嘉陵江流域非点源氮磷污染及其对重庆主城段水环境影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮磷营养盐的含量偏高是水体发生富营养化的基本条件,随着三峡水库的蓄水运行,长江和嘉陵江库区段的水文情势发生明显变化,库区水体潜在的富营养化问题成为人们关注的焦点。在点源污染逐步得到控制的情况下,非点源污染成为库区水环境污染的主要形式。嘉陵江是三峡水库流域面积最大的一级支流,是库区氮磷污染的主要背景输入之一。为改善库区水质,保障库区水环境安全,对嘉陵江流域非点源氮磷污染的时空变化规律和控制措施进行研究具有重要的理论意义和实践价值。
     由于非点源污染具有随机性、广泛性和潜伏性的特点,研究和控制难度大,运用模型对其产生和输移过程进行数值模拟是目前非点源污染研究的重要手段。本研究在建立嘉陵江流域包含气象、地形地貌、土地利用、土壤类型、植被覆盖以及农业人口、畜禽养殖量等空间和属性环境数据库的基础上,通过引入具有物理机制的半分布式水文模型——SLURP模型,建立了由不同土地利用类型、农村居民生活和畜禽养殖产生的溶解态非点源氮磷污染的年负荷模型;以用于预测多年平均土壤侵蚀量的通用土壤流失方程——RUSLE方程为基础,通过考虑引起流域土壤流失年际变化的水文条件和人类活动因素,提出了能够反映流域输沙量逐年动态变化的新估算方法,建立了流域吸附态非点源氮磷污染年负荷模型。由此构建了嘉陵江流域非点源氮磷污染年负荷模型,并进行了验证。应用所建模型,在GIS平台下,采用空间栅格算法,对1990~2007年嘉陵江流域溶解态和吸附态非点源氮磷污染负荷进行了时空分布模拟,对各种污染来源的贡献率、污染形态、关键“源”区进行了定量分析,并依据分析结果指出了需要重点治理的区域及相应的最佳治理措施。为深入研究陆域产生的非点源氮磷污染进入河道后在受纳水体中的输移转化规律及其对水环境的影响,将非点源氮磷污染负荷动态模型与受纳水体生态动力学模型有机耦合,对嘉陵江重庆主城段的水动力特征、氮磷浓度时空分布和藻类生长情况进行了模拟与分析。
     论文的主要研究成果为:
     ①首次将SLURP水文模型引入非点源污染的模拟研究中,利用其具有物理机制、适合大型山地流域且以土地利用类型为研究单元的优点,代替大多数非点源污染模型采用的SCS-CN统计经验法,作为嘉陵江流域非点源污染模型的水文子模型,通过参数优化,提高了非点源污染的驱动力——降雨-径流的模拟精度,进而提高了非点源氮磷污染负荷估算的准确性。
     ②鉴于嘉陵江流域水沙量不仅受降雨-径流的影响,还受“长治”水土保持重点工程治理进度的影响,因而不仅呈现大水大沙的现象,还呈现输沙量显著减少的趋势,因而多数非点源污染模型中使用的、用于预测多年平均土壤侵蚀量的美国RUSLE方程不能满足动态研究需要,因此本研究以RUSLE方程为基础,从影响土壤流失年际变化的水文条件和人类活动因素着手,并从泥沙输移路径的角度考虑泥沙输移比的空间分布,提出了能反映流域输沙量逐年动态变化的新估算方法,由此建立了流域吸附态非点源污染动态模型,实现了对流域水土流失、吸附态非点源氮磷污染的时空分布模拟。
     ③在流域输沙量动态模型的建立中,由于研究时段长、研究流域尺度大,对输沙量各影响因子进行全流域逐年动态监测十分困难,考虑输沙量的年际变化主要受降雨-径流水文条件和水土保持措施等土地管理活动的影响,首次提出与地表径流模数和治理时间相关的综合影响因子,并通过因次分析法和二元非线型回归法确定了具体的表达式。
     ④针对嘉陵江水文、气候和地形等特点,构建嘉陵江重庆主城段的生态动力学模型,鉴于水动力条件对藻类生长有明显的影响,在模型中引入了水动力因子,提出了该因子的表达式,并应用实测资料对表达式中的参数进行了率定。将水体的生态动力学模型与前述所建的非点源污染负荷模型耦合,模拟非点源氮磷污染进入河道后的输移转化过程及其对藻类生长的影响。
High concentration of total nitrogen (TN) and total phosphorus (TP) are the basic cause of water eutrophication. With the change in hydrological conditions since the impoundment of Three Gorges reservoir, potential issue of eutrophication becomes an important problem to solve. Non-point source of TN and TP pollution become a major potential threat of eutrophication to Three Gorges reservoir under the condition of point source pollution have been controlled gradually. Jialing River is the biggest tributary of the Three Gorges Reservoir, and also one of the biggest implicit inputs of TN and TN pollution to it. To improve water quality and protect water environment in the Three Gorges reservoir area, researches on spatial and temporal changes and control measures of non-point source of TN and TP pollution are of important theoretical significance and practical value.
     As a result of randomness, intensive and uncertainty characteristics of non-point source pollution,the quantitative research of its load and taking control measures on it are both very difficult. Therefore, simulation study of its production and the transport process by establishing mathematic models is an important method of quantifying non-point source pollution load and evaluating management effectiveness at present. In order to control effectively the non-point source pollution in the Jialing River watershed and improve the reservoir water quality, simulation method was taken to study the tempotal and spatial variation of non-point source pollution of TN and TP as well as its environmetal effect on receiving water. At first, based on the distributed hydrological model SLURP, a model of dissolved non-point source pollution load from land-uses, rural life, livestock and poultry raising was established. Then, a new dynamic estimation methods which can reflect yearly sediment yield change of Jialing River watershed was proposed based on the RUSLE model and by proposing a comprehensive influence factor which can reflect the effect of hydrology condition and human activities on sediment yield as well as by considering the space and time differences of sediment delivery ratio from the aspect of delivery route. Then, a non-point source pollution annual load model of particulate TN and TP of Jialing River watershed was established. On this basis, a dynamic non-point source pollution load model of Jialing River watershed was established by organic coupling of the sub-models in the GIS platform. The established load model has been verified by observation data. By the established model, the temporal and spatial distribution of non-point source TN and TP pollution generated by land-uses, rural living, domestic animal raising, water and soil loss in the Jialing River watershed range from 1990 to 2007. And the contribution rate of pollution from different sources, the pollution form, the key "Contribution Zones" were analysed quantitatively. In terms of results of the analysis, the district with serious pollution needed to put much emphasis on controlling was pointed out and the corresponding best management measures were suggested. In order to study of the transport and conversion feature of non-point source pollution in the receiving water, an ecological dynamic model was combined with the established non-point source pollution load model to form a model system. By the ecological dynamic model, the hydrodynamic characteristics, nitrogen and phosphorus concentration and chlorophyll a concentration in Jialing River in the city zone of Chongqing were simulated and analysised.
