黄河包头段沉积物重金属的生物有效性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然水体是受重金属污染的主要生态系统之一,受重金属污染的水体沉积物被喻为“化学定时炸弹”,沉积物是水环境重金属污染的指示剂。流域的经济开发是当今发展的趋势,环境问题已成为“自然-经济-社会”这一复合生态系统能否持续发展的关键。城市化和工业化进程加剧了人类生存环境的危机,几乎所有的河流、湖泊和海洋都遭受了不同程度的污染,世界各国均把重金属列为水质监测和评价的重要指标。
     包头市是黄河流域沿岸典型的重工业城市,在城市工业废水对黄河水体重金属污染方面具有典型性和代表性。
     已有的研究表明,形态分析是生物可给性的基础,也是判识沉积物中重金属污染潜在危害的前提。自然水体是一个含有多种离子的复杂体系,开展符合自然水体实际情况的多离子共存体系中重金属在天然沉积物上竞争吸附动力学和竞争吸附对重金属形态转化影响的研究对揭示水体重金属污染的机理更具实际意义。采用微生态系统暴露实验和AVS法,结合孔隙水中重金属浓度,综合判断黄河水体重金属的生物有效性则有助于研究问题的系统解决。
     从黄河水体重金属污染的机理和效应着手,探讨重金属在黄河水体中的迁移转化规律,揭示黄河沉积物重金属形态分布与生物有效性及毒性的关系,预测黄河沉积物中重金属的生物有效性和毒性,判识黄河沉积物中重金属污染的潜在危害,不仅可为黄河包头段水体重金属的污染防治提供对策和科学依据,同时也可为保护黄河水质和城市工业废水对河流重金属污染的研究提供借鉴。
     本研究以环境地球化学、生物地球化学、污染生态学及现代沉积学的理论和方法为指导,以重金属的地球化学特性及其生物有效性为主线,分别于2004年和2005年按枯、丰、平3个水期系统采集了黄河包头段干支流等9个断面的上覆水、孔隙水、悬浮物及沉积物柱芯等样品,捕获了黄河包头段天然鱼样品,共获得17287个实验测试数据。深入探讨了符合黄河实际的多离子体系中重金属的竞争吸附及其迁移转化机制、水体重金属的污染特征、重金属在水-沉积物.鱼微生态系统中的响应关系以及野生经济鱼类重金属的富集规律。首次开展了承纳大量城市工业废水的黄河包头段鱼微生态系统暴露实验研究,为重金属生物有效性、生物地球化学循环及生态风险评价积累了大量基础数据。此外,鉴于南海湖与黄河的沉积同源性和继承性,开展了南海湖水体沉积物中重金属的环境地球化学特征研究。本研究取得如下主要成果和进展。
     1.首次开展了黄河包头段鱼微生态系统暴露实验,判识了水-沉积物系统与鱼体中重金属的响应关系,构建了可判识水环境中重金属形态与鱼组织器官中有毒金属关系的回归模型,为重金属污染的生物监测提供了新的可供借鉴的有效方法。
     2.首次综合评价了黄河包头段9种经济鱼类的综合污染程度,得出了青鳞子>鲫鱼>花鱼骨>团头鲂>棒花鱼>黄河鲤>赤眼鳟>鲈塘鳢>蛇鮈的重金属污染程度序列。创新了鱼体沉积物分形态富集系数概念,拓展了污染物生物富集机理研究的思路。
     3.发现了枯水期黄河沉积物为重金属的汇,丰水期为源的特异性规律。采用沉积物重金属质量基准,判识了黄河沉积物的潜在风险性。研究揭示,包头市工业废水排放对黄河干流水体重金属的污染迭加有重要贡献。
     4.实验得出了Pb~(2+)>Cu~(2+)>>Zn~(2+)>Cd~(2+)的竞争吸附序列以及Cd>Zn>>Cu>Pb的释放能力序列。该项研究成果对揭示水-沉积物系统中重金属的迁移转化机制具有重要意义。
     5.研究证实,南海湖与黄河具有明显的沉积同源性和继承性。表层沉积物间隙水中Cu和Cd,特别是Cu有从间隙水向上覆水扩散迁移的显著特性。沉积物间隙水在重金属由沉积物向上覆水迁移过程中起重要的桥梁通道作用。
     与一般淡水湖泊不同,南海湖沉积物中AVS的垂向分布出现极大值下移及多个极大值现象。AVS是控制南海湖水体中重金属沉淀的关键因子,有机络合剂是促进Cu向水相扩散迁移的主导因子。
     6.引入了重金属形态分布的空间效应的概念,利用空间效应理论较好地阐释了南海湖水质Cu污染及不同水期黄河沉积物重金属源/汇功能转化的机制。
Natural water is one of the main ecosystems contaminated by heavy metal. Since sediments of the natural water contaminated by heavy metal are usually called as "Chemical Time Bomb", the sediments are chosen as an indicator of heavy metal contamination. With the developing economy of drainage basin, environmental problem becomes a key factor restricting the sustainable development of Nature-Economy-Society system. The civilization and industrialization have destroyed the natural conditions around human, as nearly all of the rivers, lakes and sea were polluted with heavy meals. Many countries all over the world regulate the heavy metal contents as important indicator for water quality monitoring and assessment.
     Baotou city is a typical heavy industrialized city on the drainage basin of the Yellow River. Therefore, the Baotou section of The Yellow River is a typical and representative section for studying the contribution of urban industrial waste water on heavy metal pollution of the Yellow River.
     Speciation analysis is a basis for bioavailability research, it is used to identify potential hazards of heavy metals in sediments. Natural water is a complex multi-ion system. Research about competitive adsorption dynamics of heavy metals onto natural sediments in multi-ion solution (simulate the natural conditions) and about impacts of competitive adsorption on transformation of heavy metal species are of great importance for revealing heavy metal pollution mechanism. Exposure experiments of micro-ecosystem, study about acid-volatile sulfide and heavy metal concentrations in pore water are of propitious to systematically study the heavy metal pollution characteristics.
     Based on the mechanism and effect of heavy metal pollution in the Yellow River, the transition and transformation characteristics of heavy metals in the Yellow River are discussed; the relation between speciation, bioavailability and toxicity of heavy metal in sediments are revealed and identified; the potential hazards of heavy metal contamination in the sediments are evaluated. The paper could provide strategy and scientific basis for the prevention and cure of heavy metal contamination in the Baotou section of the Yellow River, and could also provide reference for the study about water quality protection of the Yellow River and study about impacts of urban industrial inputs on heavy metal pollution in rivers.
     Based on the theories of Environmental Geochemistry, Biogeochemistry, Pollution Ecology, and Modern Sedimentology, this work is focused on geochemical characteristics and bioavailability of heavy metals. The overlying water, pore water, suspended particulate matter, sediment core and fish samples are collected at nine sections of the mainstream and the tributaries in low water period, medium water period and high water period in 2004 and 2005. We obtained 17287 data through experimental test. The mechanisms of competitive adsorption and transformation of heavy metals in multi-ion system (simulate the natural conditions of the Yellow River), the pollution characteristics of heavy metals, the relation of heavy metals in water-sediment-fish micro-ecosystem and the bioaccumulation of heavy metals in fishes are discussed in detail. This is the first research that carries out lots of exposure experiments of fish of the Baotou section of the Yellow River to the urban industrial waste water, and provides large amounts of basic data for bioavailability, biogeochemical cycle and ecological risk assessment of heavy metal. Additionally, according to the consanguinity between the Yellow River and the Nanhai lake, the geochemical characteristics of heavy metals in the sediments of the Nanhai lake are studied. The conclusions are as follows:
     1. The exposure experiments of micro-ecosystem to fishes is carried out first time by simulating the condition of the Yellow River; the response relation of heavy metals between water-sediment-fish system is identified; the linear model which can identify the relation between heavy metal speciation in water and toxicity in fish organs is established, which maybe provide a new effective methods for the biological monitoring of heavy metal pollution.
     2. The pollution level of nine Yellow River fishes are assessed first time, it ranked as: Hemiculter leucisclus > Carassius auratus auratus > Hemibarbus maculatus > Megalobrama amblycephala > Abbottina rivularis Basilewsky > Cyprinus carpio >Squaliobarbus curriculus> Perccottus glehni > Saurogobio dabryi. By developing the concept of bioaccumulation factors, the train of thought of the mechanism research about the bioaccumulation is broadened.
     3. The sediments of the Yellow River function as a sink of heavy metal in low water period, whereas a source in high water period. The sediment quality criteria of heavy metals are used here to study the potential risk of the Yellow River sediments. The study indicates that the industrial inputs from Baotou city have a large contribution on heavy metal enrichment in the mainstream of the Yellow River.
     4. The competitive adsorption capacities are ranked as: Pb~(2+) > Cu~(2+) >> Zn~(2+) > Cd~(2+) ; whereas the release capacities are ranked as: Cd>Zn?Cu>Pb. This result is of great importance for the research about heavy metal transformation mechanism in water-sediment system.
     5. The Nanhai lake presents notorious consanguinity with the Yellow River. In pore water of the surface sediments, Cu and Cd (especially Cu) present releasing trends towards overlying water. The pore water functions as a bridge in heavy metal transition process from sediments to overlying water.
     Different from normal fresh water lakes, the vertical distribution of acid-volatile sulfide of the Nanhai lake shows the maximum downward shifting because of oxidation. The acid-volatile sulfide is the key factor controlling heavy metal precipitation of the Nanhai lake, and the organic agent is the main factor promoting the release of Cu from sediment to water phase.
     6. The conception of spatial effect of heavy metal speciation distribution is introduced. Furthermore, the Cu pollution of water in the Nanhai lake and the transformation mechanism of sink/source of the sediments in different water periods are well discussed based on the conception of spatial effect.
引文
Acero P, Mandado J, Gomez J et al. Environmental impact of heavy-metal dispersion in the Huerva River (Iberian Range, NE Spain). Environmental Geology, 2003, 43: 950-956.
    Acosta V, Lodeiros C. Heavy metals in the clam Tivela mactroides Born, 1778(Bivalvia: Veneridae) from coastal localities with different degrees of contamination in Venezuela. Ciencias Marinas, 2004, 30(2): 323-333.
    Agency for Toxic Substances and Disease Registry. 1999. ATSDR -ToxFAQs - Zinc.http://atsdrl.atsdr.cdc.gov:8080/tfacts60.html.
    Albering H J, Rila J P, Moonen E J et al. Human health risk assessment in relation to environmental pollution of two artificial freshwater lakes in The Netherlands. Environ Health Perspect, 1999,107(1): 27-35.
    Alberty R A. Physical Chemistry. Seventh Edition[M]. John Wiley and Sons, New York. 1987.
    Allen P. Chronic accumulation of cadmium in the edible tissues of Oreochromis aureus (Steindachner):Modification by mercury and lead. Archives of Environmental Contamination and Toxicology, 1995, 29(1):8-14.
    Allen-Gil S M, Martynov V G. Heavy metal burdens in nine species of freshwater and anadromous fish from the Pechora River, The northern Russia. Science of the Total Environment, 1995,160: 653-659.
    Almeida J A, Diniz Y S, Marques S F G et al. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination. Environment International,2002, 27(8): 673-679.
    Andrew W R, Alistair E R, Audrey T B. Distribution of heavy metals in near-shore sediments of the swan river estuary, western Australia. Water, Air, and Soil Pollution, 2000, 124:155-168.
    Ankley G T, DiToro D M, Hansen D J et al. Environ Management, 1994,18: 331.
    Ankley G T, Phipps G L, Leonard E N et al. Environ Toxicology Chem, 1991, 10: 1299.
    Ankley G T. Predication the acute toxicity of copper in freshwater sediments: evalution of the role acid-volatile sul-fide [J]. Environ Toxicol Chem, 1993,12: 315-323.
    Apte S C et al. Anal Chim Acta, 1990,235 (2): 287.
    Atanassova I. Competitive effect of copper, zinc, cadmium and nickel on ion adsorption and desorption by soil clays. Water, Air, and Soil Pollution, 1999,113:115-125.
    Au D W T. The application of histo-cytopathological biomarkers in marine pollution monitoring: a review. Marine Pollution Bulletin, 2004, 48(9-10): 817-834.
    Authman M M N. Oreochromis niloticus as a Biomonitor of Heavy Metal Pollution with Emphasis on Potential Risk and Relation to Some Biological Aspects. Global Veterinaria, 2008,2 (3): 092-145.
    Barow N J, Bowden J W, Posner A M et al. Describing the adsorption of copper, zinc and lead on a variable charge mineral surface. Australian Journal of Soil Research, 1981, 19: 309-321.
    Beck B D. An Update on Exposure and Effects of Lead. Toxicological Sciences, 1992, 18(1): 1-16.
    Braunbeck T. Cytological alterations in fish hepatocytes following in vivo and in vitro sublethal exposure to xenobiotics. Fish Ecotoxicology, 1998.
    Bruemmer G W et al. Heavy metal species, mobility and availability in soils. Z. Pfanzenerhaenr. Bodenkd, 1986, Vol 149: 382-398.
    Burton C L, Rosenbaum M S. Decision support to assist environmental sedimentology modelling. Environmental Geology, 2003, 43:457-465.
    Campbell P G C. In Tessier A, Tumer D R (eds.) Metal Speciationand Bioavailability in Aquatic System, John Wiley&Sons, Chich-ester, 1995, 54-55,62.
    Carlson A R. The role of acid-volatile sulfide in determining cadmium bioavailability and toxicity in freshwater sedi-ments [J]. Environ Toxicol Chem, 1991, 10: 1309-1316.
    Carpene E, Vasak M. Hepatic metallothionein from gold fish (Carassius auratus). Comp. Biochem. Physiol, 1989,92: 463-468.
    
