud' homme R K. Effects of Process Conditions on Crystals Obtained from Supercritical Mixtures. AIChEJ, 1989, 35 (2): 325-328.
    [42] Shaub G R, BrenneckeJ F. Radial Model for Particle Formation from the Rapid Expansion of Supercritical Solutions. Supercritical fluids, 1995,8(4):318-328.
    [43] 陈鸿雁,蔡建国,邓修等.超临界流体溶液快速膨胀法制备灰黄霉素微细颗粒.化工学报,2001.52(1):56-60.
    [44] Turk M. Formation of small organic particles by RESS: experimental and theoretical investigations. Supercritical Fluids, 1999,15(1):79-89.
    [45] 赵天生,陈兴权,董燕敏等.超临界流体快速膨胀法制备物质微粉Ⅰ.布洛芬做粉的制备.中国医药工业杂志,2002,33(5):227-228,260.
    [46] Lele A K, Shine A D. Morphology of Polymers Precipitated from Supercritical Solvent. AIChEJ, 1992, 38(5): 742-752.
    [47] Schreiber R, Brunner G, Reinke B. High-pressure fluidized bed coating utilizing supercritical carbon dioxide. Powder Technology, 2003, 138(1): 31-38.
    [48] 王亭杰,金涌,堤敦司.用苯甲酸-CO2超临界流体快速膨胀在流化床中进行细颗粒包覆.化工学报,2001,(1):50-55.
    [49] 黄惠忠.纳米材料分析.北京:化学工业出版社,2003.01.
    [50] 王中林.纳米材料表征.北京:化学工业出版社,2005.04.
    [51] Junsu Jin, Chongli Zhong, Zeting Zhana. Solubilities of benzoic acid in supercritical CO_2 with mixed cosolvent. Fluid Phase Equilibria, 2004, 226(10): 9-13.
    [52] Tom J W, Debenedetti P J. Formation of Bioerodible Polymeric Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions. Biotechnol progress, 1991, (7): 403-411
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.