     In this paper, the main research results are as follow:
     ①Introducing SLURP hydrological model for the first time in the simulation study of non-point source pollution to replaces the SCS-CN statistic model which majority of non-point source pollution models used, making use of its advantages of physical mechanism, applicable for large-scale mountain watershed, taking different land-use types as hydrological response unit, through parameters optimization and certification, the simulation accuracy of rainfall runoff which is driving forces of non-point source pollution was increased. As a result, the estimation accuracy of non-point source pollution load was increased.
     ②The annual sediment yield at the watershed outlet was not only influenced by hydrological condition, but also influenced by "the key water and soil conservation project in Yangtse River watershed ". Thus, the annual runoff and sediment yield at the Jialing River outlet not only changed with the precipitation conditon but also to remarkably reduced since the implementation of the project in 1989. So, the RUSLE equation which is generally used to prediction the average annual soil erosion can’t satisfy the study requirement. To solve this problem, a dynamic model of annual sediment yield was proposed based on the RUSLE equation and by introducing a comprehensive influence factor which can reflect the effect of hydrological conditions and human activities on sediment yield as well as by considering the spatial distribution of sediment delivery ratio from the aspect of the delivery route. Based on the proposed dynamic model of sediment yield, the non-point source pollution load model of adsorbed TN and TP was established. Using the established dynamic model, the spatial and temporal distribution of soil erosion, sediment yield and non-point source pollution of adsorbed TN and TP were simulated.
     ③During the establishment of sediment yield dynamic model at the watershed outlet, it was difficult for us to carry out dynamic monitoring of each impact factors in the whole basin, because it was a long time research and was in very large-scale watershed. Taking into account the interannual variability of sediment yield mainly affected by hydrological conditions of rainfall - runoff and underlaying surface changes caused by soil conservation measures, a combined influence factor which is related to surface runoff modulus and the implementation time of the water and soil conservation project was proposed for the first time. Furthermore, its specific expression was determined through dimensional analysis and non-linear regression multianalysis.
     ④According to the features of hydrology, climate and terrain of Jialing River watershed, an ecological dynamic model of Jialing river in city zone of Chongqing was established. In view of the significant effect of hydrodynamic condition on algae growth confirmed by measured data in studied river reach, a hydrodynamic factor was introduced in the ecological dynamic model. The expression of the hydrodynamic factor was proposed and the concrete parameters in the expression were also determined by measured data. The ecological dynamic model was coupled organically with non-point source pollution load model and a model system of non-point source polltuion model which can not only simulate overland non-point source pollution loas but also can assess its environmental effect on receiving water was formed.
引文
[1] Lee S I. Nonpoint source pollution [J]. Fisheries, 1979, (2):50-52.
    [2] Novotny V, Olem H. Water quality: Prevention, Identification and management of diffuse pollution. New York: Van Nostrand Reinhold Company, 1994, (2).
    [3] Novotny V, Chester G. Hand of Nonpoint Pollution: Source and Management. VanNostrand Reinhold compand, 1981.
    [4] Carpenter S R, Caraco N F, Howarth D L, et al. Non-point pollution of surface waters with phosphorus and nitrogen. Ecology, 1998, 8:559-568
    [5]贺缠生等.非点源污染的管理及控制.环境科学, 1998, 19(5):87-91
    [6] UNEP, Sands of change: why land becomes desert and what can be done about it. UNEP Brief #2, United Nations Environment Programme, Nairobi, Kenya; 1986. 8 pp.
    [7] Oldeman L R. The global extent of soil degradation. In: Greenland D J, Szabolcs I, editors. Soil resilience and sustainable land use. Wallingford: CAB International; 1994. p. 99– 118.
    [8] Scherr S. Soil degradation: a threat to developing country food security by2020. IFRI Food, Agric. and Environment Discussion Paper 27, Washington, DC; 1999. 63 pp.
    [9] Shu-Kuang Ning, Ni-Bin Chang, Kai-Yu Jeng, et al. Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images Journal of Environmental Management 79 (2006) 88–101
    [10]中华人们共和国郭晋安统计局编.中国统计年鉴2008[M/CD].北京:中国统计出版社. 2008
    [11]林嵬.”化肥消费大国”敲响污染警钟[J].环境经济, 2006, 18(6): 28-28.
    [12]曹彦龙,李永红,汪立飞等.三峡库区农业化肥流失污染及其成因分析[J].江苏环境科技, 2008, 21(1):4-8.
    [13]彭奎,朱波.试论农业养分的非点源污染与管理[J].环境保护, 2001, (1):15-17.
    [14] Daniel T C, Sharpley A N, Lemunyon J L. Agricultural phosphorus and eutrophication: a symposium overview. Journal of Environment Quality, 1998, 27 (1): 251-257
    [15]楼平.畜禽养殖环境污染调研报告[R].北京:中国环境科学出版社, 2000. 286
    [16] Lee J H, Bang K W. Characterization of urban stormwater runoff [J]. Water Research, 2000, 34(6): 1773-1780.
    [17] Griffin J R. Introducing NPS water pollution. EPA Journal Nov. /Dec., 1991:6-9.
    [18] USEPA. National water quality inventory. Report to Congress Executive Summary. Washington DC: USEPA, 1995:497.
    [19] Spalding R F, Exner M E. Occurrence of nitrate in groundwater - a review [J]. Journal Environment Quality, 1993, 22:392–402.
    [20] Sharpley A N. Availability of residual phosphorus in manured soils [J]. Soil Science Society of America Journal, 1996, 60:1459–66.
    [21] Southwick L Metal. Runoff losses of norflurazon: effect of runoff timing [J]. Agric. Food Chem, 1993, 41:1503-1511.
    [22] Irina Ribarovaa, Plamen Ninovb, David Cooperc Modeling nutrient pollution during first flood event using HSPF software: Iskar River case study [J]. Bulgaria ecological modeling, 2008, 211:241-246.