    Chen B, Shan X Q, Qian J. Plant Soil, 1996,186: 275.
    Chen M H, Chen C Y. Bioaccumulation of Sediment-Bound Heavy Metals in Grey Mullet, Liza macrolepis. Mar poll Bull, 1999, 39: 239-244.
    Chen Zheng, Lawrence M M. Assessment of sedimentary Cu availability: a comparison of biomimetic and AVS ap-proaches [J]. Environ Sci Tech, 1998, 33: 650-652.
    Christiaan Gischler. Pathways of Heavy Metals and Implication for Stakeholders [D]. Sonso Lagoon, Colombia TRITA-LWR Master Thesis 05:13. Stockholm -Sweden. 2005.
    Croteau M N, Luoma S N. Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes[J]. Environmental Toxicology and Chemistry, 2005,24(11):2871- 2878
    Davies B E, Korfali S I.A comparison of metals in sediments and water in the river Nahr-Ibrahim, Lebanon, 1996 and 1999. Environmental Geochemistry and Health, 2003, 25: 41-50.
    Davies B E. Water Air Soil Pollut, 1992, 63: 331.
    Del Valls T, Forja J M, Gonz(?)lez-Mazo E et al. Determining contamination sources in marine sediments using multivariate analysis. Trends in Analytical Chemistry, 1998,17(4): 181-192.
    Depledge M H. Purification and characterization of cadmium-induced metallothionein from the shore crab Carcinus maenas (L.). Biochem. J, 1994,297:609-614.
    Di Toro D M, Dmahony J, Hansen D J et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickelin sediments [J]. Environ Sci Technol, 1992, 26:91-101.
    Di Toro D M, Mahony J D, Hansen D J. Toxicity of cadmium in sediments: the role of acid volatile sulfide [J].En-viron Toxicol Chem, 1990, 9: 1487-1502.
    Dvis J A, Leckie J O. Surface ionization and complexation at the oxid/water interface , II. Surface properties of amorphous iron oxyhydroxide and adsorption of metal ions. Journal of Colloid and Interface Science, 1978,67:90-107.
    
    Edwards S C, Macleod C L, Lester J N. Water Air Soil Pollut, 1998,102: 74.
    El-hasand T, Jiries A. Heavy metal distribution in valley sediments in Wadial-Karak catchment area, South Jordan.Environmental Geochemistry and Health, 2001, 23: 105-116.
    
    Ellickson K M, Meeker R J, Gallo M A et al. Arch Environ ContamToxicol, 2001, 40: 128.
    Elliott H A, Demdesy B A and Maille P J. Content and fractionation of heavy metals in water treatmentsludges [J].Environ.Qual, 1990, 19: 330-334.
    EPA-823-R-04-007,November 2004. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States[R], National Sediment Quality Survey Second Edition.
    Fan Q Y, He J, Xue H X et al. Competitive adsorption, release and speciation of heavy metals in the Yellow River sediments, China. Environmental Geology, 2007, 53(2): 239-251
    Fan Q Y, He J, Xue H X et al. Heavy metal pollution in Baotou section of the Yellow River, China[J]. Chemical Speciation and Bioavailability. 2008. 20(2):65-76.
    Fassett D W. Cadmium: Biological Effects and Occurrence in the Environment. Annual Review of Pharmacology,1975, 15(1): 425-435.
    Filius, Angelika et al Cadmium sorption and desorption in limed topsoils as influenced by pH: isotherms and simulated leaching[J]. Journal of Environmental Quality, 1998, 27: 12-18.
    Gardner M J, Dixon E M, Comber S. Copper complexation in English rivers [J]. Chemical Speciation and Bioavailability, 2000, 12: 1-8.
    Giusti L, Zhang H. Heavy metal and arsenic in sediments, mussels and marine water from Murano (Venice, Italy).Environmental Geochemistry and Health, 2002, 24: 47-65.
    Gonzalez de Canales M L, Ortiz J B, Arellana J M et al. Fundulus heteroclitus como indicador de la contamination marina, 1996, 6-8.
    
    H 奥贝尔,M潘塔.土壤中的微量元素.科学出版社, 1982.
    