    [23] Cherifi O, Loudiki M. Flood transport of dissolved andsuspended matter in the El Abid river basin (Morocco) [J]. Hydrobiologia, 1999, 410: 287-294.
    [24] Letcher, R A, Jakeman A J, Merritt, W S, et al. Review of techniques to estimatecatchment exports[R]. Sydney: Environment Protection Authority, 1999.
    [25]刘晓燕,张国珍.中国水环境非点源污染负荷的估算研究[J].环境科学与管理, 2007, 32 (60): 63-67
    [26]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学, 1998, (5):92-97
    [27] Burke S, Heathwaite L, Quinn P. Strategic management of non-point source pollution from sewage sludge [J]. Water Science & Technology, 2003, 47 (7-8): 305–310.
    [28] Flipo N, Jeannee N, Poulin M, et al. Assessment of nitrate pollution in the Grand Morin aquifers (France): Combined use of geostatistics and physically based modeling [J]. Environmental Pollution, 2007, 146(1):241-256.
    [29] Kronvang B, Gr?sb?ll P, Larsen S E, Svendsen L M, Andersen H E. Diffuse nutrient losses in Denmark [J]. Water Science Technology, 1996, (33): 81-88.
    [30] Kazuo Oki, Yoshifumi Yasuoka. Mapping the potential annual total nitrogen loads in the river basins of Japan with remotely sensed imagery [J]. Remote Sensing of Environment, 2008, 112: 3091–3098.
    [31]程波,张泽,陈凌,等.太湖水体富营养化与流域农业面源污染的控制[J].农业环境科学学报2005, 24(增刊): 118-124.
    [32]金相灿,叶春,颜昌宙,等.太湖重点污染控制区综合治理方案研究[J].环境科学研究, 1999, 12(5):1-5.
    [33]夏立忠,杨林章.太湖流域非点源污染研究与控制[J].长江流域资源与环境, 2003, 12(1):45-49.
    [34]王艳艳,孙勇,赵言文.江苏省太湖流域农业面源污染现状分析及防治措施[J].江西农业学报, 2008, 20(8): 118-121.
    [35]李如忠,汪家权,钱家忠.巢湖流域非点源营养物控制对策研究[J].水土保持学报, 2004, 18(1):119-121.
    [36]周慧平,高超.巢湖流域非点源磷流失关键源区识别[J].环境科学, 2008, 29(10): 2696-2701.
    [37]郝达平.洪泽湖水环境现状评价及水污染分析[J].江苏水利, 2005, (11):32-34.
    [38]葛绪广,王国祥.洪泽湖生态环境调查与改善对策研究[J].安徽农业科学, 2007, 35(18): 5537-5539.
    [39]胡细英,张思华,李博之.鄱阳湖区水资源综合开发与治理[J].湖泊科学, 1997, 9(3): 269-273.
    [40]张小兵,张洁,计勇,等.鄱阳湖区农业面源污染现状及对策措施[J].亚热带水土保持, 2006, 18(4):12-14.
    [41]申锐莉,张建新,鲍征宇,等.洞庭湖水质评价(2002-2004年)[J].湖泊科学, 2006, 18(3): 243-249.
    [42]李益敏,彭永岸,王玉朝,等.滇池污染特征及治理对策[J].云南地理环境研究, 2003, 15(4): 32-38.
    [43]昆明市环境科学研究所.滇池富营养化调查研究[M].昆明:云南科技出版社, 1992. 170-172.
    [44]阎自申.前置库在滇池流域运用研究[J].云南环境科学, 1996, 15(2):33-35.
    [45]杨文龙,杨树华.滇池流域非点源污染控制区划研究[J].湖泊科学, 1998, 10(3):55-60.
    [46]冯庆,王晓燕.滇池流域非点源污染研究进展[J].云南地理环境研究, 2008, 20(1): 41-44.
    [47]鲍全盛,曹利军,王华东.密云水库非点源污染负荷评价研究[J].水资源保护, 1997, (1):8-11.
    [48]黄生斌,叶芝菡,刘宝元.密云水库流域非点源污染研究概述[J].中国生态农业学报, 2008, 16(5):1311-1316.
    [49]张淑荣,陈利顶,傅伯杰.于桥水库流域农业非点源磷污染控制区划研究[J].地理科学, 2004, 24(2):232-237.
    [50]世界资源环境所、联合国环境规划署、联合国开发计划署编.世界资源报告[R].北京:中环境科学出版社. 1993.
    [51] Vladimir Novotny Non Point Pollution and Urban Stormwater Management, Volume IX (Water Quality Management Library, V. 9) [M]. Western Hemisphere, USA: Technomic Publishing Company, Inc, 1995.
    [52]刘冬梅,王育才,管宏杰.陕西水资源污染农业非点源贡献分析[J].西北农林科技大学学报(社会科学版), 2008, 8(5):92-96.
    [53]况琪军,周广杰,胡征宇.三峡库区藻类种群结构与密度变化及其与氮磷浓度的相关性分析[J].长江流域资源与环境, 2007, 16(2): 231-235.
    [54]张晟,李崇明,郑丙辉,等.三峡库区次级河流营养状态及营养盐输出影响[J].环境科学, 2007, 28(3):500-505.
    [55]钟成华.三峡库区水体富营养化研究[D].四川:四川大学, 2004. 25-29.
    [56]邓春光.三峡库区富营养化研究[M].北京:中国环境科学出版社, 2007. 14-24.
    [57]张晟,李崇明,付永川,等.三峡水库成库后支流库湾营养状态及营养盐输出[J].环境科学, 2008, 29(1):7-12.
    [58]张远,郑丙辉,刘鸿亮等.三峡水库蓄水后氮磷营养盐的特征分析[J].水资源保护, 2005, 21(6) 23-26.
    [59]张晟,李崇明,郑坚,等.三峡水库支流回水区营养状态季节变化[J].环境科学,2009,30(1): 64-68.
    [60]黄真理,李玉栋,陈永灿等.三峡水库水质预测和环境容量计算[M].北京:中国水利水电出版社,2006.
    [61]郑丙辉,曹承进,秦延文,等.三峡水库主要入库河流氮营养盐特征及其来源分析[J].环境科学, 2008, 29(1):1-6.