    Haynes D, Carter S, Gaus C et al. Organochlorine and heavy metal concentrations in blubber and liver tissue collected from Queensland (Australia) dugong (Dugong dugong). Mar Poll Bull, 2004, 21: 1-9.
    Hinton D E, Lauren D J. Liver Structural Alterations Accompanying Chronic Toxicity in Fishes: Potential Biomarkers of Exposure. IN: Biomarkers of Environmental Contamination. Lewis Publishers, Chelsea,Michigan, 1990. p 17-57, 20 fig, 2 tab, 109 ref. U. S. P. H. S. Grants CA 45131 and ESO 4699.
    Hinton D E. Cells, cellular responses, and their markers in chronic toxicity of fishes. Aquatic Toxicology:Molecular, Biochemical and Cellular Perspectives (Malins DC, Ostrander GK, eds). Boca Raton, 1994, FL:Lewis Publishers: 207-239.
    Hsu P H. Aluminum oxides and oxyhydroxides[C]. In J.B. Dixon and S.B. Weed. (ed.) Minerals in soil environments. ASA and SSSA, Madison, WI. 1989, 331-378.http://www.epa.gov, E. Current National Recommended Water Quality Criteria.
    Huang W, Campredom R, Aarao J.J et al. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil)- interpretation of geochemical data with the aid of multivariate analysis. Environmental Geology,1994, 36(4): 241-247.
    Jain A, Loeppert R H. Effect of competing anion on the adsorption of arsenate and arsenite by ferrihydrite [J].Environ Qual, 2000,29: 1422-1430.
    Jim(?)nez-Tenorio N, Morales-Caselles C, Kalman J et al. Determining sediment quality for regulatory proposes using fish chronic bioassays. Environment International, 2007, 33(4): 474-480.
    Johannesson L T, Stevens R L, Eriksson K. The influence of an urban steam on sediment geochemistry in Goteborg Harbour, Sweden. Environmental Geology, 2003, 43: 434-444.
    Jones I, Kille P, Sweeney G. Cadmium delays growth hormone expression during rainbow trout development.Journal of Fish Biology, 2001, 59(4): 1015-1022.
    Kennedy V H, Sanchez A L, Oughton D H et al. Ana-lyst, 1997, 122: 89R.
    Lamy I, Bourgeois S and Bermond a. Soil cadmium mobility as a consequence of sewage sludge disposal [J].Environ Qual, 1993, 22: 731-737.
    Lee Byeong-gweon, Lee J S, Luoma S N, et al. Influence of acid volatile sulfides and metal concentrations on the bioavailability to marine invertebrates in contaminated sediments. Environ Sci Technol, 2000,34:4517-4523.
    
    Lee D Y, Chang P H, Houng K H. Plant Soil, 1996, 181: 233.
    Li F L, Shan X Q, Zhang T H et al. Environ Pollut, 1998, 102: 209.
    Li Gai-zhi, Guo Bo-shu, Liu Ying et al. Study on the isotherms of the interaction between suspended particles and Cu(II) in the HuangHe River[J]. Chinese Journal of Oceanology and Limnology, 2000,18(2): 178-182.
    Lian-Tien Sun, Sen-Shyong Jeng. Comparative Zinc Concentrations in Tissues of Common Carp and Other Aquatic Organisms. Zoological Studies, 1998,37(3): 184-190.
    Loganathan P, Burau RG. Sorption of heavy metal ions by a hydrous manganese oxide. Geochimica et CosmochimicaActa, 1973,37: 1277-1293.
    Lukin A, Dauvalter V, Kashulin N et al. Assessment of copper-nickel industry impact on a subarctic lake ecosystem. Science of the Total Environment, 2003, 306(1-3): 73-83.
    Luthy R G, Dzombak D A, Peters C A et al. Environ Sci Technol, 1994, 28: 266A.
    Maiti P, Banerjee S. Accumulation of Heavy Metals in Different Tissues of the Fish Oreochromis nilotica Exposed to Waste Water. Environment and Ecology, 1999, 17(4): 895-898.
    Marianne Holmer, Peter Storkholm. Sulphate reduction and sulphur cycling in lake sediments: A review[J].Freshwater Biology, 2001,46: 431 -451.
    Mc Geer J C, Szebedinszky C, McDonald D G et al. Effects of chronic sublethal exposure to waterborne Cu, Cd or Zn in rainbow trout. 1: Iono-regulatory disturbance and metabolic costs. Aquatic Toxicology, 2000, 50(3):231-243.
    Mcbride M B. Toxic metal accumulation from agricultural use of sludge: Are USEPA regulations protective? [J].Environ Qual, 1995,24: 5-18.
    
    Mckenna I M, Chaney R L, Williams F M. Environ Pollut, 1993,79: 113.
    Monaci F, Borrel A, Leonzio C et al. Trace elements in striped dolphins (stenella coeruleoalba) from the western Mediterranean Environ Pollut, 1998,99:61-68.
    
    Mudroch A, Azcue D J M. Manual of aquatic sediment sampling, Boca Raton: Lewis publication, 1995, 1-20.
    Narvaez N, Lodeiros C, Nusetti O et al. Uptake, depuration and effect of cadmium on the green mussel Perna viridis (L. 1758)(Mollusca: Bivalvia). Ciencias Marinas, 2005, 31(1 (A)): 91-102.
    National Research Council. 1999 Cited in: HealthLink Online Resources: Copper. Recommendations: Suggested Intake. http://www.healthlink.com.au/nat_lib/htm-data/htm-supp/sukpps55.htm.
    Nicole M L, Robert P M, Michel L Jean. The fate and transport of mercury, methylmercury, and other trace metals in Chesapeake bay tributaries [J]. Wat Res, 2001,35: 501-515.
    Nord L Gale, Craig D Adams, Bobby G Wixson et al. Lead, Zinc, Copper, and Cadmium in Fish and Sediments from the Big River and Flat River Creek of Missouri's Old Lead Belt[J]. Environmental Geochemistry and Health, 2004, 26: 37-49.
    O'Connor D J, Connolly J P. The effect of concentration of adsorbing solids on the partition coefficient [J]. Water Res, 1980, 14: 1517.
    
    O'day P A, Carroll S A, Randall S et al. Environ Sci Technol, 2000, 34: 3665.
    Obrador A, Rico M 1, Mingot J I et al. Sci Total Environ, 1997, 206: 117.
    Olafson R W, Kearns A, Sim R G. Heavy metal induction of metallothionein synthesis in the hepatopancreas of the crab Scylla serrata. Comp Biochem Physiol, 1979, 62(B): 417-424.
    Olafson R W, Olsson P E. Electrochemical detection of metallothionein, zinc and copper levels during an annual reproductive cycle in Rainbow trout (Salmo gairdneri). Fish Physiol Biochem, 1987, 31: 39-47.
    Olsson P E, Larsson A, Haux C. Metallothionein and heavy metal levels in rainbow trout(Salmo gairdneri) during exposure to cadmium in the water. Marine environmental research. London[MAR. ENVIRON. RES.], 1988,24: 1-4.
    
    Orram A V, Jessup R E, Ou L T et al. Appl EnvironMicro-biol, 1985, 49: 582.
    Ortiz J B, de Canales G. Quantification and histopathological alterations produced by sublethal concentrations of copper in Fundulus heteroclitus. Ciencias Marinas, 1999,25(1): 119-143.
    Paetzel M, Nes G, Leifsen L et al. Sediment pollution in the Vagen, Bergen harbour, Norway. Environmental Geology, 2003, 43:476-483.
    Pagenkopf G K. Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science & Technology, 1983,17(6): 342-347.
    Paulo C Gomes, Mauricio P F Fontes, Aderbal G da Silva et al. Selectivity Sequence and Competitive Adsorption of Heavy Metals by Brazilian Soils[J]. Soil Sci Soc Am [J], 2001, 65:1115-1121.
    Peijnenburg W, Baerselman R, de Groot A et al. Arch Environ Contam Toxicol, 2000,39: 420.
    Petersen W, Wilier E, willamowski C. Remobilization of trace elements from polluted anoxic sediments after resuspension in oxic water [J]. Water, air, and soil pollution, 1997, 99: 515-522.
    Pilarczyk A. Impact of genetic and dietary factors on immune response of carp [J].Rozprawy-Akademia-Rolnicza-w-Szczecinie, 1998,181:62.
    Pistrowska M, Dudka S and Ponce-Hernandez R et al. The spatial distribution of lead concentration in the agricultural soils and main crop plants in Poland. Sci Tot Environ, 1994,158: 147-155.
    Puangkaew J, Kiron V, Somamoto T et al. Nonspecific immune response of rainbow trout (Oncorhynchus mykiss Walbaum) in relation to different status of vitamin E and highly unsaturated fatty acids. Fish and Shellfish Immunology, 2004,16(1): 25-39.
    Purohit K K, Mukherjee P K, Khanna P P et al. Heavy metal distribution and environmental status of Doon Valley soils, Outer Himalaya, India. Environmental Geology, 2001,40(6): 716-724.
    Qian J, Wang Z J, Shan X Q et al. Environ Pollut, 1995, 91: 309.
    Qiao-qiao CHI, Guang-wei ZHU, Lang-don A. Bioaccumulation of heavy metals in fishes from Taihu Lake, China.Journal of Environmental Sciences (English Edition), 2007, 19(12): 1500-1504.
    Rauret G R, Rubio J F and Lopez-Sanchez et al. Specific procedure for metal solid speciation in heavily pol-luted river sediments [J]. Int J Environ Anal Chem, 1989,35: 89-100.
    Reid S D, Mc Donald D G. Metal binding activity of the gills of rainbow trout(Oncorhynchus mykiss). Canadian Journal of Fisheries and Aquatic Sciences, 1991, 48(6): 1061-1068.
    Riba I, Casado-Mart??nez MC, Blasco J et al. Bioavailability of heavy metals bound to sediments affected by a mining spill using Solea senegalensis and Scrobicularia plana. Marine Environmental Research, 2004a,58(2-5): 395-399.
    Riba I, Conradi M, Forja J M et al. Sediment quality in the Guadalquivir estuary: lethal effects associated with the Aznalc(?)llar mining spill. Marine Pollution Bulletin, 2004b, 48( 1 -2): 144-152.
    Ricou P, H(?)quet V, Lecuyer I et al. Influence of Operating Conditions on Heavy Metal Cation Removal by Fly Ash in aqueous solutions[C]. 1999 International Ash utilization symposium, 42. University of Kentucky.
    Romeo M, Mathieu A, Gnassia-Barelli M et al. Heavy metal content and biotransformation enzymes in two fish species from the NW Mediterranean. Marine ecology progress series. Oldendorf, 1994, 107(1): 15-22.
    Romeo M, Siau Y, Sidoumou Z et al. Heavy metal distribution in different fish species from the Mauritania coast.Science of the Total Environment, 1999,232(3): 169-175.
    Rosa Galvez-cloutier, Jean-sebastien Dube. An evaluation of fresh water sediments contamination: the Lachine canal sediments case, Montreal, Canada. Part II: heavy metal particulate speciation study[J]. Water, air, and soil pollution, 1998, 102: 281-301.
    