    [62]曹承进,秦延文,郑丙辉,等.三峡水库主要入库河流磷营养盐特征及其来源分析[J].环境科学, 2008, 29(2):310-315.
    [63] Goodchild M F. GIS in Environmental Modeling [M]. Oxford: Oxford University Press, 1996:83-89.
    [64] Heng H H, Nikolaidis N P. Modeling of nonpoint source pollution of nitrogen at the watershed scale [J]. Journal of the American Water Resources Association. 1998, 34(2): 359-374.
    [65] Mishra S K, Tyagi J V, Singh V P, et al. SCS-CN-based modeling of sediment yields [J]. Journal of Hydrology, 2006, (324):301–322.
    [66] Horton R E. The role of infiltration in the hydrological cycle [J]. Trans. A. m. Geophys. Union, 1933, 14:446-460.
    [67] Maidment D. R. Handbook of Hydrology [M]. New York: McGraw-Hill, Inc., 1993. pp 5. 1- 5. 39.
    [68] Soil Conservation Service. Hydrology, SCS National Engineering Handbook. Section 4, Chapter 10[M]. Washington, D C: U S Department of Agriculture, 1964.
    [69] Crawford N H, Linsley R K. Digital simulation in Hydrology: Stanford Watershed Model IV [R]. Technical Report 39, Dept. Of Civil Engineering, Stamford University, 1966.
    [70] Wischemier W H, Smith D D. Predicting Rainfall Erosion Losses-a Guide to Conservation planning [M]. Washington D C, USDA: US Department of Agriculture, Science and Education Administration, Agricultural Handbook, 1978. 537-539.
    [71] Renard K G, Foster G R, et al. RUSLE, revised: Status, question, answers, and the future [J]. Soil and Water Conservation, 1994, 49(3): 213-220.
    [72] Crawford N H, and Donigian A S. Pesticide transport and runoff model for agricultural lands [M]. EPA-660/2-74-013. Athens, GA: USEPA, 1973.
    [73] Metcalf and Eddy, Inc., Univ. of Florida, and Water Resources Engineers, Inc. Storm water management model-Final report [M]. Washington, D. C.: USEPA, 1971.
    [74] Helting L J, etal. Genesee river pilot watershed study summary pilot watershed report [M]. International Joint Commission. Windsor, Ontario, Canada, 1978
    [75] Chesters C Z, etal. Pilot watershed studies summary report [M]. International Joint Commission, Windsor, Ontario, Canada, 1978
    [76] Christopher Zoppou. Review of urban storm water models [J]. Environmental Modelling & Software, 2001, 16:195-199.
    [77] Frere M H, Onstad C A, Holtan H N. ACTMO: an agricultural chemical transport model [M]. Washington: USDA, 1975.
    [78] Knisel W G. CREAMS: A Field-scale Model for Chemicals, Runoff and Erosion from Agricultural Management Systems. USDA Conservation Report 26, Washington, DC. ,1980
    [79] Beasley D B, Huggins L F, and Monke E J. ANSWERS: A model for watershed planning [J]. Transactions of the ASAE, 1980, 23(4):938-944.
    [80] Williams J R, Dyke P T and Jones C A. EPIC - A model for assessing the effects of erosion on soil productivity[C]. In: W. K. Lauenroth, G. V. Skogerboe, and M. Flug (eds.) Analysis of Ecological Systems: State-of-the-Art in Ecological Modelling, 1983. 553-572.
    [81] Williams J R, Nicks A D, and Arnold J G. 1985. Simulator for Water Resources in rural basins. J. Hydr. Eng., ASCE 111(6):970-986.
    [82] Foster G R, Lane L J. User requirements, USDA-Water Erosion Prediction Project (WEPP) [R]. NSERL Report No. 1, West Lafayette: USDA-ARS National Soil Erosion Research Laboratory, 1987.
    [83] Leonard R A, Knisel W G, and Still D A. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems [J]. Trans., Amer. Soc. of Agric., 1987, 30(5):1403-1418.
    [84] Young R A, Onstad C A, Bosch D D. and Anderson. AGNPS: a non-point-source pollution model for evaluating agricultural watersheds [J]. Journal of Soil and Water Conservation, 1989, 44 (2):168–173.
    [85] Arnold J G, Allen P M, Bernhardt G. A comprehensive surface-groundwater flow model [J]. J. Hydrol. , 1993, 142:47-69.
    [86] Whittemore R C. The BASINS model [J]. Water Environ Technol, 1998, 10(12): 57-61.
    [87] Cronshey R G, Theurer F G. AnnAGNPS-Non-Point Pollutant Loading Model [A]. In: Proceedings of the First Federal Interagency Hydrologic Modeling Conference[C]. April 19-23, 1998 at Las Vegas, NV.
    [88] Binger R L, Theurer F D. AnnAGNPS technical processes: documentation version 3. Available at http://www. ars. usda. gov/Research/docs. htm?docid=70002003. Accessed11. 10. 2006.
    [89] Di Luzio M, Srinivasan R, Arnold J G, Neitsch S L, 2002. ArcView interface for SWAT User's Manual. Blackland Research Center, Temple, Texas, USA. Available at http://www. brc. tamus. edu/swat/downloads/doc/swatav2000. pdf. Accessed 5. 10. 2006.
    [90] Corwin D L. Applications of GIS to the modelling of non-point pollutants in the vadose zone. In: D. L. Corwin, Editor, Special publication vol. 48, ASA-CSSA-SSA, Madison, Wisconsin, USA (1996), pp. 69-100.
    [91] Fedra K. Distributed Models and Embedded GIS: Integration Strategies and Case Studies. In: GIS and Environmental Modeling: Progress and Research ISSUES, 1996, 413-418.
    [92]徐祖信.水质数学模型研究的发展阶段与空间层次[J].上海环境科学, 2003, 22(2): 79-85.
    [93]罗定贵,王学军,孙莉宁.水质模型研究进展与流域管理模型WARMF评述[J].水科学进展, 2005, 16(2): 289-294.
    [94] Streeter H W, Phelps E B. A study of the pollution of the Ohio River. U S Public Health service, Public Health Bulletion, No. 146, 125.
    [95] Cox B A. A review of currently available instream water-quality models and their applieability for simulating dissolved oxygen in lowland rivers [J]. The Science of the total environment, 2003, 314-316:335-377.
    [96] Seok Soon Park, Yong Seok Lee. Awater quality modeling study of the Nakdon [J]. River Ecological Modeling, Korea, 2002, 152:65-75.
    [97] DiToro D M, Sifitzpatrick J J. Documentation for Water Quality Analysis Simulation Program (WASP) and Model Verification Program (MVP) [C]. Duluth, MN: US Environmental Protection Agency, 1983.
    [98] USEPA BASINS 3. 0 User's Manual: System Overview [M/CD]. EPA-823-B-01-001, June 2001
    [99] Robert L R. One-dimentional transport with inflow and storage (OTIS): a solute transport model for streams and rivers[R]. USGS water resources investigations report 98-4019, 1998.
    [100] Jamnik B, Refsgaard A, Janza M, Kristensen M. Water resources management model for Ljubljana City, 4th DHI Software Conf. , Elsinore, 6-8 June 2001.
    [101] Danish Hydraulic Institute (DHI). MIKEll: A Modeling System for rivers and Channels.Reference manual, DHI, 2005.
    [102]袁雄燕,徐德龙.丹麦MIKE21模型在桥渡壅水计算中的应用研究[J].人民长江, 2006, 37(4): 50-52.
    [103] US Army Engineer Waterways Experiment Station. CE-QUAL-R1: A Numerical One- Dimensional Model of Reservoir Water Quality: User’s Manual [A]. In: Instruction Report E-87-1[C]. Vicksburg, Mississippi: Environmental Laboratory, 1986.
    [104] US Army Corps of Engineers, Waterways Experiment Station. CE-QUAL-W2: A Numerical Two-Dimensional, Laterally Averaged Model of Hydrodynamics and Water Quality: User’s Manual [M]. Vicksburg, Mississippi: Environmental and Hydraulics Laboratories, 1986.
    [105] Hamrick J M, Wu T S. Computational design and optimization of the EFDC/HEM3D surface water hydrodynamic and eutrophication models [C]. //Delich G, Wheeler M F, eds. Next generation environmental models and computational methods. Philadelpha: Society for Industrial and Applied Mathematics. 1997: 143-161.
    [106] WL D H. Flyland-modelling framework: Delft 3D-FLOW [EB/OL]. [2006-06-20]. http://www. wldelft. Nl/cons/area/mse/edm/flyland/flyland-d3d-fhtml.
    [107] Wallingford Software Ltd. ISIS flow/hydrology. [EB/OL]. [2006-06-20]. http://www. Wallingford/software. com/products/isis/tech. asp.
    [108]李怀恩,沈晋,刘玉生.流域非点源污染模型的建立与应用实例[J].环境科学学报, 1997, 17 (2): 141-1470
    [109]李怀恩,庄咏涛.预测非点源营养负荷的输出系数法研究进展与应用[J].西安理工大学学报, 2003, 19 (4):307-312.
    [110]郝芳华,杨胜天,程红光,等.大尺度区域非点源污染负荷计算方法[J].环境科学学报, 2006, 26(3): 375-383.
    [111]贺宝根,周乃晟,胡雪峰,等.农田降雨径流污染模型探讨——以上海郊区农田氮素污染模型为例[J].长江流域资源与环境, 2001, 10(2):159-164.
    [112]赵刚,张天柱,陈吉宁.用AGNPS模型对农田侵蚀控制方案的模拟[J].清华大学学报(自然科学版), 2002 , 42 ( 5 ):705-707.
    [113]胡远安,程声通,贾海峰.非点源模型中的水文模拟[J].环境科学研究, 2003, 16(5):29-36.
    [114]万超,张思聪.基于GIS的潘家口水库面源污染负荷计算[J].水力发电学报, 2003, (2): 62-68.
    [115]王晓燕,王振刚,王晓峰. GIS支持下密云水库石匣小流域非点源污染[[J].城市环境与城市生态, 2003, 16:26-28.
    [116]贾海峰,程声通. GIS与地表水水质模型WASP5的集成[J].清华大学学报:自然科学版,2001, 4l(s): 125-128.
    [117]徐祖信,尹海龙.黄浦江二维有限元计算网格生成技术[J].水动力学研究与进展, 2003, 15(3):326-331.
    [118]韩龙喜.三峡大坝施工期水环境三维数值预测方法[J].水科学进展, 2002, 13(4):42-432.
    [119]彭虹,郭生练.汉江下游河段水质生态模型及数值模拟[J].长江流域资源与境, 2002, 11(4): 363-369.
    [120]四川省统计局.四川统计年鉴-2008[R].北京:中国统计出版社, 2008.
    [121]甘肃省统计局.甘肃统计年鉴-2008[R].北京:中国统计出版社, 2008.
    [122]陕西省统计局.陕西统计年鉴-2008[R].北京:中国统计出版社, 2008.
    [123]重庆市统计局.重庆统计年鉴-2008[R].北京:中国统计出版社, 2008.
    [124]赵东.嘉陵江流域水环境的现状调查与保护建议[J].天府新论, 2006, (S1):99-105.
    [125]重庆市环境监测中心.重庆市环境质量报告书(2001-2005)[M].重庆:重庆市环境保护局, 2006. 97-152.
    [126]魏云.如何加强嘉陵江水资源保护[J].四川水利发电, 2006, 25(2):121-122.
    [127]沈晶玉,史明昌. DEM网格尺寸对地形因子影响研究[J].水土保持研究, 2006, 13(5):6-69.
    [128]卫海燕,张科利,王敬义.分布式侵蚀预报模型中网格面积的选定[J].地理研究, 2002, 21(5): 578-583.
    [129]李俊然,陈利顶,郭旭东等.土地利用结构对非点源污染的影响[J].中国环境科学, 2000, 20(6):506-510.
    [130]刘瑞民,杨志峰,沈珍瑶.土地利用/覆盖变化对长江流域非点源污染的影响及其信息系统建设[J].长江流域资源与环境, 2006, 15(3): 372-377.
    [131]中国科学院成都分院土壤研究室编.中国紫色土(上)[M].北京:科学出版社, 1991. 1-10.
    [132] Zhang B H, He Y R, Zhou H Y, Zhu Bo. Erosion and sedimentproduction in small watershed in purple hilly areas and prevention techniques [M]. Wu’han University Journal of Natural Sciences, 2003, 8(3b):1041-1046.
    [133]孙久虎,刘晓萌,李佑钢,等.北运河地区植被覆盖的遥感估算及变化分析[J].水土保持研究, 2006, 13(6):97-99.