    Ruby M V, Schoof R, Barttin W et al. Environ Sci Technol, 1999, 33: 3697.
    Sally B L, Chaney R L, Lloyd Cheryl A et al. Environ Sci Technol, 1996, 30: 3508.
    Santschi P H, Hoehener P, Benoit G et al. Chemical processes at the sediment- water interface. Mar chem, 1990,30 (1-3): 269-315.
    Schwertmann U, RM Taylor. Iron oxides[C]. In J.B. Dixon and S.B. Weed (ed.) Minerals in soil environments.ASA and SSSA, Madison, WI. 1989, 379-438.
    Scow K M, Alexander M. Soil Sci Soc Am [J], 1992, 56: 128.
    Scow K M, Hutson J. Soil Sci Soc Am [J], 1992,56:119.
    Sims J T, Kilne J S. Chemical fractionation and plant uptake of heavy metals in soils amended with co-composted sewage sludge [J]. Environ Qual, 1991,20: 387-395.
    Sims R R, Presley B J. Heavy metal concentrations in organisms from an actively dredged Texas Bay. Bulletin of Environmental Contamination and Toxicology, 1976,16(5): 520-527.
    Sindayigaya E, Van Cauwenbergh R, Robberecht H et al. Copper, zinc, manganese, iron, lead, cadmium, mercury and arsenic in fish from Lake Tanganyika, Burundi. Science of the total environment, 1994, 144(1-3):103-115.
    Spark K M, Johnson B B and Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides.European Journal of Soil Science, 1995, 46: 621-631.
    Rice, S. D., J. W. Short, et al. Uptake and catabolism of tributyltin by blue crabs fed TBT contaminated prey[J]. Marine environmental research. London. 1989,27(2): 137-145.
    St-cyr L, Campbell L, Can J. Fish Aquat Sci, 2000, 57: 1330.
    Stegeman JJ, Brouwer M, Di Giulio RT et al. Molecular responses to environmental contamination: enzyme and protein systems as indicators of chemical exposure and effect. Biomarkers: Biochemical, Physiological, and Histological Markers of Anthropogenic Stress, 1992, 235-335.
    Sullivan P, Taylor K G. Sediment and pore water geochemistry in a metal contaminated estuary, Dulas Bay,Anglesey. Environmental Geochemistry and Health, 2003, 25: 115-122.
    Sunda W G. Biol Oceanogr, 1991,6:411.
    Taylor D et al. The significance of the accumulation of cadmium by aquatic organisms [J]. Ecotoxicol Environ satety, 1983,7:33.
    Taylor S E, Birch G F. The environmental implications of readily resuspended contaminated estuarine sediment.30th international geological congress abstract, Beijing, 1996, (3): 424.
    
    Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 1979,51(7): 844-851.
    Thomas D G, Cryer A, Solbe J F et al. A comparison of the accumulation and protein binding of environmental cadmium in the gills, kidney and liver of rainbow trout (Salmo gairdneri Richardson). Comp Biochem Physiol C, 1983, 76(2): 241-246.
    Thornton G J P, Walsh P D. Heavy metals in the waters of the Nanty Fendrod: change in pollution levels and dynamics associated with the redevelopment of the Lower Swansea Vally, South Wales, UK. Sci Total Environ, 2001, 278 (1-3): 45-55.
    
    U. Forster. Metal Pollution in the Aquatic Environment. Berlin: Springer Verleg, 1978: 110-192.
    USEPA. 2000. Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment-Status and Needs. U.S. Environmental Protection Agency Bioaccumulation Analysis Workgroup, Washington, DC.20460.EPA-823-R-00-001.
    
    U.S.EPA, Current National Recommended Water Quality Criteria www.epa.gov/waterscience/criteria/wqctable/index.html.
    U.S.EPA. Equilibrium Partitioning Approach to Predicting Metal Bioavailability in Sediments and the Derivation of Sediment Quality Criteria for Metals, Vol. 1 (Briefing Report to the Science Advisory Board, EPA 822-D-94-002).Office of Water, Office of Research and Development, Washington, DC, 1994.
    U.S.EPA. Quality Criteria for Water(Gold Book) [R]. EPA 440/5-86-001, 1986.
    U.S.EPA. Quality Criteria for Water(Red Book) [R]. 1976.
    
    U.S.EPA, Understanding Variation In Partition Coefficient, Kd, Values[R]. EPA 402-R-99-004A-B, August 1999.
    Wang F Y, Chen J S. Environ Sci Technol. 1997, 31: 448.
    Wang Ya-wei, Yuan Chun-gang, Jin Xing-long et al. Application of chemometrics methods for the estimation of heavy metals contamination in river sediments[J]. Journal of Environmental Sciences, 2005, 17(4):540-544.
    