    [134]许全,陈松生,熊明等.嘉陵江流域水沙变化特性及原因分析[J].泥沙研究, 2008, (2):1-8.
    [135]马炼,张明波,郭海晋等.嘉陵江流域水保治理前后沿程水沙变化[J].研究水文, 2002, 21(1): 27-30.
    [136] Keith J Beven. Distributed Hydrological Modelling: Applications of the TOPMODEL Concept [J]. Advance in HydrologicalProcesses. 1997, 11:1069 - 1085.
    [137] Ciarpica I, Todini E. TOPKAPI: a model for the representation of the rainfall-runoff process at different scales [J]. Hydrological Process, 2002, 16(2):207-229.
    [138] Kite G W. Development of a hydrological model for a Canadian watershed [J]. Canadian Journal of Civil Engineering, 1978, 5(1):126-134.
    [139] Kite G W. The SLURP model [A]. SinghV P. Computer models of watershed hydrology[C]. Water Resource Publications, High lands Ranch, CO, 1995. 521-561.
    [140] Kite G W. Manual for the SLURP Hydrological Model, Version12. 7[DB/OL]. May 2005. http://www. hydrologic-solutions. com.
    [141] Kite G W. Application of a land class hydrological model to climatic change [J]. Water Resources Research, 1993,29(7):2377-2384
    [142] Kite G W. Scaling of input data for macro-scale hydrologic modeling [J]. Water Resources Research, 1995, 31(11):2769-2781
    [143] Suttles J B, et al. Watershed-scale simulation of sediment and nutrientloads in Georgia coastal plain streams using the annualized AGNPS model [J]. Transactions of the ASAE, 2003, 46 (5), 1325-1335.
    [144] Arnold J G, Engel B A, Srinivasan R. Continuous-time, grid cell watershed model[C]. In: Proceedings of the Conference, Spokane, WA, 1993, June 18-19:267–278.
    [145] USDA Soil Conservation Service. SCS National Engineering Handbook, Section 4, Hydrology (NEH-4) [M]. Washington, D C: USDA Soil Conservation Service, 1972.
    [146] USDA Soil Conservation Service. Technical Release No.55: Urban hydrology for small watersheds [J]. Washington, D C: USDA-SCS, 1986.
    [147]贺宝根,周乃晟,高效江,等.农田非点源污染研究中的降雨径流关系—SCS法的修正[J].环境科学研究, 2001, 14 (3):49-51.
    [148] Geoff Kite. Manual for the SLURP hydrological model, version 12. 2[DB/OL]. 2002. http://www. hydrologic-solutions. com
    [149] Garbrecht J, Campbell J. TOPAZ: an automated digital landscape analysis tool for topopraphic evaluation, drainage identification, watershed segmentation and subcatchment parameterization, TOPAZ User Manual [M]. Oklahoma: USDA-ARS, 1997.
    [150] Thiessen A H. Precipitation averages for large areas [J]. Mon. Weather Rev. , 1911, (39): 1082–1084.
    [151] HashinoM, YaoH, Yoshida H. Studies and evaluations on interception processes during rainfall based on a tankmodel [J]. J Hydrol, 2002, 255(1-4): 1-11.
    [152] Spittlehouse D L. Estimating evapotranspiration from land surfaces in British Columbia[C]. In: Estimation of Areal Evapotranspiration, LAHS Publication No. 177, 1989:245-253.
    [153] Spanner M A, Pierce L L, Running S W et al. The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index [J]. Rem. Sens. Envt, 1990, 33: 97-112
    [154] Verhoef A, Feddes R A. Preliminary review of revised FAO radiation and temperature methods[R]. Report 16, Landbouwuniversiteit Wageningen, 1991.
    [155] Thompson S A. Hydrology for Water Management [M]. Rotterdam, Netherlands and Brookfield, Vermont, USA: A. A. Balkema International Publishers, 1999. 362.
    [156] Cunge J A. On the Subject of a Flood Propagation Computation Method (Muskingum Method) [J]. Journal of Hydraulic Research, 1969, 7(2): 205-230.
    [157] Institute of Hydrology. Assessment of global water resources, preliminary report[R]. Report to the Overseas Development Administration, ODA Report 95/2. Wallingford: Institute of Hydrology, 1995. 38.
    [158]汪崔莹.区域水土流失敏感性分析[D].陕西:西北农林科技大学, 2008. 10-13.
    [159]朱新军,王中根,李建新,等. SWAT模型在漳卫河流域应用研究[J].地理科学进展, 2006, 25(5):105-111.
    [160]邓义祥,王琦,赖斯芸,等.优化RSA和GLUE方法在非线性环境模型参数识别中的比较[J].环境科学, 2003, 24(6):9-15.
    [161] Griensven A, Meixner T, Grunwaldvan S, et al. A global sensitivity analysis tool for the parameters of multi-variable catchment models [J]. Journal of Hydrology, 2006, 324(1-4):10-23.
    [162] Duan Q, Sorooshian S, and Gupta V K. Effective and efficient global optimization for conceptual rainfall-runoff models [J]. Water Resource Res. , 1992, 28(4):1015-1031.
    [163] Nash J E and Sutcliffe J V. River flow forecasting through conceptual models part I-a discussion of principles [J]. Journal of Hydrology, 1970, 10 (3):282-290.
    [164] Novotny V. Diffuse pollution from agriculture—a worldwide outlook [J]. Water Science and Technology, 1999, 39(3): 1-13.
    [165]武永锋.紫色土不同土地利用方式下非点源磷素迁移及其环境效应[D].重庆:西南大学. 2005.
    [166]韩建刚.紫色土丘陵区土壤及其养分流失机制与预测模拟研究[J].陕西:西北农林科技大学. 2005.
    [167]陈克亮,朱晓东,朱波,等.川中紫色土区旱坡地非点源氮输出特征与污染负荷[J].水土保持学报, 2006, 20(2):54-58.
    [168]况福虹,朱波,徐泰平,等.川中丘陵区小流域非点源氮素迁移的季节特征[J].水土保持研究, 2006, 13(5):93-98.
    [169]史志华,蔡崇法,丁树文,等.基于GIS的汉江中下游农业面源氮磷负荷研究[J].环境科学学报, 2002, 22(4): 473-477.
    [170]阎伍玖,鲍祥.巢湖流域农业活动与非点源污染的初步研究[J].水土保持学报, 2001, 15 (4) : 129-132
    [171]王晓辉.巢湖流域非点源N、P污染排放负荷估算[D].合肥:合肥工业大学, 2006.
    [172]洪华生,黄金良,曹文志编写.九龙江流域农业非点源污染机理与控制研究. [M].北京:科学出版社, 2008.
    [173]吕唤春.千岛湖流域农业非点源污染及其生态效应的研究[D].浙江:浙江大学,2002. 44-47.
    [174]陈景春,刘诗云,彭绪亚.重庆长寿湖农村生活污水污染及综合防治对策研究[J].环境管理, 2008, (6):94-98.
    [175]高祥照等.肥料实用手册[M].北京:中国农业出版社. 2002.
    [176]武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院, 2005.
    [177]彭里.重庆市畜禽粪便污染调查及防治对策[D].重庆:西南大学. 2004:14-15.
    [178]陈友媛,惠二青,金春姬,等.非点源污染负荷的水文估算方法[J].环境科学研究, 2003, 16(1):10-13.
    [179] León L F, Soulis E D, Kouwen N, Farquhar G J. Non-point source pollution: a distributed water quality modeling approach. Jr. Water Research, 1999, A35 (4):997-1007.
    [180]沈善敏.中国土壤肥力[M].北京:中国农业出版社. 1998.
    [181]王夏晖,尹澄清,颜晓,等.流域土壤基质与非点源磷污染物作用的3种模式及其环境意义[J].环境科学, 2004, 25(4): 123-128.
    [182]维金,章申,唐以剑.模拟降雨条件下沉积物对磷的富集机理[J].环境科学学报, 2000, 20(3): 332-337.
    [183]王晓燕,王一峋,王晓峰,等.密云水库小流域土地利用方式与氮磷流失规律[J].环境科学研究, 2003, 16(1): 30-33.
    [184]黄满湘,章申,唐以剑,等.模拟降雨条件下农田径流中氮的流失过程[J].土壤与环境, 2001, 10(1): 6-10.
    [185] Renard K G, Foster G R, Weesies G A, et al. Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. Washington: USDAHandbook, 1997:537.
    [186] Cohrane T A, Flanagan D C. Assessing water erosion in small watersheds using WEPP with GIS and digital elevation models [J]. Journals of Soil andWater Conservation, 1999, 54(4):678-685.
    [187] Morganr P C, Quinton J N, Smith R E, et al. The European soil erosion model (EUROSEM): a dynamic approach for predicting sediment ttransport from fields and small catchments [J]. Earth Surface Processes and Landforms, 1998, 23:527-544.
    [188] Derooa P J. The LISEM project: An introduction [J]. Hydrological Processes, 1996, 10: 1021- 1025.
    [189] Andrew A M, Janet E M. Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed [J]. Catena, 1999, (38): 109–129.
    [190] Elena Amore, Carlo Modica, Mark A N, et al. Scale effect in USLE and WEPP application for soil erosion computation from three Sicilian basins[J]. Journal of Hydrology, 2004, (293) 100–114.
    [191] Nyakatawa E Z, Jakkula V, Reddy K C, et al. Soil erosion estimation in conservation tillage systems with poultry litter application using RUSLE 2. 0 model [J]. Soil and Tillage Research, 2007, 94(2):410-419.
    [192] Kinnell P I A. AGNPS-UM: applying the USLE-M within the agricultural non point source pollution model [J]. Environmental Modelling and Software, 2000, 15(3):331-341.
    [193] Bouraoui F, Benabdallah S, Jrad A, et al. Application of the SWAT model on the Medjerda river basin (Tunisia) [J]. Physics and Chemistry of the Earth, 2005, 30(8-10):497-507.
    [194] Polyakov V, Fares A, Kubo D, et al. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed [J]. Environmental Modelling & Software, 2007, 22, (11):1617-1627.
    [195]赵磊,袁国林,张琰,等.基于GIS和USLE模型对滇池宝象河流域土壤侵蚀量的研究[J].水土保持通报, 2007, 27(3):42-46.
    [196]曾思育,杜鹏飞,陈吉宁.流域污染负荷模型的比较研究[J].水科学进展, 2006, 17(1): 108- 112.
    [197]王少丽,王兴奎,许迪.农业非点源污染预测模型研究进展[J].农业工程学报, 2007, 23 (5): 265-271.
    [198]张有全,官辉力,赵文吉,等.基于GIS和USLE的密云县土壤侵蚀评价及空间特征研究[J].水土保持研究, 2007, 14(3):358-362.
    [199]庞靖鹏,徐宗学,刘昌明,等.基于GIS和USLE的非点源污染关键区识别[J]. 2007, 21 (2): 170-174.
    [200]杨胜天,程红光,步青松,等.全国土壤侵蚀量估算及其在吸附态氮磷流失量匡算中的应用[J].环境科学学报, 2006, 26(3): 366-374.
    [201]黄金良,洪华生,张珞平.基于GIS和模型的流域非点源污染控制区划[J].环境科学研究, 2006, 19(4):119-124.
    [202]王晓燕,王晓峰,汪清平,等.北京密云水库小流域非点源污染负荷估算[J].地理科学, 2004, 24(2): 227-231.
    [203]江忠善,王志强,刘志.应用地理信息系统评价黄土丘陵区小流域土壤侵蚀的研究[J].水土保持研究, 1996, 3(2):84-96.
    [204]刘宝元,谢云,张科利.水土流失预报模型[M].北京:中国科学技术出版社, 2001.
    [205]张照录,崔继红.通用土壤流失方程最近改进研究分析[J].地理信息科学, 2004, 6(4): 51-54.
    [206]谢云,林燕,张岩.通用土壤流失方程的发展与应用[J].地理科学进展, 2003, 22(3): 279- 286.
    [207] Okanfistikoglu, NilgunBHarmancioglu. Integration of GIS with USLE in Assessment of Soil Erosion [J]. Water Resources Management, 2002, (16):447-467.
    [208] Z H Shi, C F Cai, S W Ding, et al. Soil conservation planning at the small watershed level using RUSLE with GIS: a casestudy in the Three Gorge Area of China [J]. Catena, 2004, 55, 33-48.
    [209]史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报, 2002, 18(4):172-175.
    [210]陈燕红,潘文斌,蔡芫镔.基于RS/GIS和RUSLE的流域土壤侵蚀定量研究[J].地质灾害与环境保护, 2007, 18(3):5-10.
    [211]章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学, 2002, 22(6): 705-710.