    Wang Z W, Shan X Q, Zhang S Z. Anal ChimActa, 2001,441: 147.
    Wood C M. The toxic response of the gill. Target organ toxicity in marine and freshwater teleosts. Taylor & Francis, Washington, 2001, DC: 1-87.
    Xue H B, Jansen S, Prasch A. Sigg L, 2001, 35: 539.
    Zarcinas B A, Rogers S L. Copper, lead and zinc mobility and bioavailability in a river sediment contaminated with paint stripping residue. Environmental Geochemistry and Health, 2002,24:191-203.
    Zauke G P, Savinov V M, Ritterhoff J et al. Heavy metals in fish from the Barents Sea (summer 1994). Science of the Total Environment, 1999, 227(2-3): 161-173.
    Zauke G P, Savinov V M. Heavy metals in fish from the Barents Sea (summer, 1994). Sci Total Environ, 1999,214: 113-121.
    Zhang M K, He Z L, Stoffella P J et al. Concentrations and solubility of heavy metals in muck sediments form the St. Lucie Estuary, U.S.A. Environmental Geology, 2003, 44: 1-7.
    Zhou L J, Salvador S M, Liu Y P et al. Heavy metals in the tissues of common dolphins (Delphinus delphis) stranded on the Portuguese coast. Sci Total Environ, 2001, 273: 61-76.
    Zhu D, Schwab A P and Banks D R. Heavy metals from mine tailing as affected by plants. [J] Environ Qual, 1999,28: 1727-1732.
    Zyadah M,Chouikhi A. Heavy metal accumulation in Mullus barbatus, Merluccius merluccius and Boops boops fish from the Aegean Sea, Turkey. International Journal of Food Sciences and Nutrition, 1999, 50(6): 429-434.
    包头市环境保护局.1996-2000年包头市环境质量报告书[R].2001,包头.
    包头市环境保护局.2001-2005年包头市环境质量报告书[R].2006,包头.
    蔡绪贻,林黎虹.重金属在水环境中形态分布的随机模拟.中国地质灾害与防治学报,1997.8(2):40-47.
    陈建斌.水体中重金属离子的形态及其对生物富集影响[J].微量元素与健康研究,2003,20(4):46-49.
    陈金堤.九龙江河口海区生物体内汞、铜、铅、锌和镉含量的初步调查.厦门大学学报,1981,4:458-467.
    陈静生,洪松,王立新等.中国东部河流颗粒物的地球化学性质[J].地理学报,2000,55(4):417-427.
    陈静生,李荷碧,夏星辉等.近30年来黄河水质变化趋势及原因分析[J].环境化学,2000,19(2):97-101.
    陈静生,周家毅.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    陈瑞生,黄玉凯等.河流重金属污染研究.中国环境科学出版社,1998.
    陈淑梅,王菊英,马德毅等.酸溶硫化物与沉积物中重金属化学活性的关系[J].海洋环境科学,1999,18(3):16-21.
    陈祖军,谭显英.论我国海洋资源与环境的可持续发展[J].水资源保护,2001,1:7-10.
    程晓东,郭明新.河流底泥重金属不同形态的生物有效.农业环境保护,2001,20(1):19-22.
    储昭升,刘文新,汤鸿霄.官厅水库-永定河沉积物中AVS-SEM的分析[J].环境化学,2003,22(4):313-317.
    崔毅,陈碧鹃.胶州湾海洋动物体中重金属含量及评价.海洋环境科学,1996,15(004):17-22.
    戴树桂等.环境化学.北京:高等教育出版社,1997.
    单孝全,王仲文.分析试验室.形态分析与生物可给性.2001,20(6):103-108.
    党志,Fower M,Watts S等.煤矸石自然风化过程中微量重金属元素的地球化学行为.自然科学进展,2001,8(3):314-318.
    邓南圣,吴峰主编.环境化学教程.武汉:武汉大学出版社,2001,109-114.
    丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨.城市环境与城市生态,2001,14(2):47-48.
    杜青,文湘华,李莉莉等.天然水体沉积物对重金属离子的吸附特性[J].环境化学,1996,15(3):199-206.
    方涛,徐小清.水体沉积物中酸挥发性硫化物的研究进展[J].水生生物学报,2001,25(5):508-515.
    方展强,杨丽华.重金属在鲫幼鱼组织中的积累与分布.水利渔业,2004,6:23-26.
    高焰,王东海,刘娅琳等.天然水体铜络合容量的测定与调查[J].光谱学与光谱分析,2003,23(4):800-803.
    郭明新,林玉环.几种化学浸提剂对底泥重金属生物有效部分浸提效果的比较.环境科学,1998,19(1):9-12.
    郝红,周怀东,王剑影等.漳卫南运河沉积物重金属污染及其潜在生态风险评价[J].中国水利水电科学研究院学报,2005,3(2).
    昊玉霖等.重金属对牙鲆胚胎和仔鱼的影响.海洋与湖沼,1990,21(4):386.
    何力,张真,翟良安等.长江重庆江段鱼类污染状况[J].中国水产科学,1998,5(4):52-56.
    湖南株洲千人离奇镉中毒,世界元素医学,2006,13(4).
    胡勤海.稀土元素La在草鱼体中的分布与积累[J].农业环境保护,1996,15(5):218-222.
    胡炜,周永欣.铜污染沉积物对大型蚤的毒性研究[J].水生生物学报,1995,19(2):82-86.
    黄圣彪,王子健.天然水体中铜的形态及其对Q67淡水发光菌的毒性作用[J].环境科学研究,2003,16(2):43-46.
    黄岁粱,万兆惠,王兰香.泥沙浓度和水相初始浓度对泥沙吸附重金属影响的研究[J].环境科学学报,1995,15(1):66-75.
    黄廷林.水体沉积物中重金属释放动力学及试验研究[J].环境科学学报.1995,15(4):440-446.
    霍文毅,李全生,马锡年.胶州湾养殖海区沉积物中酸可挥发性硫的研究[J].地理科学,2001,21(2):135-139.
    江桂斌.有机金属化合物形态分析.环境科学进展,1999,7(2):7-12.
    将志学,邓士谨.环境生物学.北京:中国环境科学出版社,1989,110.
    孔志明,徐超.环境毒理学.南京大学出版社,1995,151.
    蓝伟光.海水污染对对虾毒性研究的进展[J].福建水产,1990,312.
    李改枝,刘颖,李景峰等.黄河水中悬浮粒子对镉离子的交换吸附等温线[J].中国环境科学,1999,19(4):330-332.
    李利民,郭亦群,胡青.黄河泥沙对某些重金属离子的特性吸附及影响因素研究[J].环境科学研究,1994,7(5):12-16.
    李然,李嘉,赵文谦.水环境中重金属污染研究概述.四川环境,1997,16(1):18-22.
    李文霞,朋子容,郭博书.天然水中重金属化学形态的研究.内蒙古师大学报,1994,(1):42-47.
    李稚卿,张曙光,祁世莲等.黄河悬浮泥沙中的铜形态与其生物有效性的相关性研究.人民黄河,1996(1):11-14.
    梁涛,颗粒态铜对鱼体的生物有效性[J].环境科学进展,1999,7(4):70-75.
    廖自基编著.微量元素的环境化学及生物效应[M].环境科学出版社,1992,252.
    林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提金属的测定[J].环境科学学报,1997,17(3):353-358.
    刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究,Ⅱ铜与镉在褐土中竞争吸附动力学.土壤肥料,2000,(3):10-15.
    刘继芳,曹翠华,蒋以超等.重金属离子在土壤中的竞争吸附动力学初步研究,Ⅰ竞争吸附动力学的竞争规律与竞争系数.土壤肥料,2000,(2):30-34.
    刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学,1996,17(1):89-92.
    刘晓端,徐清,葛晓立等.密云水库沉积物中金属元素形态分析研究[J].中国科学D辑,地球科学,2005,35(增刊Ⅰ):288-295.
    刘长发,金鱼对游离态的铅的吸收积累及鳃分泌液的自身保护作用[J].环境科学学报,1999,19(4):435-442.
    刘长发,沈伟然.铜和铅在污水鱼塘中鱼体内的蓄积.环境科学研究,1999,12(004):57-60.
    刘长发,陶澍.金鱼对铅和镉的吸收蓄积.水生生物学报,2001,25(004):344-349.
    龙爱民,潘波,徐福留等.不同条件下鲤鱼鳃部对高岭土颗粒吸附态铜的吸收[J].生态学报,2002,22(10):1640-1644.
    陆超华.南海北部海域经济水产品的重金属污染及其评价.海洋环境科学,1995,14(2):12-19.
    陆超华.南海北部海域经济鱼类的重金属含量与分布研究.中国水产科学,1994,1(002):68-77.
    栾兆坤,汤鸿宵.尾矿砂颗粒表面特征与吸附作用的研究[J].环境化学,1993,12(5):347-355.
    马德毅,王菊英,闰启仑等.酸溶硫化物(AVS)对沉积物一孔隙水系统中二价有毒金属化学活动性的影响[J].海洋学报,1997,19(5):83-90.
    孟晓红,贾瑛.重金属稀土元素污染在水生物体内的生物富集.农业环境保护,2000,19(001):50-52.
    孟紫强,环境毒理学[M].北京:中国环境科学出版社,2000,3-146.
    潘纲.亚稳平衡态吸附(MEA)理论-传统吸附热力学理论面临的挑战与发展.环境科学学报.2003,23(2):156-173.
    乔胜英,蒋敬业,向武等,武汉市湖泊中重金属污染状况[J].水资源保护,2007,23(1):45-48.
    阮晓,郑春霞.重金属在罗非鱼淡水白鲳和鲤鱼体内的蓄积.农业环境保护,2001,20(5):357-359.
    尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法研究进展.农业环境保护,2001,20(4):266-269.
    宋菲,郭玉文,刘孝义等.土壤中重金属镉锌铅复合污染的研究.环境科学学报,1996,16(4),431-436.
    孙卫玲,倪晋仁.泥沙吸附重金属研究中的若干关键问题[J].泥沙研究,2002,(12):53-59.
    汤鸿霄.环境微界面过程研究论文专辑前言.环境科学学报,2003,23(2):1.
    王宏镔,束文圣,蓝崇钰等.重金属污染生态学研究现状与展望.生态学报,2005,25(3):596-605.
    王莉红,汤福隆,胡岭等.杭州西湖水中四种重金属的形态分布和交换过程研究.环境科学学报,1998,18(2):147-152.
    王立军,张朝生.珠江广州段水体沉积物和悬浮物中27种元素的含量与形态分布特征.应用基础与工程科学学报,1999,7(1):12-20.
    王绍芳,魏明瑞,林景星.大连湾近100年来重金属污染度的演变[J].地学前缘,2002,9(3).
    王亚炜,魏源送,刘俊新.水生生物重金属富集模型研究进展[J].环境科学学报,2008,28(1):12-25.
    吴大清,刁桂仪,彭金莲.矿物对金属离子的竞争吸附实验研究[J].地球化学,1997,26(6):25-32.
    徐海生,赵元凤,吕景才等.水环境中重金属的生物积累研究及应用[J].四川环境,2006,25(3):101-103.
    薛含斌.水环境重金属的化学稳定性及其吸附模式.环境化学,1985,4(3):9-20.
    杨汉东,蔡述明,武汉东湖的现代沉积速率及其与扰动的关系[J].环境科学与技术,1993,63(4):11-13.
    杨严欧,黄河水系鱼类分布的模糊聚类分析,湖北农学院学报,1999(5),19(2):161-163.
    衣铭明,陈民山,郝林华等.鲈鱼对浮性配合饵料中镉的积累[J].海洋水产研究,1998,199(1):74-80.
    余国营,吴燕玉.土壤环境中重金属元素的相互作用及其对吸持特性的影响.环境化学,1997,16(1):30-36.
    于沛芬.松花江水系鱼体中痕量重金属锌、铜、铅、镉的监测[J].水产学杂志,1994,7(2):96-97.
    禹雪中,杨志峰,钟德钰等.河流泥沙与污染物相互作用数学模型[J].水利学报,2006,37(1):10-15.
    禹雪中,钟德钰,李锦秀等.水环境中泥沙作用研究进展及分析[J].泥沙研究,2004,(6):75-81.
    张朝生,王立军,章申.长江水系沉积物重金属元素含量的计算方法研究.环境科学学报,1995,15(3):257-264.
    张朝生,章申,何建邦.长江水系沉积物重金属元素含量空间分布特征研究-地统计学方法.地理学报,1997,52(2):184-192.
    张朝生,章申,何建邦.长江水系沉积物重金属元素含量空间分布特征研究-空间自相关与分形方法.地理学报,1998,53(1):87-96.
    张朝生,章申,王立军等.长江与黄河沉积物金属元素地球化学特征及其比较.地理学报,1998,53(4):172-176.
    张朝生,章申,张立成等,长江中下游河流沉积物和悬浮物中金属元素的形态特征.中国环境科学,1995,15(5):342-347.
    张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究.环境化学,1997,16(5):429-434.
    张利田,卜庆杰,杨桂华等.环境科学领域学术论文中常用数理统计方法的正确使用问题[J],环境科学学报,2007,27(1):171-173.
    张曙光.黄河重金属污染物对鱼类的致突变性研究[J].环境科学研究,1989,9(3):54-57.
    张秀云,孙成渤.养鱼池水质与鱼肉中重金属污染的关系.城市环境与城市生态,1998,11(001):42-44.
    赵红霞,周萌,詹勇等.重金属对水生动物毒性的研究进展[J].中国兽医杂志,2004,40(4):39-41.
    赵沛伦,申献臣,夏军等.泥沙对黄河水质影响及重点河段水污染控制.黄河水利出版社,1998.
    郑利,徐小清.武汉东湖沉积物中酸挥发性硫化物(AVS)的深度分布及其影响因素.湖泊科学,2003,15(3):245-250.
    周新文.混合重金属离子在鲫鱼(Carassiusauratus)中的积累机制与分子毒性研究[D],杭州:浙江大学,2001.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.