    [212]宁丽丹,石辉.利用日降雨量资料估算西南地区的降雨侵蚀力[J].水土保持研究, 2003, 10(4):183-186.
    [213] Richardson C W, Foster G R, Wright D A. Estimation of erosion index from daily rainfall amount [J]. Trans of ASAE, 1983, 26:153-157.
    [214] FOSTER G R. Evaluation of rainfall-runoff erosivity factors for individual storms [J]. Transaction of the ASAE, 1982, 25:124.
    [215]赵文武,朱婧,郭雯雯.基于降雨量和降雨时间的月降雨侵蚀力简易算法[J].中国水土保持科学, 2007, 5(6):8-14.
    [216]孔祥东,刘武林,邓玉林,等.基于日降雨量计算川北深丘低山区降雨侵蚀力初步研究[J].中国水土保持研究, 2007, (5):29-31.
    [217]胡续礼,姜小三,杨树,等.降雨侵蚀力简易算法地区适用性的初步探讨[J].中国水土保持科学, 2006, 4 (5):44-49.
    [218] Arnoldus H M J. Methodology Used to Determine the Maximum Potential Average Soil Loss Due to Sheet and Rill Erosion in Morocco [J]. FAO Soil Bulletin, 1977, 34:39-51.
    [219]杨子生.滇东北山区坡耕地土壤侵蚀的地形因子[J].山地学报, 1999, 17(S1):16-18.
    [220]王宁,朱颜明,徐崇刚. GIS用于流域径流污染物的量化研究[J].东北师范大学学报自然科学版, 2002,34 (2): 92-98.
    [221]陈云明,刘国彬,郑粉莉,等. RUSLE侵蚀模型的应用及进展[J].水土保持研究, 2004, 11(4): 80-83.
    [222] McCool D K. Foster G R. Mutchler C K Revised slope length factor in the universal soil loss equation [J]. Transaction of American Society of Agricultrue Engineers, 1989, (32): 1571- 1576.
    [223] Liu B Y, Nearing M A, Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Transaction of American Society of Agricultrue Engineers, 1994, 37(6):1835-1840.
    [224]汤国安,陈正江,赵牡丹,等. ArcView地理信息系统空间分析方法[M].北京:科学出版社, 2002.
    [225]汤国安,杨玮莹,杨昕,等.对DEM地形定量因子挖掘中若干问题的探讨[J].测绘科学, 2003, 28(1):28-32.
    [226] Sharply A N, Williams J R. EPIC-Erosion/Productivity Impact Calculator: 1. Model Documentation [J]. U. S. Department of Agriculture Technical Bulletin, No. 1768, 1990.
    [227]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报, 2007, 44(1):7-13
    [228]赵辉,郝志敏,齐实,等.南方丘陵紫色页岩地区土壤可蚀性因子K值的确定水土保持研究, 2006, 13(6):41-43.
    [229]傅涛.三峡库区坡面水土流失机理与预测评价建模[D].重庆:西南大学, 2002.
    [230]杨子生.滇东北山区坡耕地土壤侵蚀的水土保持措施因子[J].山地学报, 1999, 17(增刊): 22-24.
    [231]蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报, 2000, 14(2) : 19-24.
    [232]杨子生.滇东北山区坡耕地土壤侵蚀的作物经营因子[J].山地学报, 1999, 17(S1):19-21.
    [233] Parsons A J, Stromberg S G L. Experimental analysis of size and distance of travel of unconstrained particles in interrill flow. Water Resources Research, 1998, (34):2377-2381.
    [234] Walling, D E. The sediment delivery problem [J]. Journal of Hydrology, 1983, 65:209-237.
    [235] Lu H, Moran C J, Prosser I P. Modelling sediment delivery ratio over the Murray Darling Basin [J]. Environmental Modelling & Software, 2006, 21:1297-1308.
    [236]王玲玲,姚文艺,刘兰玉,等.我国流域泥沙输移比研究进展[J]人们黄河, 2008, 30(9): 36-45.
    [237]余剑如,史立人,冯明汉,等.长江上游的地面侵蚀和河流泥沙[J].水土保持通报,1991, 11(1):9-17.
    [238]史立人.长江流域水土流失特征、防治对策及实施成效[J].人民长江, 1998, 29(1):41-43.
    [239]向治安,喻学山,刘载生,等.长江的泥沙来源输移和特性分析[J].长江科学院院报, 1990, (3): 9-19.
    [240]范建容,钟祥浩,刘淑珍.嘉陵江中下游典型流域土壤侵蚀与泥沙输移腰杆监测[J],中国科学E辑科学技术, 2003, 33(增刊):157-163.
    [241]袁再健,褚英敏.四川省紫色土地区小流域次降雨泥沙输移比探讨[J].水土保持通报, 2008, 28(2):36-40.
    [242]景可,王万忠,郑粉莉.中国土壤侵蚀与环境[M].北京:科学出版社, 2005.
    [243]李小涛,黄诗峰,李琳,等.嘉陵江流域土壤侵蚀变化遥感分析[J].泥沙研究, 2006, (6): 65-69.
    [244] Prosser I P, Rustomji P. Sediment transport capacity relations for overland flow [J]. Progress in Physical Geography, 2000, 24: 179-193.
    [245]徐泰平,朱波,况福虹,等.平衡施肥对紫色土坡耕地磷素径流流失的影响[J].农业环境科学, 2006, 25(4):1055-1059.
    [246]李锦秀,禹雪中,等.三峡库区支流富营养化模型开发研究[J].水科学进展, 2005, 16 (6): 777-783.
    [247]廖平安,胡秀琳.流速对藻类生长影响的试验研究[J].北京水利, 2005, 2:12-15.
    [248]秦伯强,陈伟民,等.太湖藻类生长模型研究[J].湖泊科学, 2001, 13(2):149-157.
    [249] DHI Software. DHI Eutrophication Model 1-ECO Lab Template. 2005
    [250] Dillon P J, Rigler F H. A test of a simple nutrient budget model predicting phosphorus concentration in lake water [J]. J Fish Res Board Ca, 1975, 32(9): 1519-1531
    [251]金相灿,刘树坤,章宗涉等.中国湖泊富营养化[M].北京:中国环境科学出版社, 1990. 614.
    [252]幸治国,蒋良维.长江、嘉陵江重庆城区段横向扩散系数[J].重庆环境科学, 1994, 16(3):38-42.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.